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Class of solvable nonlinear oscillators with isochronous orbits
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The nonlinear oscillator ẍ + (2m + 3)x2m+1ẋ + x + x4m+3 = 0, with m a non-negative integer, is known to
have a center in the origin, in a neighborhood of which are isochronous orbits, i.e., orbits with fixed period, not
dependent on the amplitude. Here, we show that this oscillator can be explicitly integrated, and that its phase
space can be completely characterized.

DOI: 10.1103/PhysRevE.83.027601 PACS number(s): 02.30.Ik, 45.05.+x, 05.45.−a

I. INTRODUCTION

The Liénard equation (LE hereafter),

ẍ + f (x)ẋ + g(x) = 0, (1)

is a well-known equation of mathematical physics. Originally
introduced to describe electrical circuits (Van der Pol [1],
Liénard [2]), the LE, together with equivalent first order
systems such as

ẋ = y,

ẏ = −f (x)y − g(x),

has been used in a variety of contexts, both in physics and
biology. An extensive list of applications is given in [3], where
the LE was also shown to be relevant in an epidemiologic
context. In many applications, the coefficient f (x) of the
nonlinear damping term and the restoring force −g(x) can
be approximated by polynomials of x, and polynomial forms
of f and g also arise quite naturally from the reduction of first
order systems in which the right-hand sides are polynomials, as
it often happens in ecological applications. As a consequence,
LE’s with polynomial coefficient functions have been widely
used in the last decades to explore basic issues, such as
the characterization of the period functions, the classification
of the limit cycles, and the determination of the conditions
allowing for isochronous solutions, i.e., oscillatory solutions
with frequency independent from the oscillation amplitude.

An interesting example of LE with isochronous solutions
has been given by Chandrasekar et al. [4], who showed that,
when λ > 0,

ẍ + 3kxẋ + λx + k2x3 = 0 (2)

has the explicit solution

x(t) = A sin(ωt + δ)

1 − (k/ω)A cos(ωt + δ)
, (3)

with ω = √
λ, and δ an arbitrary constant. For 0 < A < ω/k,

this yields isochronous oscillations of frequency ω, the same
frequency of the harmonic oscillator obtained for k = 0. To
trace the reasons for this behavior, the authors of [4] have
examined the transformation properties of the equation, and
found that (2) can be mapped into the harmonic oscillator equa-
tion through a nonlocal, frequency preserving transformation,
thus explaining the “unusual” frequency-amplitude relation.
It is not clear, however, whether (2) represents an exceptional

case, or belongs to a wider class of LE’s admitting isochronous
solutions.

The results of [4] can be put into a broader context by ex-
amining the related mathematical literature. Important works
by Sabatini [5] and by Christopher and Devlin [6] have pro-
vided necessary and sufficient conditions for isochronicity—
expressed as conditions on the coefficent functions f (x) and
g(x)—that define a wide class of isochronous LE’s, to which
(2) belongs. In particular, after an appropriate scaling, (2) is
easily seen to be the simplest case (for m = 0) of the subclass

ẍ + (2m + 3)x2m+1ẋ + x + x4m+3 = 0, (4)

with m a non-negative integer, that was given in [5] as an
explicit example of LE admitting isochronous orbits in a
neighborhood of the origin.

It turns out that (4) is a particularly interesting example,
since it can be explicitly solved. The main porpose of the
present Brief Report is to derive such solution, building on the
approach used in [5] to determine the isochronicity conditions.
After reminding some basic facts about (2) in the next section,
in Sec. III we derive the general solution of (4), together
with a first integral not dependent on time, that allows us
to characterize the orbits. Results are summarized in Sec. IV,
where some open issues are also briefly indicated.

II. THE m = 0 CASE

The scaling x → (ω/k)x,t → (1/ω)t, transforms (2) into

ẍ + 3xẋ + x + x3 = 0, (5)

which contains no parameters, and manifestly corresponds to
the case m = 0 of (4). The general solution of (5) can be
written as

x(t) = sin (t + δ)

C − cos (t + δ)
, (6)

which, for |C| > 1, gives periodic solutions of unit frequency,
with amplitudes growing without bounds when C approaches
unity (correspondingly, as shown in Fig. 1, the solutions
become more and more “nonlinear”). Thus, the restriction on
C does not set limits to the amplitude of the oscillations, but
only separates the periodic solutions from the singular ones,
that blow up at finite times.

In [4], the ansatz x ∝ Ẋ/X was used to map (5) into a third-
order linear equation for X. An alternative path, suggested by
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FIG. 1. Solution (6) for C = 2.5 (dotted), 1.2 (dashed), and 1.01
(solid).

the approach used in [5], relies on the analysis of the first order
system

ẋ = y − x2, (7)

ẏ = −x − xy, (8)

which reduces to (5) upon elimination of y [7]. It readily
follows from (7) and (8) that

d

dt

(
x

y

)
= 1 +

(
x

y

)2

, (9)

which, as noted in [6], implies a constant angular velocity
(θ̇ = −1), and consequently isochronicity. In fact, solution of
(9) gives

y = x/ tan(t + δ), (10)

with δ an integration constant, and placement of this expression
in (7) yields a Bernoulli equation for x that is easily solved to
find (6).

Elimination of time between x and ẋ gives the first integral

C2 = (ẋ + x2 + 1)2

(ẋ + x2)2 + x2
, (11)

or, solving for ẋ,

ẋ = −x2 + 1

C2 − 1

[
1 ± C

√
1 − (C2 − 1)x2

]
. (12)

This yields the phase space trajectories shown in Fig. 2 [8].
For C2 > 1, one has closed orbits, corresponding to periodic
isochronous solutions, that are located above the parabola
ẋ = −(x2 + 1)/2 (P ), on which C = 1. The limiting x values
for these orbits are given by x = ±1/

√
C2 − 1, which diverge,

as expected, when C approaches unity. For 1 < C < 2, on
each closed orbit there are four points on which both dẋ/dx

and the acceleration vanish. Two of them are at x = 0,
while the others, corresponding to minima of ẋ along the
orbit, are on the parabola ẋ = −(x2 + 1)/3. Open trajectories,
corresponding to singular solutions, are obtained for C2 < 1,
and lie in the negative ẋ half-plane, below P , filling two distinct
regions, separated by the parabola ẋ = −x2 − 1, on which C

vanishes.
Before moving to the general case, it is worth underlining

that the choice of the numerical coefficients in (5) is the only
one that yields isochronous solutions, since the necessary and
sufficient condition for isochronicity given in [5] implies this
choice.

FIG. 2. Phase space of the nonlinear oscillator (5). The closed
contours, lying above the parabola P , correspond to periodic,
isochronous oscillations.

III. THE GENERAL CASE

The solution for general m can be obtained through a
simple extension of the previous analysis. We now consider
the system

ẋ = y − x2m+2, (13)

ẏ = −x − x2m+1y. (14)

It is easily verified that this reduces to (4) after elimination
of y, and that (9) again holds, implying isochronicity. Placing
(10) in (13) now gives

ẋ = cos t̃

sin t̃
x − x2m+2, (15)

with t̃ = t + δ, that has the solution

x(t) = sin t̃[
C + (2m + 1)

∫
dt sin2m+1 t̃

]1/(2m+1) . (16)

Evaluation of the integral in the denominator (see, e.g., [10])
finally yields

x(t) = sin t̃[
C − cos t̃

∑m
r=0 Amr sin2r t̃

]1/(2m+1) , (17)

with

Amr ≡ 22(m−r)(m!)2(2r)!

(2m)!(r!)2
, (18)

which is the general solution we sought [9], and, moreover, a
fully explicit one, that can be easily evaluated for any m. It is
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FIG. 3. Plots of x(t), for m = 1 (solid), and m = 2 (dashed), for
values of C just above the threshold (19) for periodic solutions.

clear from (16) that the condition for periodic solutions now
is |C| > Am0, or

|C| >
22m(m!)2

(2m)!
. (19)

Plots of the solution (17), for m = 1, and m = 2, for values of
C close to this threshold, are shown in Fig. 3.

In order to characterize the orbits, we may derive a time
independent first integral as follows. Rearranging terms in
(15) and squaring, we get

sin2 t̃ = x2

x2 + (ẋ + x2m+2)2
, (20)

which allows us to express the sum in (17) in terms of
x and ẋ. In the following, we denote this sum by S. Then,
we rewrite (15) as

yS = x

sin t̃
(cos t̃S − C) + x

sin t̃
C, (21)

with y defined by (13). Using the solution (17) and (20), (21)
yields

yS + 1

(x2 + y2)m
= x

sin t̃
C. (22)

Finally, squaring, and using (20) again, we obtain the first
integral

C2 =
[
1 + ∑m

r=0 Amryx2r (x2 + y2)m−r
]2

(x2 + y2)2m+1
. (23)

It is readily verified that this reduces to (11) for m = 0, as it
should.

We have used expression (23) to compute the phase
space trajectories for the case m = 1, that are shown in
Fig. 4. As expected, they are somewhat more complex
than those of the m = 0 case. Consistently with Fig. 3,
we now have closed orbits, close to the threshold (19),
on which the acceleration vanishes at six different times.
This happens for any finite m, since the points, with
nonvanishing x, on which the acceleration vanishes lie on
the curves defined by

ẋ = − 1

2m + 3
(x2m+2 + x−2m). (24)

These have maxima at x = ±[m/(m + 1)]1/(4m+2), with the
velocity decreasing on the two sides of each maximum, that

FIG. 4. Phase space of (4), with m = 1.

gives zeros of the acceleration for open and closed orbits,
respectively.

Coming back to Fig. 4, we see that closed (open) orbits
are obtained for C2 > 4 (C2 < 4), and are separated by
the thick curve, on which C2 equals 4. Two regions with
singular orbits exist, separated by the curve corresponding
to C = 0. The limiting x values for the periodic orbits are now
given by

x = ±2−1/6 (C − √
C2 − 4)1/6

(C2 − 4)1/12
, (25)

which diverge— very slowly—when C2 approaches 4.
The phase trajectories of the cases m = 2 and m = 3 (not

shown) are similar, with the region of strong gradients more
and more concentrated around x = 0. Thus, except for the
differences highlighted, it can be said that the main qualitative
features of the phase space of (4) with m �= 0 look similar to
those exhibited by the m = 0 case.

IV. CONCLUSION

In this Brief Report, we have studied the nonlinear oscillator
(4), that was shown in [5] to admit isochronous orbits around
the origin. We have derived the explicit solution of (4), and
computed a first integral not dependent on time, that allows, in
principle, a complete characterization of the phase space, for
any m of interest. We have also pointed out the main features of
the phase-space trajectories of the m = 1 case, and compared
them with those of the m = 0 case, that had been previously
discussed and solved in [4], even though it was not recognized
as a member of (4).
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The approach we have used can also be applied to the most
general class of isochronous LE’s found in [5] and [6], in which
g(x) is given by

g(x) = x + 1

x3

(∫
dx xf (x)

)2

. (26)

In this case, the equivalent first order system is

ẋ = y − 1

x

∫
dx xf, (27)

ẏ = −x − y

x

∫
dx xf. (28)

Clearly, (9) still holds, and use of (10) gives

ẋ = cos t̃

sin t̃
x − 1

x

∫
dx xf, (29)

which yields a time-dependent first integral for the problem,
for a generic f . It is not clear whether there are other choices
of f (x), besides the one yielding (4), for which (29) can be

integrated. Since there are so few solvable LE’s, this seems a
point worth of further examination.

The transformation properties of (4) should also be ex-
plored, since this could lead to the individuation of more
general equations of the Liénard type admitting isochronous
periodic solutions.

Finally, we note that (2) is the only LE with periodic
solutions that can be linearized through a point transformation.
This follows from the results of [11], where group theory was
used to characterize the class of the LE’s linearizable by a point
transformation, and (2) was found to be the only member of
this class that admits periodic solutions. Thus, the members
of (4) with nonvanishing m cannot be linearized by a point
transformation, even though the presence of isochronous orbits
does imply linearizability around the center. Together with the
fact that there is no bound to the amplitude of the periodic
orbits, this indicates that the “obstruction” to linearization
must be associated to properties of the singular orbits. Further
analysis of this problem is under way.
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