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Zero-temperature freezing in the three-dimensional kinetic Ising model

J. Olejarz,1 P. L. Krapivsky,1,2 and S. Redner1

1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
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We investigate the relaxation of the Ising-Glauber model on a periodic cubic lattice after a quench to
zero temperature. In contrast to the conventional picture from phase-ordering kinetics, we find the following:
(i) Domains at long time are highly interpenetrating and topologically complex, with average genus growing
algebraically with system size. (ii) The long-time state is almost never static, but rather contains “blinker” spins
that can flip ad infinitum with no energy cost. (iii) The energy relaxation is extremely slow, with a characteristic
time that grows exponentially with system size.
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Phase-ordering kinetics is concerned with the growth of
domains of ordered phase when a system is suddenly cooled
from a high-temperature spatially homogeneous phase to a
subcritical temperature [1,2]. For systems with a nonconserved
order parameter, single-phase regions emerge to form a
coarsening domain mosaic whose typical length scale grows
in time as t1/2. This growth continues until the system reaches
the equilibrium state with a nonzero order parameter. An
archetypical example is the Ising model endowed with Glauber
dynamics [3], where domains consist of contiguous regions of
spins that all point up or point down.

What happens when the final temperature is zero? While
an infinite system will coarsen indefinitely, coarsening should
stop in a finite system of linear dimension L when the typical
domain length becomes comparable to L. A natural expec-
tation might be that the ground state is ultimately reached,
and this outcome indeed occurs in the one-dimensional (1D)
Ising-Glauber model [1,2]. Surprisingly, the conventional
picture already begins to fail in 2D where the ground state is
reached roughly two-thirds of the time; in the remaining cases,
the system falls into an infinitely long-lived metastable state
that consists of two (or more in rare cases) straight single-phase
stripes [4–6].

The fate of the 3D Ising ferromagnet with zero-temperature
Glauber dynamics is even more intriguing (Fig. 1). First,
the long-time state is topologically complex, with multiply
connected interpenetrating regions of positive and negative
magnetization. This spongelike geometry represents a discrete
analog of zero average-curvature interfaces, for which a
veritable zoo of possibilities have been cataloged [7,8]. There
is also a close resemblance to gyroid phases, or “plumber’s
nightmares,” that arise in micellar and other two-phase systems
[9]. Second, even though the temperature is zero, almost all
realizations fluctuate forever due to blinker spins—a subset
of spins that can flip repeatedly without any energy cost
[4]. Last, the approach to these asymptotic blinker states
is extraordinarily slow, with a relaxation time that grows
exponentially with system size. In contrast, if the initial
magnetization is nonzero, it is believed that the ground state
of the initial majority phase is reached [4,10].

We study the 3D homogeneous Ising ferromagnet on a
cubic lattice of linear dimension L with periodic boundary
conditions. The spins are initialized in the antiferromagnetic

state [11,12] and subsequently evolve by zero-temperature
Glauber dynamics: a randomly selected spin flips with prob-
ability 1 if the energy decreases, flips with probability 1

2 if
the energy does not change, and does not flip if the energy
increases.

I. ENERGY AND TOPOLOGICAL COMPLEXITY

A fundamental characteristic of the long-time state is
the dependence of the energy gap (defined as the energy
difference about the ground state per spin) EL versus system
size L. Even though the ground state is not reached, the
energy systematically decreases with L. Direct simulations
to reach the asymptotic state of even medium-size systems are
prohibitively slow, however, because energy-lowering spin-flip
events become progressively more rare once the coarsening
length scale reaches the system size. In this post-coarsening
regime, the energy evolution is characterized by long periods
where only zero-energy spins (those with equal numbers of
up and down neighbors) flip, punctuated by rare energy-
decreasing events.

To reduce the time needed to simulate these long iso-
energy wanderings, we employ an acceleration protocol: Once
energy-lowering events become rare, we apply an infinitesimal
magnetic field as the system wanders on each fixed-energy
plateau between energy-lowering events [13]. The field drives
the state-space motion on each plateau so that the next
energy-lowering spin flip is found more quickly. After each
energy-lowering spin flip, the direction of the infinitesimal
field is reversed so that the net time-average field is zero.
We systematically checked that this procedure accurately
reproduces the energy that is obtained by Glauber dynamics for
system sizes (L � 10) where a direct check of this acceleration
method is computationally feasible [12]. We find that the
relative difference in the average energies obtained by these
two approaches is less than 10−7 for size 103, while taking
two orders of magnitude less CPU time. Our energy data are
based on systems of linear dimension L � 76 with � 105

realizations for each L; the relative error for each data point is
< 0.1%. Our data are consistent with EL ∼ L−ε with ε ≈ 1, in
agreement with previous results based on much smaller-scale
simulations [4].

At long times, there are almost always just two interpene-
trating and topologically complex domains [12]. We quantify
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FIG. 1. (Color online) Example of a genus g = 10 domain on a
203 lattice with periodic boundary conditions. Each block represents
an up spin (with the spin at the center of the block), while blank space
represents a down spin. Highlighted blocks correspond to “blinker”
spins (see text) that point up.

domain topology by the genus g, which equals the number
of holes in the domain surface. (For example, the genus of a
sphere is g = 0, while that of a doughnut is g = 1.) Figure 1
shows an example with g = 10 for a 203 periodic system. To
measure the domain genus, we exploit the connection to the
Euler characteristic [14],

χ = 2(1 − g) = V − E + F , (1)

that relates χ , and thereby g, to easily measured interface
features: V , the number of vertices on the interface; E , the
number of edges; and F , the number of faces. Each face
separates a pair of oppositely oriented neighboring spins, so
that F is directly related to the energy by F ∼ L3EL. Our
simulation data for systems with L � 76 show considerable
finite-size corrections, but extrapolation suggests that 〈g〉 ∼
Lγ with γ ≈ 1.7.

A simple topological argument relates the average final
energy EL and average genus 〈g〉. To establish this relation, we
simplify Eq. (1) by noting that a face has four edges, and each
edge is shared between two adjacent faces. Hence E = 2F
[14]. Similarly, each edge has two vertices that are shared
among three, four, five, or six adjacent edges, giving 1

3E �
V � 2

3E . Using these relations in Eq. (1) gives − 1
3F � χ �

1
3F , or 0 � g � 1 + 1

6F , where we also use that the number
of holes (the genus) is non-negative. Since F ∼ L3EL ∼ L3−ε

with ε ≈ 1, we therefore obtain the upper bound g � L3−ε , or
equivalently, the fundamental exponent relation ε + γ � 3.
Our simulational estimates for these two exponents ε ≈ 1 and
γ ≈ 1.7 indicate that this bound is numerically meaningful.
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FIG. 2. Plot of Pb, the probability of reaching a blinker configu-
ration as a function of 1/L.

II. BLINKER STATES

As the linear dimension is increased, the system almost
always (Fig. 2) gets trapped within a set of perpetually
evolving configurations that contain stochastic blinker spins.
Each blinker spin has three neighboring spins of the same sign
and three of the opposite sign so that a blinker can flip without
changing the energy of the system (see Fig. 1). Equivalently,
spin-up blinkers exist at convex (outer) corners of domain
interfaces, while spin-down blinkers are adjacent to the apex
of concave (inner) corners. When a blinker spin flips, one (or
more) of its neighbors typically becomes a blinker so that these
configurations never cease to evolve.

A system that contains blinker spins can therefore wander
forever on a small set of iso-energy points in state space. We
define this set as a blinker state. While the fraction of blinker
spins is small—typically less than a percent when the linear
dimension L � 10—the fraction of the system volume over
which blinker spins can wander is roughly 9% for large L [12].

These blinkers are part of a huge number of spongelike
metastable states in the system whose number is estimated
to scale as exp(L3) [15]. [These states are much richer in
character that the alternating-stripe metastable states in 2D,
whose number grows as λL, where λ = 1

2 (1 + √
5) is the

golden ratio [4].] Thus it is plausible that the 3D Ising model
with Glauber dynamics should get trapped in one of these
ubiquitous metastable states. What is unexpected is that the
system almost always falls into a perpetually evolving blinker
state rather than a static metastable state. For example, for
L = 76, the fraction of realizations that end in a blinker state,
a static metastable state, and the ground state are 97.46%,
2.50%, and.04%, respectively (Fig. 2).

III. ULTRASLOW RELAXATION

Blinker states are responsible for an extremely slow
relaxation whose time scale grows faster than a power law
in the system size [16]. To understand the cause of this long
time scale, consider the synthetic blinker shown in Fig. 3.
By zero-energy spin flips, the interface defined by the blinker
spins can be fully deflated (left), partially inflated (middle), or
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FIG. 3. (Color online) An 8 × 8 × 8 blinker on a 203 cubic lattice,
showing the fully deflated (left), partially inflated (middle), and fully
inflated states (right). The bounding slabs wrap periodically in all
three Cartesian directions.

fully inflated (right). Although each blinker spin does not have
any energetic bias, there exists an effective geometric bias that
drives the interface to the half-inflated state. This effective bias
stems from the difference in the number of flippable spins on
the convex (outer) and concave (inner) corners on the interface,
N+ and N−, respectively. When the interface is mostly inflated,
N+ − N− is positive, so that there are typically more spin-flip
events that tend to deflate the interface, and vice versa when
the interface is mostly deflated. This effective bias drives the
interface to the half-inflated state.

We quantify the relaxation of this blinker by the first-
passage time 〈t〉 for an � × � × � half-inflated blinker (Fig. 3,
middle) to reach the fully inflated state. For simplicity, consider
first the corresponding 2D system (Fig. 4). Near the fully
inflated state, the interface consists of N+ outer corners and
N− inner corners, with N+ − N− always equal to 1 in 2D,
and N+ ∼ � [17]. In one time unit, all eligible spins on the
interface flip once, on average. Since N+ − N− = 1, the area
occupied by the up spins typically decreases by 1. Thus we
infer an interface velocity u = �A/�t ∼ −1. Similarly, since
there are N+ + N− ∼ N+ spin-flip events in one time unit,
the mean-square change in the interface area is of the order
of N+ ∼ √

A ∼ �. Thus the effective diffusion coefficient is
D ∼ �. The underlying first-passage process from the half-
inflated to the fully inflated state requires moving against the
effective bias velocity that keeps the blinker near half-inflation
by flipping �2/2 spins. Consequently, the dominant Arrhenius
factor in the first-passage time is τ ∼ exp(|u|�2/2D), so that
ln τ ∼ � [18].

For the corresponding 3D blinker, the inflated region is a
cube of volume �3. There are typically N± ∼ �2 outer and inner
corners on the interface when it is half inflated. In contrast to
2D, there is no conservation law for the difference N+ − N−.
Rather, the disparity between N+ and N− is of the order of �.
If the blinker is beyond half-inflation, then in a single time step
the interface will recede, on average, by �, giving an interface
velocity u ∼ �. Similarly, we estimate D ∼ N± ∼ �2, leading
to ln τ ∼ u�3/D ∼ �2. The straightforward generalization to
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FIG. 4. Two-dimensional analog of the blinker states in Fig. 3.

__

+

+

_
+

+

_

FIG. 5. Two-dimensional sketch of blinker coalescence.

d dimensions gives ln τ ∼ �d−1. Our simulations [12] for this
first-passage time in 2D agree with ln τ ∼ �. In 3D, simulations
are necessarily limited to small �, while our crude argument
is asymptotic. Moreover, the bias velocity in 3D is not strictly
constant during the inflation of the interface, while the bias is
constant in 2D. Nevertheless, the meager data that we do have
(up to � = 5) are qualitatively consistent with ln τ ∼ �2. The
salient result is that the time for a half-inflated blinker to reach
full inflation grows extremely rapidly with �.

The dynamics of the cubic blinker of Fig. 3 helps us to
understand the long-time relaxation of a large system. Indeed,
suppose that there are two such blinkers that are oppositely
oriented and spatially separated so that they do not overlap
when both are deflated, but just touch corner to corner when
both are inflated (Fig. 5). As long as the blinkers do not overlap,
their fluctuations do not change the energy of the system.
However, when these blinkers touch, then a spin-flip event has
occurred that lowers the energy. Each such event corresponds
to one of the increasingly rare energy-lowering spin-flip events
at long times. Subsequent spin flips then cause the two blinkers
to ultimately merge.

To describe the relaxation of the Ising ferromagnet, we
study S(t), the probability that the energy of the system is still
decreasing at time t (Fig. 6). In 2D, this survival probability can
be represented as a sum of two exponential decays with very
different decay times, the longer of which arises from diagonal
stripe domains [4]. The corresponding relaxation in 3D is much
slower and much harder to quantify. In fact, we observe that
the energy is still decreasing at t = 104 in nearly 10% of all
realizations of a 203 system, and is still decreasing in more
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FIG. 6. (Color online) Double logarithmic plot of S(t) vs ln t for
L = 20, 30 (10 240 realizations) and 40 (2048 realizations) from
lower left to upper right. The lines are guides to the eye, with slopes
3.3, 2.8, and 2.8 for L = 20, 30, and 40.
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than 1% of all realizations at t = 108, whereas the coarsening
time scale is only 400. Our data suggest that S(t) decays as
(ln t)−ψ , with ψ ≈ 3 (Fig. 6), an unusual time dependence that
also occurs in homogeneous [16] and glassy spin systems [19],
as well as in granular compaction [20].

To summarize, a basic statistical-mechanical model, the
3D Ising model with zero-temperature Glauber dynamics,
reaches a topologically complex long-time state. By using
elementary topological arguments, we showed that the genus
of the domains and the long-time energy of the system are
simply interrelated. We believe that ideas from topology will
prove useful for discovering many more striking topological
properties of domains. The energy relaxation is extraordinarily
slow and almost all realizations eventually reach a blinker
state—a set of connected iso-energy points in the space

of metastable states, where the system wanders forever.
These blinker states are surprisingly ubiquitous, as nearly
every realization ends in a blinker state. The time scale
associated with the relaxation of the blinker states scales
exponentially with the system size; this is many orders of
magnitude longer than the coarsening time, which scales
as L2. We anticipate that many surprising properties will
also arise in the zero-temperature coarsening in noncubic
geometries and in models with a higher-dimensional order
parameter.
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