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A lattice Boltzmann method on nonuniform quadtree grids is proposed. Our method employs the interpolation-
supplemented lattice Boltzmann model. The advantages of the quadtree grid are preserved by using linear
interpolation instead of quadratic interpolation to complete the streaming step in the lattice Boltzmann method.
The back-and-forth error compensation and correction (BFECC) method is used to improve the accuracy, so that
the second-order accuracy of the conventional lattice Boltzmann method is maintained. Several numerical cases,
including a BFECC streaming test, lid-driven cavity flow, and flow over an asymmetrically placed cylinder in a
channel, are carried out to demonstrate the accuracy and efficiency of our method.
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I. INTRODUCTION

The lattice Boltzmann (LB) method, which originated in the
late 1980’s, has become a powerful numerical tool to model
complex flow and multiphysicochemical transport processes
[1,2], such as multiphase and multicomponent flows [3–5],
flow in porous media [6–9], turbulence [10–12], fluid-particle
suspensions [13–17], and reactive transport [18,19]. The
success of the LB method is mainly owing to the fact that
it is based on microscopic models and mesoscopic kinetic
equations, which gives the LB method the advantage of
studying complex flows, especially in fluid flow applications
involving interfacial dynamics and complex boundaries [1].

One drawback to the conventional LB method is that it is
constrained on a special class of uniform and regular lattices
[1], limiting its numerical efficiency when there is a need
for a high-resolution grid in high gradient flow regions, near
a curved solid body, or when there is a far-field boundary
condition. To increase numerical efficiency and accuracy,
nonuniform grid methods have been developed [20–29], which
makes the LB method suitable for many practical applications
[12,30–32].

He et al. [20] proposed an interpolation-supplemented LB
model for nonuniform grids, in which the collision step still
takes place on the grid points, while the streaming step is
supplemented by a quadratic interpolation procedure in order
to maintain the second-order accuracy. The lattice time step is
defined by the fine lattice and fixed in the whole computation
domain.

Filippova et al. [21] proposed a LB local grid refinement
method. Each level of the grid has its own lattice spacing and
lattice time increment. Nonequilibrium parts of the particle
distribution functions (PDFs) between coarse and fine grids
are scaled in order to keep constant viscosity in the whole
computation domain. The LB equation is first solved on the
coarse grid of the entire computation domain, and then the
boundary conditions of the fine grid are interpolated from
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the postscaled PDFs on the coarse grid using a second-order
interpolation scheme.

Based on the idea of Filippova [21], Yu et al. [22] proposed
a multiblock method, in which the grid blocks are not
overlapped with each other, but are connected only through
the interface. The information exchanged on the interfaces
requires special treatment to ensure mass and momentum
conservation between the blocks. A cubic spline is adopted to
interpolate information from coarse grid to fine grid in order
to eliminate the possible spatial asymmetry.

Quadtree [quadtree in two dimensions (2D) and octree in
three dimensions (3D)] is a hierarchical data structure, based
on the principle of recursive decomposition [33,34]. Quadtree
has been used to generate finite-element meshes [35–37].
The advantage of the quadtree grid is that the grid can be
generated automatically and dynamically based on certain
criteria without complicated algorithms [35–38]. Recently, a
LB method was proposed using quadtree grids [39,40]. Crouse
et al. [39] adopted the method of Filippova [21] and used linear
interpolation in the interface treatment, thus the second-order
accuracy may not be maintained. Geier et al. [41] and Tölke
et al. [42] proposed to use linear interpolation of second-order
moments to achieve second-order accuracy. In this paper, we
present a LB method on nonuniform quadtree grids based
on the interpolation-supplemented LB model [20]. While
only linear interpolation is used, the second-order accuracy is
obtained by using the back-and-forth error compensation and
correction (BFECC) method [43–45]. The basic idea has been
briefly presented in Ref. [40]. In this study, we further enhance
the method and include new results with detailed descriptions.

The rest of the paper is organized as follows. Section
II describes the numerical method, including generation of
quadtree grids, and a brief review of the LB method and the
BFECC method. Section III provides some numerical results
to validate our method. Section IV concludes the paper.

II. NUMERICAL METHOD

A. Quadtree grid

The primary units of quadtree grids are quadtree cells.
Each quadtree cell is composed of four grid nodes. Geometric
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FIG. 1. Cells of a quadtree mesh: ABEF is a parent cell and GHEI
is a leaf cell.

information and physical quantities are stored on those grid
nodes. Also, the calculation of all physical quantities is
performed on these grid nodes. There are two different types of
quadtree cells—the parent and leaf cell (see Fig. 1). A parent
cell has four children and is equally divided into four subcells.
Thus the cell stores the pointers to its four subcells. A leaf cell
has no children. Thus the cell stores the pointers to its four grid
nodes. The octree grid in 3D is similar to the quadtree grid, but
with the parent cell equally divided into eight subcells instead
of four. In this paper, we mainly focus on the quadtree grid,
however, there is no major technical obstacle to extend our
method to the octree grid.

In the quadtree grid, a scale function is often used to
control grid density. As an example, we construct a nonuniform
quadtree grid on a 1 × 1 square domain based on the scale
function values, as shown in Fig. 2. Here, for simplicity, the
scale function is predefined and fixed, while in other cases it
can be assigned by certain criterion such as local velocity
gradient and can be dynamically changed with time. The
procedure is as follows:

Step 1. Set the four corners of the square domain (point
1, 2, 3, 4) as the first four grid nodes that compose the root
quadtree cell.

Step 2. Compare the scale function value (S1) of the
center point (and other characteristic points inside the cell,
if necessary) of the current cell with the length (S2) of the
current cell. If S1 < S2, then equally divide the current cell
into four subcells.

FIG. 2. A unit square domain with a predefined scale function
value.

Step 3. Repeat step 2 until the length of each leaf cell is
smaller than corresponding scale function value.

Figure 3 illustrates the complete procedure for generating a
quadtree grid from the unit square domain shown in Fig. 2.
In Fig. 3, divide 1, the scale function at the center point
(0.5, 0.5) of cell 1234, is not well defined or has multiple
values. In this case, we also check the scale function value
at other characteristic points inside cell 1234, such as point
(0.25, 0.25). If the scale function value at any of these points
is smaller than S2, the division will be performed. Because
S2 = 1 for cell 1234 and S1 = 0.24 at point (0.25, 0.25), S1 <

S2. Then divide 1 takes place. Similarly, divides 2–4 occur
subsequently.

If the flow domain is not square, one can just cover the flow
domain with a square and delete those grid nodes outside of
the flow domain. With a quadtree data structure, refining or
coarsening a cell requires a trivial change of the pointers in the
tree structures [38].

Figure 3 is for demonstration only. In practical use, in order
to simplify the calculations required at the cell boundaries
and to ensure smooth transition of the macroscopic variables
across the interface of different grid levels, only one tree
level difference is adopted between quadtree cells and their
neighbors [37,46].

B. Lattice Boltzmann method

Unlike the conventional computational fluid dynamics
(CFD) methods that solve the Navier-Stokes equation to obtain
the macroscopic quantities of flow field, the LB method
is based on microscopic models and mesoscopic kinetic
equations [1]. The main variables in the LB method are the
PDFs.

It has been shown that the LB equation with a single
relaxation time approximation, the so-called lattice Bhatnagar-
Gross-Krook (LBGK) model,

fi(x + eiδt,t + δt) = fi(x,t) − fi(x,t) − f
eq
i (x,t)

τ
, (1)

can be derived from the following continuous Boltzmann
equation with the BGK collision [1,47],

∂f

∂t
+ ξ · ∇f = − 1

τ
(f − f eq). (2)

In Eq. (1) fi is the PDF along the ith direction, f
eq
i is

the corresponding equilibrium distribution function, ei is
the ith discrete velocity, δt is the time increment, and
τ is the relaxation time, which relates to the kinematic
viscosity by

ν = (τ − 1/2)c2
s δt, (3)

where cs is the speed of sound.
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FIG. 3. Procedure for generating a quadtree grid.

For the 2D, nine-speed LB model (D2Q9) [47] (as shown in Fig. 4), we have

ei =

⎧⎪⎨
⎪⎩

0, i = 0,

c(cos[(i − 1)π/4], sin[(i − 1)π/4]), i = 1,3,5,7,

c(
√

2 cos[(i − 1)π/4],
√

2 sin[(i − 1)π/4]), i = 2,4,6,8,

(4)

where c = δx/δt and δx is the lattice spacing. The equilibrium
distribution is

f
eq
i (ρ,u) = ρwi

[
1 + ei · u

3c2
+ 9(ei · u)2

2c4
− 3u · u

2c2

]
, (5)

where w0 = 4/9; wi = 1/9, for i = 1,3,5,7; i = 1/36, for
i = 2,4,6,8.

The macroscopic density and momentum density are
defined as

ρ =
∑

i

fi, (6)

ρu =
∑

i

fiei . (7)

The pressure is calculated through an equation of state:

p = c2
s ρ. (8)

e4 e3 e2

e1e5

e8e7e6

FIG. 4. D2Q9 model.

Equation (8) shows that the LB method is not a strictly
incompressible model. The incompressible Navier-Stokes
equations can be obtained in the nearly incompressible limit
[1]. When used for incompressible flows, the LB method
must be viewed as an artificial compressibility method [48].
The density variation and Mach number of the fluid must be
very small for an accurate simulation of incompressible flows.
These requirements may limit the application of conventional
LB models for practical problems, such as high Reynolds
number flow or flow through porous media [49].

In order to minimize the compressibility effect of the
LB method, we employ the incompressible LBGK model

FIG. 5. Quadtree grid in a square domain with high grid density
near the edge.
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FIG. 6. From left to right, the contours of the initial testing values, and the contours of the testing values on Q257 grid after 300 time steps
streaming in direction 2 without BFECC and with BFECC, respectively.

proposed by Guo et al. [48]. This incompressible model is
capable of simulating unsteady flow.

In Guo’s model, the equilibrium distribution function is
defined as

f
(eq)
i =

⎧⎪⎨
⎪⎩

−4σ
p

c2 + si(u), i = 0,

λ
p

c2 + si(u), i = 1,3,5,7,

γ
p

c2 + si(u), i = 2,4,6,8,

(9)

where σ , λ, and γ are parameters satisfying

λ + γ = σ, (10)

λ + 2γ = 1
2 , (11)

and si(u) is defined by

si(u) = wi

[
ei · u
3c2

+ 9(ei · u)2

2c4
− 3u · u

2c2

]
. (12)

FIG. 7. (Color online) Relative error for the streaming test in
direction 1 at te = 0.5 and te = 1. The slopes of the lines are 1.98
(with BFECC, te = 0.5), 1.99 (with BFECC, te = 1), 0.89 (without
BFECC, te = 0.5), and 0.84 (without BFECC, te = 1).

Finally, the macroscopic velocity and pressure are defined as

u =
8∑

i=1

fiei , (13)

p = c2

4σ

[ 8∑
i=1

fi + s0(u)

]
. (14)

Readers may refer to Ref. [48] for details of the incompressible
model.

Equation (1) can be broken up into the following two steps:
(1) Collision step:

fi(x,t + δt ) = fi(x,t) − fi(x,t) − f
eq
i (x,t)

τ
. (15)

(2) Streaming step:

fi(x + eiδt ,t + δt ) = fi(x,t + δt ). (16)

The collision step only involves the PDFs of the local
lattice node, while the streaming step involves the PDFs of

FIG. 8. (Color online) Relative error for the streaming test in
direction 2 at te = 0.5 and te = 1. The slopes of the lines are 2.01
(with BFECC, te = 0.5), 2.02 (with BFECC, te = 1), 0.95 (without
BFECC, te = 0.5), and 0.93 (without BFECC, te = 1).
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Grid level 2

Grid level 1

U=0.1

FIG. 9. Grid distribution of the lid-driven cavity flow case.

neighboring nodes. Thus, for a nonuniform quadtree grid, the
streaming step requires additional treatment.

Unlike the lattice gas cellular automata model, where the
particle occupation is defined by a set of Boolean variables,
PDFs of the LB model are real variables. Hence we can
calculate the PDFs at one location from its neighboring
locations through interpolation [20]. In Fig. 1, both cell GHEI
and cell BCDE are leaf cells (cells without child cells) of a
quadtree grid. Assume cell GHEI is the smallest cell, then
the length of its edge is equal to the lattice spacing. In a
streaming step, node E will get information from node G,
while node D will get information from point J, which is not
a grid node. Thus, we need to obtain the information at point
J from neighboring nodes. Considering the data structure of a
quadtree grid, it is more convenient and efficient to use linear
interpolation of nodes B and D, which are in the same quadtree
cell than quadratic interpolation that requires information from
other quadtree cells. This, however, will lead to first-order
accuracy only. In order to maintain the second-order accuracy
of the LB method [1], we adopt the BFECC method.

C. BFECC method

BFECC stands for back-and-forth error compensation and
correction, which can be used to reduce dissipation and
diffusion encountered in a variety of advection steps, such
as velocity, smoke density, and image advection on uniform
and adaptive grids and on a triangulated surface. The BFECC
method can be implemented easily as a small modification
of the first-order upwind or semi-Lagrangian integration of
advection equations and is proved to be second-order accurate
in both space and time [43–45].

Let function φ satisfy the following convection equation:

φt + u · ∇φ = 0, (17)

where u represents a velocity field. The procedure of BFECC
is

φ̃n+1 = L(φn,u), (18)

φn
1 = L(φ̃n+1, − u), (19)

φn
2 = φn + 1

2

(
φn − φn

1

)
, (20)

φn+1 = L
(
φn

2 ,u
)
, (21)

where L is the first-order upwind or semi-Lagrangian inte-
gration operator to integrate Eq. (19), and φn is the value of
φ at time n. Comparing Eq. (2) with Eq. (19), it should be
straightforward to use the BFECC method to reduce the error
caused by linear interpolation during the streaming step of LB
method on a nonuniform quadtree grid.

Denote the postcollision PDF as f̃i . Below is the imple-
mentation of the BFECC method in the LB streaming step:

Step 1. Carry out a normal LB streaming step for f̃i . Denote
current PDF as f ∗

i .
Step 2. Carry out an inverse LB streaming step for f ∗

i , i.e.,
a normal LB streaming but with opposite lattice velocity, as
indicated in Eq. (19). Denote current PDF as f ∗∗

i .
Step 3. Let f ∗∗∗

i = 1.5f̃i − 0.5f ∗∗
i .

Step 4. Carry out a normal LB streaming step for f ∗∗∗
i .

Denote current PDF as fi . Then fi is the poststreaming PDF.
The BFECC procedure is only performed at a coarse grid

where interpolation is required to complete the streaming step.

III. NUMERICAL EXAMPLES

A. BFECC method in streaming step

To validate that the BFECC method reduces the error
caused by linear interpolation during the streaming step of
the LB method on nonuniform quadtree grids, we designed
the following numerical example:

(1) Generate a nonuniform quadtree mesh on a 1 × 1 square
domain with high grid density near the edge of the square, as
shown in Fig. 5, of which the smallest grid spacing is equal to
0.007 812 5. We denote this mesh as Q129.

(2) Define a periodic test function:

F (x,y,t) = 10 sin[2π (x − eix t)] sin[2π (y − eiy t)], (22)

where eix and eiy are the x and y components of lattice velocity
ei . eix = 1 and eiy = 0 for lattice direction 1, and eix = 1 and
eiy = 1 for lattice direction 2, as shown in Fig. 4. When t = 0,
assign each quadtree grid node with the value of function F as
the initial value.

(3) Carry out a single direction (such as lattice direction 1
or 2, see Fig. 4) streaming step of LB method for each time
step. Apply periodic boundary conditions at the square edge.

TABLE I. The position of the primary vortex center.

Present work (Q129) Present work (Q257) Ghia et al. [50] Hou et al. [51] Yu et al. [22]

x 0.6154 0.6155 0.6172 0.6196 0.6172
y 0.7382 0.7375 0.7344 0.7373 0.7390
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FIG. 10. (Color online) The x-direction velocity profile at line x = 0.5.
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FIG. 11. (Color online) The y-direction velocity profile at line y = 0.5.
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TABLE II. Global relative errors for the lid-driven cavity flow based on the result obtained from a 513 × 513 uniform grid.

Q129 129×129 Q257 257×257

Global relative error 4.563 × 10−2 4.555 × 10−2 1.531 × 10−2 1.454 × 10−2

(4) Repeat step 3 until t = te.
Then refine the mesh by dividing each leaf cell of current

quadtree mesh into four sub-cells, and we get the nonuniform
meshes Q257 and Q513. Repeat the above steps 2, 3, and 4
for Q257 and Q513 meshes. Compare the numerical value at
each node with the exact solution F. Let E denote the global
relative error at t = te. E is defined as

E =
∑n

i∈{leaf cell}
∑4

k=1 |fik − Fik|Si∑n
i∈{leaf cell}

∑4
k=1 |Fik|Si

, (23)

where n is the total number of quadtree cells, subscript ik

denotes the kth child node of leaf cell i, and Si is the area of
cell i. The results are shown in Figs. 6–8. We find the streaming
step of the LB method on quadtree grids with BFECC is indeed
second-order accurate.

B. 2D lid-driven cavity flow

The lid-driven cavity flow is a classic benchmark case to
test numerical schemes for fluid flows [50,51]. The top lid
of the 2D unit square cavity moves from left to right with
constant speed U0 = 0.1, as shown in Fig. 9. The fluid physics
is governed by the Reynolds number given by Re = U0L/ν,
where L (L = 1) is the length of the top boundary and ν is the
kinematic viscosity of the fluid. In order to eliminate numerical
errors caused by different relaxation times, we keep τ = 0.8
for different grids.

1. Nonuniform quadtree grid

In order to accurately treat the moving wall and capture
vortices near the corners of the walls, we generate a nonuni-
form quadtree grid on the unit square domain, with the grid
distribution shown in Fig. 9. Two grid levels are used here. The
grid spacing of level 2 is equal to 0.078 125, the lattice spacing
of the 129 × 129 uniform grid, and the grid spacing of level
1 is twice of level 2. We denote this quadtree grid as Q129.
Then a finer grid (denoted as Q257) is obtained by dividing
each leaf cell of Q129 into four subcells, of which the level 2
grid spacing is equal to the lattice spacing of the 257 × 257
uniform grid. There are a total of 6946 grid nodes and 27 033
grid nodes for the Q129 and Q257 grids, respectively, and
a total of 16 641 grid nodes and 66 049 grid nodes for the
129 × 129 and 257 × 257 uniform grids, respectively.

2. Boundary conditions

The popular bounce-back scheme is only first-order accu-
rate and cannot handle moving boundaries accurately. Thus,
we employ the nonequilibrium extrapolation boundary scheme
of Guo et al. [52,53] for the nonslip velocity boundary
conditions at the walls. The basic idea is to decompose the
distribution function at the boundary node into its equilib-
rium and nonequilibrium parts, and then to approximate the

nonequilibrium part with a first-order extrapolation of its
counterpart at the neighboring fluid nodes [52]. Two corners
of the top moving wall are assigned with the velocity of the
moving wall.

3. Results

At Re = 100, the center of the primary vortex is at (0.6154,
0.7382) for the Q129 grid and (0.6155, 0.7375) for the Q257
grid, respectively, which are in good agreement with the results
from the finite-difference method and other LB simulations,
as shown in Table I.

Figures 10 and 11 show the u-component and v-component
velocity profiles at the vertical and horizontal lines that cross
the cavity center, respectively. We can see that the results on
quadtree grids with BFECC match well with those obtained
from the LB method on uniform grids. Without BFECC, the
results of the LB method on quadtree grids significantly deviate
from other results, which indicates that linear interpolation
without BFECC in the streaming step results in significant
numerical error.

Being absent an analytical solution, we also perform the
simulation on a 513 × 513 uniform grid and take the result as
a reference. Then the global relative error for Q129 and Q257
is defined as

E =
∑n

i∈{leaf cell}
∑4

k=1 |Uik − Ueik|Si∑n
i∈{leaf cell}

∑4
k=1 |Ueik|Si

+
∑n

i∈{leaf cell}
∑4

k=1 |Vik − V eik|Si∑n
i∈{leaf cell}

∑4
k=1 |V eik|Si

, (24)

where n is the total number of quadtree cells, subscript ik

denotes the kth child node of leaf cell i, Si is the area
of cell i, and Ue and V e are the x-direction velocity and
y-direction velocities obtained from the 513 × 513 uniform
grid, respectively. Table II shows that the relative errors of
LBM on nonuniform quadtree grids remain at the same level
of corresponding uniform grids.

FIG. 12. Grid distribution for the case of flow over an asymmet-
rically placed cylinder in a channel.
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TABLE III. Results for Re = 20.

cDmax cLmax St

With BFECC 5.5864 0.0104 0
Without BFECC 5.6969 0.0075 0
Results from Ref. [54]
Upper bound 5.5700 0.0104 0
Lower bound 5.5900 0.0110 0

C. Flow over an asymmetrically placed cylinder in a channel

Flow over an asymmetrically placed cylinder in a channel
is a widely tested benchmark case [21,22,54], as shown in
Fig. 12. According to Ref. [54], constant parabolic velocity
is specified on the inlet boundary and constant pressure is
specified on the outlet boundary. The Reynolds number is
defined as Re = UD/ν, where U is the mean velocity at the
channel inlet, D is the cylinder diameter, and ν is the kinematic
viscosity of the fluid. In this case, the maximum velocity at
the inlet is set to 0.1. The drag (cD) and lift (cL) coefficients of
the cylinder, as well as the Strouhal (St) number, are computed
from flow field and compared with the results of Ref. [54]. The
definitions of cD , cL, and St are as follows:

cD = 2Fx

ρU
2
D

, (25)

cL = 2Fy

ρU
2
D

, (26)

St = Df

U
, (27)

where Fx and Fy are the drag force and lift force on the
cylinder, respectively, and f is the frequency of separation.
Readers can refer to Ref. [54] for a detailed description.

1. Nonuniform quadtree grid

Flow region around the cylinder is vital to calculate the drag
or lift coefficient, while downstream flow far from the cylinder
has little effect on the flow field near the cylinder. Based
on these considerations, we generate a quadtree grid with
three grid levels, as shown in Fig. 12. The level 1 grid
is the coarsest grid and is far from the cylinder and boundaries.
The level 3 grid is the finest grid that encloses the cylinder and
the channel boundaries. The lattice spacing is equal to level 3
grid spacing. There are 38 714 grid nodes for the nonuniform
Quadtree grid, and there are 146 246 grid nodes for the normal
uniform grid. The ratio of grid nodes between nonuniform and
uniform grids is 1 : 3.8.

TABLE IV. Results for Re = 100.

cDmax cLmax St

With BFECC 3.2396 1.0032 0.2993
Without BFECC 3.1212 −0.0136 0
Results from Ref. [54]
Upper bound 3.2400 1.0100 0.3050
Lower bound 3.2200 0.9900 0.2950

FIG. 13. Time evolution of drag coefficient for flow over
an asymmetrically placed cylinder at Re = 100 obtained from
LB method on quadtree grid with and without BFECC.

2. Boundary conditions and force evaluation

We use the halfway bounce-back scheme for the nonslip ve-
locity condition at the upper and bottom walls, and employ the
nonequilibrium extrapolation boundary scheme of Guo [52,53]
for the velocity condition at the inlet and the pressure condition
at the outlet. In order to accurately treat the curved surface of
the cylinder, we adopt the curved boundary condition proposed
by Mei et al. [55]. The momentum exchange scheme [2,14,15]
is used to evaluate the fluid force on the cylinder.

3. Results

Both the Re = 20 steady case and Re = 100 unsteady
case are tested using a nonuniform quadtree grid. As shown
in Tables III and IV, our BFECC results match well with
those from Ref. [54], while non-BFECC results deviate from

FIG. 14. Time evolution of lift coefficient for flow over an
asymmetrically placed cylinder at Re = 100 obtained from the
LB method on a quadtree grid with and without BFECC.
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FIG. 15. Vorticity contours of flow over an asymmetrically placed
cylinder at Re = 100 with (top) and without BFECC (bottom),
respectively, after 600 000 time steps.

other results. Without BFECC the results of Re = 20 deviate
less from reference results than those of the Re = 100 non-
BFECC case. This is mainly because that for Re = 100,
the flow is unsteady and vortices keep shedding from the
cylinder. More accurate schemes must be used to capture
these vortices. Otherwise, the numerical diffusion caused by
linear interpolation without BFECC will lead to a steady-state
solution without vortex shedding (St = 0). Figures 13 and
14 show the cD curve and cL curve of the Re = 100 case
using the quadtree grid with and without BFECC. Figure 15
shows the vorticity contours after 600 000 time steps. The von
Kármán vortex street disappears in the case without BFECC.
Figure 16 shows the contours of the shear strain rate for the
Re = 100 unsteady case, which are smooth across the interface
of different grid levels.

The computation time for 2000 streaming-collision cycles
of the Re = 20 case is shown in Table V. The computation is
performed on a server configured with an Intel Xeon E5450
central processing unit (CPU). The ratio of computation time
between nonuniform quadtree grid and normal uniform grid
is 1 : 1.6. This ratio is greater than that of the grid nodes
(1 : 3.8). One reason is that the linear interpolation and
BFECC procedures take some time. The other reason is that the
quadtree data structure cannot be as efficient as the structured
squared grid used in the standard LBM code. To separate
these two factors, we compare the computation time between
the normal uniform and uniform quadtree grids. The ratio is
1 : 1.5. This ratio could be decreased by better optimizing the
code. As a result, the calculation on the nonuniform quadtree
grid may run faster.

FIG. 16. Contours of shear strain rate for flow over an asymmet-
rically placed cylinder at Re = 100 obtained from LB simulation on
a quadtree grid with BFECC.

TABLE V. Computation time for 2000 streaming-collision cycles
using different grids for Re = 20.

Nonuniform Normal uniform Uniform Quadtree
Quadtree grid grid grid

Computation
time (s) 30 48 72

IV. CONCLUSIONS AND DISCUSSIONS

A LB method on nonuniform quadtree grids was developed
and proved to be accurate and efficient in the benchmark
numerical simulations. Our method takes advantage of the
quadtree grid and He’s interpolation-supplemented LB model
[20], but without the need for quadratic interpolation (which
will be more complicated in unstructured grids than in struc-
tured grids). Instead, the second-order accuracy is achieved by
using the BFECC method. Unlike the methods of Filippova
[21] and Yu [22], there is no interface treatment between
different grid levels. The relaxation time, lattice spacing, and
time increment are uniform in the whole domain in our method,
hence the method is easier to implement on dynamic adaptive
grids. Moreover, although a square lattice is used in our current
work, our method can be readily extended to rectangular or
even triangular quadtree grids.

On the other hand, as He’s method, interpolation is carried
out for all leaf cells except for the smallest ones whose edge
length is equal to lattice spacing. Although we use linear
interpolation to improve efficiency and BFECC to improve
accuracy, the numerical diffusion cannot be completely elim-
inated, especially in very coarse grid regions. In multiblock
or multiply nested grids methods, the streaming step in each
grid level is exact, and interpolation only takes place on the
interface of different grids, although there are some additional
steps to treat the interface and to synchronize quantities on
different grid levels. In the case of flow over an asymmetrically
placed cylinder in a channel, the total number of grid nodes
in our method cannot be as low as Yu’s [22], otherwise the
numerical diffusion will become significant.

However, our method has advantages for cases that have
complex geometry or flow pattern and require dynamic
adaptive mesh. The work combing our method with the unified
LB model proposed by Kang et al. [7] to simulate flows
in complex multiscale porous media is ongoing and will be
presented in future publications.
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