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Statistically reconstructing continuous isotropic and anisotropic two-phase media while
preserving macroscopic material properties
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We propose a method to generate statistically similar reconstructions of two-phase media. As with previous
work, we initially characterize the microstructure of the material using two-point correlation functions (a subset
of spatial correlation functions) and then generate numerical reconstructions using a simulated annealing method
that preserves the geometric relationships of the material’s phase of interest. However, in contrast to earlier
contributions that consider reconstructions composed of discrete arrays of pixels or voxels alone, we generate
reconstructions based on assemblies of continuous, three-dimensional, interpenetrating objects. The result is
a continuum description of the material microstructure (as opposed to a discretized or pixelated description),
capable of efficiently representing large disparities in scale. Different reconstruction methods are considered
based on distinct combinations of two-point correlation functions of varying degrees of complexity. The quality
of the reconstruction methods are evaluated by comparing the total pore fraction, specific surface area of the
percolating cluster, pore fraction of the percolating cluster, tortuosity, and permeability of the reconstructions to
those of a set of reference assemblies. Elsewhere it has been proposed that two-phase media could be statistically
reproduced with only two spatial correlation functions: the two-point probability function (the probability that
two points lie within the same phase) and the lineal path function (the probability that a line between two points
lies entirely within the same phase). We find that methods employing the two-point probability function and lineal
path function are improved if the percolating cluster volume is also considered in the reconstruction. However,
to reproduce more complicated geometric assemblies, we find it necessary to employ the two-point probability,
two-point cluster, and lineal path function in addition to the percolating cluster volume to produce a generally
accurate statistical reconstruction.
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I. INTRODUCTION

Composite materials consisting of multiple phases (solids,
voids, fluids) are prevalent in nature and synthetic prod-
ucts. Examples include soils [1], magma [2], blood [3,4],
concrete [5], foams [6,7], and particulate composites [8,9]. In
these media, the phases are composed of microstructures that
determine large-scale, or macroscopic, material properties,
such as bulk modulus, compressibility, viscosity, yield stress,
electrical conductivity, and permeability [10], which dictate
a system’s behavior. Therefore, an improved understanding
of how a composite material’s microstructure affects its
macroscopic properties has implications in numerous fields
of science and engineering.

The relationship between microstructural features of com-
posite materials and their macroscopic material properties
has been investigated by several authors using two-point
correlation functions (TPCFs) in combination with simulated
annealing techniques [11–14]. First, the TPCFs (a subset
of spatial correlation functions) are used to characterize
certain geometric relationships of the material microstruc-
ture. Then, the simulated annealing algorithm is used to
generate statistically similar reconstructions that preserve the
same geometric microstructural relationships. A successful
reconstruction occurs when the reference and reconstructed
assemblies’ spatial relationships match, while preserving the
reference assembly’s physical properties. Once an accurate
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reconstruction is produced, the spatial relationships of that
assembly’s microstructure may be used to (i) gain a deeper
understanding of how microstructure of a composite material
affects macroscopic physical properties, improving our ability
to modify these properties [10], and (ii) recreate the material
in a larger quantity or different size while preserving material
properties, even when the original construction process is
unknown.

The reconstruction method proposed in this article differs
from that in previous work in that it employs reference and
reconstructed assemblies consisting of interpenetrating inclu-
sions of continuous, geometric objects (Sec. III) rather than
discretized objects represented by voxels (three-dimensional
pixels). As a result, none of the reconstructions are performed
on voxelized data, nor are voxelized assemblies created
during the reconstruction process, which has been commonly
employed (e.g., Refs. [10,13]). However, our method may also
be used to reconstruct continuous objects from voxelized data
as briefly discussed in Sec. II.

In prior work conducted on voxelized assemblies, Torquato
and Stell [11] found the two-point probability function, S(r),
a type of two-point correlation function, alone to be insuf-
ficient in capturing the spatial microstructure characteristics
of a homogeneous, isotropic assembly. Later, Yeong and
Torquato [12,15] suggested that using S(r) and the lineal path
function, Sl(r), together should be sufficient to accurately
reconstruct a given isotropic (voxelized) assembly. In this
contribution, different combinations of two-point correlation
functions are considered to determine the most accurate and
appropriate reconstruction method for continuous isotropic
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FIG. 1. Example of (a) isotropic spheroidal and (b) anisotropic
ellipsoidal reference percolating phase of interest.

and anisotropic assemblies, as well as the effect of enriching
the reconstruction method with additional information (e.g.,
the percolating cluster volume, calculated in the Appendix).

While results from this approach are generally applicable to
a wide range of composite materials and macroscopic material
properties, this study focuses on the problem of reconstructing
porous media while preserving macroscopic permeability and
tortuosity. An example of synthetic porous media is shown in
Fig. 1. Permeability is chosen as the primary material property
of interest because it is arguably the most important property in
porous media fluid flow studies, as it largely determines fluid
flow rates in such systems (e.g., Ref. [16]). We are particularly
interested in how microstructure affects the permeability
of porous media, as such insights form the basis for our
magma permeability studies (e.g., Ref. [17]). In addition,
permeability serves as an excellent macroscopic property
test for any material reconstruction study, as it depends on
multiple microstructure properties such as pore fraction and
connectivity, specific surface area, and pore-space tortuosity.
Permeability can also be determined for two-dimensional
and three-dimensional images and can even be used to test
two solid-phase reconstructions. Furthermore, permeability is
directly related to electrical conductivity [18,19]. Therefore,
referencing permeability provides a reconstruction measure
for a wider variety of materials other than porous media.

Nonetheless, reproducing permeability is a necessary, but
insufficient, condition to achieve an accurate reconstruction,
as it is nonunique with respect to phase microstructure. For
example, a thin straight tube could have the same permeability
as a wider, but more tortuous, helix. Thus, two systems with
identical permeabilities, but different microstructures, will
exhibit a difference in other material properties, such as the
specific surface area or path tortuosity. Therefore, in addition
to permeability, our reconstruction method aims to preserve
other macroscopic material properties such as phase volume
fraction, specific surface area between phases, phase tortuosity,
and the volume of space-spanning phase networks.

In Sec. II, we detail the methods (two-point correlation
functions and simulated annealing) used to perform the
assembly reconstructions. Section III discusses the types of
assemblies used in this study and describes how physical
characteristics are calculated and used to compare the re-
construction methods presented in this article. Finally, we
discuss the results of the individual reconstruction methods
in Sec. IV and conclude in Sec. V with reconstruction method
recommendations that optimize reconstruction effectiveness
and computational simplicity for isotropic and anisotropic
assemblies.

II. RECONSTRUCTION METHOD

In this section, we describe the methods employed to
statistically reconstruct composite materials. Our reference
volumes are randomly generated assemblies of interpene-
trating spheres and ellipsoids (Sec. III) to ensure all spatial
properties of the original assembly are known. Each reference
assembly is constructed by combining the TPCFs (Sec. II A)
of 10 randomly produced assemblies for each of the assembly
types (Sec. III). Our general reconstruction method proceeds
as follows: (i) the spatial relationships of the reference and
reconstructed assemblies are quantified using TPCFs and the
percolating cluster volume (PCV) (Sec. III B), (ii) an initial
assembly of spheroids is reconstructed with the same volume
fraction and specific surface area as the reference assembly,
and (iii) the simulated annealing algorithm (Sec. II B) is
used to generate reconstructed assemblies by matching the
reference and reconstructed assembly’s TPCFs. The same
functions may be employed to reconstruct natural samples,
as long as two-dimensional or three-dimensional information
exists for the medium of interest. This information may be
collected in a variety of forms, such as voxelized images from
serial cross sections or x-ray tomography imaging. In some
cases, continuous, geometrically defined objects (e.g., spheres,
ellipsoids, cuboids) may be provided whose parameters (radii,
side lengths) are known. In such cases, geometric information
may be determined using known generation mechanisms for
the given assembly, such as chemical reactions, exsolution
mechanisms, numerical generation, or biological formation.

In the simulated annealing algorithm used in our reconstruc-
tion process, the misfit between the functions (e.g., TPCFs or
PCV) is minimized by modifying physical characteristics in
the reconstructions. Our reconstruction method differs from
other existing methods that are restricted to voxel-to-voxel
reconstructions in that our method allows both voxelized
and continuous object assemblies to be reconstructed. Thus,
the proposed approach provides a means to transfer three-
dimensional voxelized images to equivalent three-dimensional
continuous object assemblies. This can be useful when
inclusions, with some known characteristics (e.g., spheres or
cuboids in a suspension or ellipsoids in foams and solidified
magma), are reconstructed from voxelized x-ray tomography
data. However, reconstructing a voxelized image as a continu-
ous image (or vice versa) should be approached with caution,
as resolution issues due to discretization, particularly of curved
surfaces, may cause inaccurate representations of the medium
in the resulting image, altering its physical material properties.
Further discussion of this issue may be addressed in future
publications.

In this contribution, discretized versions of the recon-
structed assemblies are created to measure permeability
(using lattice-Boltzmann simulations) and tortuosity (using
a random-walker algorithm). The resolution of the discretized
versions is set to 208 × 208 × 208 voxels, chosen based on
computational limitations at the time of processing. In general,
the discrete resolution of a sample can impact the calculated
numerical permeability or tortuosity, if the resolution is too low
to capture the sample’s microstructure. However, here we seek
to compare measured permeabilities and torotuosities between
samples rather than physical values. As the discretization is
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consistent across all assemblies, the resulting permeability will
be comparable, and any resolution lost in the discretization
process is inconsequential.

A. Two-point correlation functions and
the percolating cluster volume

This section describes the attributes of the three two-point
correlation functions used in this study—a more detailed
description of how the individual functions are calculated is
provided in the Appendix.

The three two-point correlation functions employed are
(i) the two-point probability or spatial autocorrelation function,
(ii) the two-point cluster function, and (iii) the lineal path
function. All three functions are related (Fig. 2). Given two
random points separated by a distance, r , the three correlation
functions are defined as follows: (i) the two-point probability
function, S(r), describes the probability that both points lie
within the same phase of an assembly; (ii) the two-point cluster
function, Sc(r), describes the probability that the points can be
joined by a nonlinear path contained within the same phase of
an assembly; and (iii) the lineal-path function, Sl(r), describes
the probability that a line connecting two points is contained
entirely within the same phase.

The three functions contain information about different
aspects of an assembly. The two-point correlation function
is sensitive to the spatial distribution of a given phase. The
two-point cluster function is dependent on the distribution

(a)
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S(r)Sc(r)

j
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i

(b)

FIG. 2. (a) Two-dimensional illustration of two-point correlation
functions (defined in the main text) used to statistically reconstruct the
spatial relationships of inclusions of phase i within another phase j.
(b) An example of a probability plot for the three TPCFs as a
function of the distance between two points, r . The y intercept is
equivalent to the pore fraction of the assembly and the slope at r → 0
is proportional to the specific surface area.

and connectivity of the discrete components of that phase.
The lineal path function describes the tortuosity of those
components.

Several specific pieces of information about assembly
microstructure can be gleaned directly from all three two-point
correlation functions. For example, the pore fraction, φ, of the
assembly is given by the y-axis intercept for the TPCFs, i.e.,

S(0) = Sc(0) = Sl(0) = φ, (1)

and the slope of all three functions as r → 0, is proportional
to the specific surface area, s, of the inclusions within the
assembly:

s = −4
∂S(r)

∂r

∣∣∣∣
r=0

(2)

for three-dimensional assemblies (the constant of proportion-
ality differs depending on the number of dimensions) [20].
More information regarding the characteristics of these func-
tions and their relationships to specific aspects of assembly
microstructure is described in Refs. [10–12,14,15,21].

For isotropic, ergodic (statistically spatially invariant)
assemblies, the different correlation functions are independent
of orientation. However, this is not true for anisotropic
materials, where the two-point correlation functions change
depending on the orientation of the line segments connecting
the two points. Accordingly, when examining anisotropic
assemblies, we calculate two-point correlation functions along
three orthogonal axes aligned with the principle directions
of anisotropy. These two-point correlation functions are
calculated in much the same manner as those given above,
except the relative orientations of the two points are fixed
instead of being random.

In isolation, the individual two-point correlation functions
do not contain sufficient information to accurately describe an
assembly’s structure. However, increasingly accurate recon-
structions can be obtained by combining two or more two-point
correlation functions [12,15].

The following section describes a simulated annealing
method that reconstructs an assembly of continuous, indi-
vidual inclusions of arbitrary dimensions, orientations, and
distributions rather than a voxelized image. This approach
works best if the simulated annealing method is provided
with an initial reconstruction that is, in a sense, close to the
reference assembly being reconstructed. For isotropic assem-
blies, we select an initial configuration that contains randomly
distributed equal-sized spheres with the same pore fraction and
specific surface area as the reference assembly. The reference
assembly’s pore fraction and specific surface area can be
determined from the two-point correlation functions for the
reference assembly using Eqs. (1) and (2). The radius, R, and
number density, n, of the spheres in the initial reconstruction
are

R = −3(1 − φ) log(1 − φ)/s; (3)

n = −3 log(1 − φ)/(4.0πR3). (4)

These relationships are derived from the relationship between
the volume fraction of an assembly of interpenetrating objects,
φ, the number density, n, and volume, V , of each object,

φ = exp(−nV ) . (5)
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While Eqs. (3) and (4) are specific to assemblies of spheres,
equivalent expressions can be equally easily derived for
isotropic assemblies of other inclusion shapes (e.g., cuboids;
Ref. [17]).

For anisotropic media (e.g., continuous ellipsoids with
preferred orientations), the initial reconstruction is a set of
randomly distributed, equal-sized ellipsoids with aligned axes.
In this case, we define three volume fractions, φx , φy , and φz,
as well as three directional “surface areas,” sx , sy , and sz, which
correspond to the values obtained from the different two-point
correlation functions with sample points aligned along the
principle directions of anisotropy. Although, in theory, all
three volume fractions should be identical, in practice, slight
differences exist due to sampling error. Accordingly, the
reference volume fraction is estimated by the mean pore
fraction,

φ = (φx + φy + φz)/3. (6)

In contrast, the directional surface areas need not be
equal in anisotropic assemblies. The ratio between the three
axes is a product of the degree of anisotropy of the component
inclusion, and their relative alignment. By carefully selecting
the particle number density, and the ellipsoidal radii of
the inclusions, Rx , Ry , and Rz, an initial reconstruction is
generated with the same volume fraction and directional
surface area as the reference assembly. First, one of the
directional surface areas is selected (say, sx), then

Rx = −3(1 − φ) log(1 − φ)/sx, (7)

n′ = −3 log(1 − φ)/
(
4.0πR3

x

)
, (8)

are found, where the variable Rx represents the ellipsoid radius
in the x direction, while n′ represents the number density
necessary to construct an assembly of interpenetrating spheres
with radii Rx with the same pore fraction as the reference
assembly. The desired number density for the reconstructed
assembly, n, is then given by rescaling n′ as

n = n′sysz/s
2
x (9)

and the remaining ellipsoid radii are

Ry = Rxsx/sy, (10)

Rz = Rxsx/sz. (11)

In addition to TPCFs, we propose to include the PCV to
provide additional spatial information of the phase topology
for the reference and reconstructed assemblies during the
reconstruction processes (Sec, II B). The PCV is used as a
fitting parameter to match the volume fraction of percolating
clusters in reference and reconstructed assemblies. In cases
when the PCV is not used during the simulated annealing
reconstruction process, it is used as an independent test of the
reconstruction as discussed in Sec. III B.

B. Simulated annealing

Simulated annealing is employed to statistically reconstruct
the reference assemblies based on the information contained
in the TPCFs [10,22] and, in some cases, the newly introduced
PCV. This is achieved by reducing the misfit between the

reference and the reconstructed assemblies for each of the
functions’ values.

Simulated annealing minimizes the misfit between the
reference and reconstructed assemblies through a process
of selective perturbation. First, perturbations are made to
the initial reconstructed assembly. These perturbations affect
the locations, orientations, volumes, and shapes (i.e., relative
lengths of the ellipsoidal axes) of the individual inclusions, as
opposed to altering a pixel or voxel phase type as typically
performed on discretized assemblies (Ref. [12]). The goal
of these perturbations is to reconstruct an assembly that
more closely resembles the reference assembly. Each time
a perturbation is made, the reconstruction’s TPCFs, and, if
employed, the PCV, are recalculated as described in Sec. II.
The misfit between the reference and reconstructed assembly
(referred to as the system energy, E) is then calculated from

E =
∑

α

∫ rmax

0

[
Sα

ref(r) − Sα
recon(r)

]2
dr, (12)

where Sα denotes the different two-point correlation functions
employed in the reconstruction, chosen from the two point
probability function, S(r), the two-point cluster function,
Sc(r), the lineal path function, Sl(r), and when applicable, the
percolating cluster volume, PCV. The different combinations
of two point correlation functions employed in this article
are further discussed in Sec. III. The subscript ref denotes
the reference assembly and recon indicates the reconstructed
assembly. The perturbation is accepted unconditionally if it
results in a reduction in E. Occasional unproductive perturba-
tions are required to prevent the reconstructed assembly from
resting in local minima. Thus, perturbations resulting in larger
misfits between the reference and reconstructed assembly are
accepted with a probability of

P (E) = exp

(
−�E

β

)
, (13)

where �E is the change in energy as a result of the perturbation
and β is a scaling factor controlling the rate at which
unproductive perturbations are accepted. Over the course of
the simulated annealing process, β is decreased in a sawtooth
pattern: β is initially set to its maximum value, and at each time
step is decreased by 1/1000. Once β is less than 1/36 of the
previous maximum, it is increased by a factor of 9 and a new
local maximum is recorded. In practice, the global minimum
is typically unattainable in a finite number of perturbations.
Instead, the simulated annealing process is stopped once a
sufficiently accurate fit is achieved. Therefore, this process
continues until a predetermined minimum energy is reached.
Other cooling schedules, such as linear or exponential meth-
ods, have also been employed in reconstruction studies using
voxelized assemblies [23]. However, these schedules have a
higher probability of causing trapping in local minima (e.g.,
Ref. [23]).

III. METHOD EVALUATION USING PHYSICAL
CHARACTERISTICS

Our primary interest is to reconstruct porous media, such
as pumice clasts. Hence, we investigate synthetic assemblies
constructed of spheroids and biaxial, prolate ellipsoids that are
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randomly distributed within a unit box (Fig. 1). The inclusion
volumes are formed by discrete, interpenetrating objects that
are normalized to the unit box and exhibit a log-normal
volume distribution in the reference assemblies. The log-
normal volume distribution loosely replicates the power-law
bubble volume distribution found in some volcanic pumice
samples [24]. In our reference assemblies, each inclusion
volume is between 0.01% and 1.00% of the unit box volume.
In this article, we explore three ergodic, synthetic reference
assemblies: an isotropic assembly of spherical inclusions,
an isotropic assembly of randomly oriented ellipsoids, and
an anisotropic assembly of preferentially oriented ellipsoids.
Other volume distributions could also be applied to our
reconstruction method but are not expected to change the
results for assembly reconstructions.

The reconstruction methods we are testing employ combi-
nations of three TPCFs S(r), Sl(r), and Sc(r) as well as the
PCV. The sets of functions (Sec. II A) used in the simulated
annealing process (Sec. II B) to reconstruct the three synthetic
assembly types are given in Table I. Methods 6a, 6b, and 6c are
of particular interest for reconstructing anisotropic assemblies.

To obtain inclusion information in each of the plane orien-
tations, we project all inclusions in turn onto the xy, yz, and xz
planes of the cubic coordinate system. For isotropic assemblies
we use the method employed in Ref. [15], where the TPCFs
are averaged over all three sampled directions (Methods 1–6a,
excluding 4b), resulting in single correlation functions for S(r),
Sc(r), and Sl(r). Using this method may produce artificial
anisotropy in the reconstruction, particularly in systems with
long-range correlations, as discussed in Refs. [25,26]. This is
not the case in the present article, as the target assemblies
are created from ergodic assemblies of freely overlapping
objects. Nevertheless, systems with long-range correlations
may be reconstructed by introducing a sampling regime that
encompasses all possible directions (to eliminate the artificial
anisotropy) using the methods discussed in the Appendix.
For anisotropic assemblies, we complete reconstructions using
both the projected and averaged TPCFs (Method 6c) as well
as reconstructions using only the projected TPCFs (Methods
4b and 6b). Each of the reconstruction methods are evaluated

TABLE I. Sets of functions used for each reconstruction method
in combination with simulated annealing. Isotropic spheroids and
ellipsoids are reconstructed using Methods 1, 2, 3, 4a, 5, and 6a.
Anisotropic ellipsoids are reconstructed using all methods shown
below.

Method Sets of functions used in reconstructions

1 S(r)avg

2 Sl(r)avg

3 S(r)avg, Sl(r)avg

4a S(r)avg, Sl(r)avg, PCV
4b S(r)proj, Sl(r)proj, PCV
5 S(r)avg, Sc(r)avg, Sl(r)avg

6a S(r)avg, Sc(r)avg, Sl(r)avg, PCV
6b S(r)proj, Sc(r)proj, Sl(r)proj, PCV
6c S(r)avg, Sc(r)avg, Sl(r)avg, S(r)proj, Sc(r)proj,

Sl(r)proj, PCV

based on their ability to preserve the reference assembly’s
microstructure and macroscopic material properties.

Reconstruction Methods 1–3 are motivated by combina-
tions of TPCFs employed in previous studies [10–12,14,15].
Methods 4–6 are an extension of the work conducted by the
previously mentioned authors in an attempt to develop a recon-
struction method that better captures the topology and related
material properties of anisotropic assemblies. Furthermore,
Jiao et al. [27] found that when a clustering function is included
in their reconstruction process, the resulting microstructure
better preserves inclusion connectedness and the assembly’s
overall (discretized) texture. Preserving inclusion connected-
ness at the microscopic scale is imperative to investigating
other physical properties at the macroscopic scale. Therefore,
we use a clustering function in Methods 4–6 [PCV or Sc(r)] to
better capture the percolating pathways in a given assembly.
We are also interested in determining if Methods 1–3 are
capable of statistically reproducing anisotropic assemblies
while preserving said topology.

For each method presented in Sec. III, 10 reconstructions
are performed. We chose to reconstruct 10 assemblies for
each method to balance a reasonable sample size with
computational cost. Further, these reconstructions are based
on a single composite reference assembly for each assembly
type (isotropic spheroids/ellipsoids, anisotropic ellipsoids).
This composite reference assembly is the combination of 10
instances of reference assemblies, randomly created to produce
a specific assembly type. The composite reference assembly
is generated by averaging the TPCFs from all 10 assembly
instances.

There are various validation parameters that can be imple-
mented to determine the accuracy of a reconstruction. First,
it is important to evaluate the goodness of fit between the
reference and reconstructed assemblies’ TPCFs (Table II).
If the TPCFs do not exhibit a good fit, the simulated annealing
process has likely been terminated prematurely. However, a
good fit between the TPCFs of the reference and reconstructed
assemblies does not necessarily indicate an accurate recon-
struction of the microstructure topology and related macro-
scopic material properties have been produced. Therefore,
determining the accuracy of a reconstruction requires some
quantitative comparison to confirm that the reconstruction
has statistically preserved the spatial relationships and macro-
scopic properties of the reference assembly. To provide a true
independent assessment of the accuracy of a reconstruction,
the macroscopic material properties being evaluated need to
be independent of the reconstruction method employed (here,
using Methods 1–6 in combination with simulated annealing).
Thus, the validation parameters implemented here include
the phase tortuosity (Sec. III A), percolating cluster volume,
where applicable (Sec. III B), and permeability (Sec. III C).
As the PCV is used in Methods 4a, 4b and 6a–6c during
reconstructions, it cannot serve as an independent validation
parameter for those methods. However, all of the physical
characteristics should be examined when reviewing the success
of a reconstruction method, including the pore fraction, φ,
specific surface area of the percolating cluster, sPCV, and the
pore fraction of the percolating cluster, φPCV. By comparing
all of the physical characteristics of the reference assembly
to those of the reconstructed assembly, we can determine if
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TABLE II. The integrated mean squared error between the reference and final reconstruction’s two-point correlation functions. The error
is very small, indicating that the simulated annealing algorithm was successful in perturbing the reconstructed assembly to fit the reference
assembly’s TPCFs.

Assembly
〈(TPCFref − TPCFrecon)2〉 × 10−6

reconstruction method 1 2 3 4a 4b 5 6a 6b 6c

Isotropic spheres 1.02 1.60 0.87 1.30 – 1.36 1.64 – –
Isotropic ellipsoids 0.97 1.82 0.87 2.18 – 1.47 1.34 – –
Anisotropic ellipsoids 1.00 1.57 0.89 0.86 1.52 1.65 1.82 1.50 1.42

a given reconstruction method has accurately described the
spatial relationships of the reference assembly.

A. Tortuosity

The tortuosity, τ , of a path is the ratio of the actual path
length between two points over the shortest distance between
these points. In a two-phase network containing multiple
paths, tortuosity can be determined using a random walker
algorithm. A random-walker particle is placed in a given
phase of a multiphase assembly, taking discrete unit steps in
random directions while staying within that phase [Fig. 3(a)].
Periodic boundary conditions are applied at the assembly’s
boundaries; reflective boundary conditions at the two-phase
interface keep the random walkers within the percolating
cluster [13]. In an unbounded phase, the mean-squared total
distance traveled, 〈R2〉, by a set of random walkers is equal
to the number of steps taken [Fig. 3(b)]. Reductions in 〈R2〉

(a)

(b)

0.5
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1.5

1.0

2.5
x104

x104
0.5 1.0 1.5 2.0

0
0

Steps/Iterations

<
R2

>

Analytical Solution <R2>/steps

Reconstructed Assembly Vp

Reference Assembly Vp

FIG. 3. (a) Examples of random walks through a percolating
cluster. A three-dimensional slice of the percolating cluster is shown
to demonstrate the movement of two random walkers (gray and black)
within the inclusions. (b) Mean-squared displacement for 20 000 steps
and 1000 random walkers.

reflect increasing tortuosities of the bounded phase geometry,
where τ = slopeempty/slopeassembly [28].

Here, the tortuosity of the percolating pore space is calcu-
lated from the average trajectories of 1000 random walkers,
where starting positions of the walkers are chosen randomly
within the phase of interest. Each random walker takes a step of
1 voxel length, forward or backward, along any one of the three
axes. The number of steps taken for each assembly varies to
ensure the tortuosity calculations are based on a large enough
sampling volume, as determined by the following process:
(i) The random walker algorithm begins with each of the 1000
walkers taking 140 000 steps or iterations. This is repeated five
times at 140 000 iterations, resulting in five tortuosity, τ , values
(each time the algorithm is run, the random walkers’ starting
positions are randomly chosen). (ii) The number of iterations is
then increased by 20 000 and rerun an additional five times. (iii)
The median tortuosities obtained for both numbers of iterations
are then compared. If the percentage point difference is >10%,
then an additional 20 000 steps are taken during the random
walker algorithm, resulting in five more tortuosity values and
a corresponding median. (iv) Steps (ii) and (iii) are repeated
until the percentage point difference between two sequential
median tortuosities is <10%.

B. Percolating cluster volume

Previous studies have reported that TPCFs are sufficient
for accurate assembly reconstructions [10–12]. However, in
our experience, a TPCF alone, or in combination with other
TPCFs, is typically insufficient to reproduce the cluster size
distribution of the given reference assembly (see Secs. IV
and V). Consequently, the percolating cluster volume (PCV)
is added to the reconstruction process to produce a more
accurate percolating cluster volume. Somewhat different in
character than the TPCFs, the PCV is determined in the
reference assemblies by identifying the volume of inclusion
clusters that span the unit box space in the z direction. The
PCV is used in the simulated annealing algorithm for select
assembly reconstructions. When the PCV is not used in the
reconstruction process, it can be used as an independent
parameter to assess the accuracy of a given reconstruction.

C. Permeability

As discussed in the Introduction, permeability is a necessary
but insufficient indicator of an accurate assembly reconstruc-
tion, as it integrates multiple geometric phase relationship
characteristics. Thus, permeability should be similar in the
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reference and reconstructed assembly if the reconstruction
is statistically accurate. However, it is unlikely permeability
will be identical between the reference and reconstruction as
fluid-flow bottlenecks or openings in the connected inclu-
sion apertures could be present in specific instances of the
reconstruction that are absent in the reference assembly (or
vice versa). Furthermore, permeability can depend strongly on
minute variations in microstructure (e.g., Refs. [16,17,29,30]).
Thus, it is important to conduct several reconstructions for
each of the composite reference assemblies and to base
the composite reference assembly on multiple instances, as
described in Sec. III.

The permeability of the reference and reconstructed as-
semblies are determined using numerical lattice-Boltzmann
simulations of fluid flow [31–33]. Comprehensive overviews
of the lattice-Boltzmann method can be found in Refs. [34–36].
This method can also be applied to a realistic porous medium
that has been numerically characterized using high-resolution,
three-dimensional microtomography. Detailed descriptions
and comparisons with analytical solutions (where available)
of the lattice-Boltzmann program used in this article are
given in Refs. [37–40]. General experimental verification of
three-dimensional lattice-Boltzmann simulations can be found
in Refs. [41–43]. The particular lattice-Boltzmann model
employed in this article is an incompressible single relaxation
D3Q19 model with a collision frequency of 1 (i.e., a kinematic
viscosity of 1/6 �x2/�t) [36].

The permeabilities of the synthetic assemblies are found
using Darcy’s law [44]

k = −qμL

�P
, (14)

where k is the viscous (Darcian) permeability, q is the
volumetric fluid flow rate or flux per cross sectional area of the
sample orthogonal to the fluid flow direction (determined by
integrating the fluid flow vectors exiting the assembly over the
surface area of the assembly’s face), μ is the dynamic viscosity
of the test fluid passing through the porous medium, and �P

is the change in fluid pressure across the sample length, L. We
assume the synthetic test fluid is incompressible and apply a
low pressure gradient to ensure laminar flow, allowing us to
use the standard form of Darcy’s law given above [45,46].

IV. DISCUSSION

The three assembly types used in the reconstruction process
are chosen to investigate how different reconstruction methods
preserve the statistical relationships between the assemblies’
inclusions. We examine an isotropic spheroidal, isotropic
ellipsoidal, and anisotropic ellipsoidal assembly, where the
anisotropic assembly’s inclusions are preferentially aligned
along the z axis.

Visual comparison between the reference and reconstructed
assemblies is an unreliable method for determining the
accuracy of the statistical reconstruction and provides no
quantitative insights into how well macroscopic material prop-
erties have been reproduced. When determining if a statistical
reconstruction of an assembly has been correctly performed, it
is important to distinguish between reconstruction-dependent
and -independent parameters of the given assembly. If an

accurate reconstruction has been accomplished, the resultant
macroscopic material properties produced by the simulated
annealing process should be very similar to those of the
reference assembly, due to the TPCFs capturing the spatial
relationships of the inclusions. Thus, independent parameters
must be used to verify the accuracy of a reconstruction, as
discussed in Sec. II. In this case, we have chosen to compare the
pore fraction of the whole assembly and the pore fraction of the
percolating cluster volume, in addition to the specific surface
area, permeability and tortuosity of the percolating cluster
volume. Figure 4 provides an overview of the reconstruction
methods’ performances. An assessment of the reconstruction
methods follows.

In general, Methods 1 and 2 (Table I), using a single
TPCF, resulted in poorly reconstructed physical character-
istics of the reference assembly (Fig. 4). This supports the
findings in Ref. [11], where the authors assert multiple
correlation functions should be used to optimize the accuracy
of the reconstructions. However, in Method 3, followed after
Refs. [12,15], we use S(r) and Sl(r) together with equally poor
results. It is only when we add clustering information through
the PCV or the Sc(r) to the reconstruction algorithm that more
consistently robust reconstructions are achieved. Furthermore,
there appears to be a correlation between the pore fraction of
the percolating cluster volume, φPCV, and the specific surface
area of the percolating cluster, sPCV. As the total specific
surface area of a reference assembly is easily determined
[Eq. (2)] and used during the reconstruction process (Sec. II),
we initially assumed that the sPCV would be trivial to reproduce
in the reconstructed assemblies. However, the reconstructed
assembly’s sPCV is only accurately reproduced when the
PCV or Sc(r) is also used in the reconstruction process,
indicating that cluster information is required to reconstruct
an assembly’s sPCV. This finding for continuous objects
corroborates those of Ref. [27], where they determined a
clustering function significantly improves the accuracy of a
reconstructed, discretized assembly.

While we anticipated challenges in reconstructing
anisotropic media, we did not anticipate difficulties in con-
sistently reconstructing the more sensitive properties, such as
permeability, in the isotropic media. However, there does not
appear to be a relationship between our ability to reconstruct
the φPCV and permeability, k, as we do not see a poorly
reproduced permeability value corresponding to a poor PCV
fit (Fig. 4). Conversely, a well reconstructed PCV does
not necessarily result in a well-reconstructed permeability.
Therefore, our inability to reconstruct an accurate k for
any reconstruction method indicates permeability is a very
sensitive physical property that can be significantly altered by
a single small or large aperture between two inclusions of the
same phase (e.g., Refs. [16,17,29,30]), particularly near the
percolation threshold. Either of these situations can greatly
restrict or increase flow through these regions, significantly
altering the macroscale permeability of the assembly. An
impermeable assembly could even result if a critical bottleneck
of a percolating cluster is blocked. Therefore, a perfect
permeability match between the reference and reconstructed
assemblies was not anticipated, considering our limited sample
size of 10 reconstructions for each method. Furthermore, as
permeability, k, and tortuosity, τ , are related, it is difficult
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FIG. 4. Comparison of physical characteristics in reconstructed assemblies to those of the reference assemblies. The black circles are
the median value of the 10 reconstruction assemblies, while the range of reconstruction values (vertical lines) shows the upper and lower
quartile values of all the assemblies. The gray-shaded area represents the range between the upper and lower quartile values of the reference
assembly, while the dashed line indicates the median value of the reference assembly. The reference assemblies are based on the combination of
10 instances of assemblies to reduce any anomalies that can appear in only one reference assembly.

to reconstruct an accurate k without an accurate τ . However,
Fig. 4 shows a consistently reasonable result for τ , despite the
accuracy variations in the reconstructed permeability.

The total pore fraction for a given TPCF is defined as the
median of the y-axis intercepts from that correlation function’s
projections in the x, y, and z directions [Fig. 2(b)]. For the
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isotropic assemblies, the pore fraction (or y intercept) is
typically the same in each of the three dimensions. However,
for the anisotropic assemblies, the pore fraction, φ, will be
slightly different in the dimension of anisotropy (in this case,
the z direction). Therefore, when the pore fraction’s median
value is calculated for a given correlation function, the function
sampled along the direction of anisotropy can raise or lower the
median φ. However, in this case, the difference between the φ

of the reference and reconstructed assemblies is less than 10%
(Fig. 4). Furthermore, the reconstructions of the anisotropic
assemblies consistently reproduce φ between the upper and
lower quartile of the reference assembly.

V. CONCLUSION

Beginning with what we perceive as the simplest geometric
assembly to reconstruct, the isotropic spheroids, we found
of all methods investigated (Table I), Methods 4a [S(r)avg,
Sl(r)avg, and PCV] and 6a [S(r)avg, Sc(r)avg, Sl(r)avg, and
PCV] to be the most effective (Fig. 4). Method 5 [S(r)avg,
Sc(r)avg, Sl(r)avg] also reconstructed the assemblies well but
failed to satisfactorily reproduce permeability. Therefore, we
suggest Method 4a provides a close to optimal reconstruction
method for isotropic spheroidal assemblies, as it produces
excellent reconstructions, while the reconstruction process is
less complicated than that of Method 6a.

None of the reconstruction methods effectively reproduce
permeability for the isotropic ellipsoidal assemblies as well
as initially anticipated. However, Methods 5 and 6a result in
excellent reconstructions of the other physical characteristics,
and Method 5 reproduced permeability satisfactorily.

Finally, reconstructing the permeability of the anisotropic
assemblies proved difficult, likely due to the inherent sen-
sitivity of the property, as discussed in Sec. IV. However,
with a significantly larger assembly sample size, the overall
sensitivity of the permeability property to the details of the
microstructure would likely be reduced. The reconstruction
results for the anisotropic ellipsoids show Methods 6a, 6b,
and 6c producing good reconstructions, excluding the perme-
ability. Furthermore, Methods 4a and 4b also produce robust
reconstructions, with permeability results for Method 4b
proving slightly better than in Methods 4a and 6a, 6b, and
6c. However, Method 5 reproduces permeability the best but
does not reproduce the specific surface area of the percolating
cluster as well as Methods 4a and 4b and 6a, 6b, and 6c,
and Method 6a produces a permeability that overlaps with
the reference permeability. Due to the difficulty of statistically
reproducing anisotropic geometries, the reader should choose
a reconstruction method while keeping in mind each method’s
strengths and weaknesses.

The purpose of this research is to determine the optimal
method to reconstruct a two-phase medium, while preserving
it’s macroscopic material properties. The spatial correlation
functions from an accurate reconstruction can also be applied
to an upscaling method, where the physical properties of a
representative elementary volume can be examined. We focus
on reconstructing continuous microstructures, as opposed
to discrete assemblies visualized as voxels (3D) or pixels
(2D). We conclude that the original findings of Yeong and
Torquato [12,15], with the small addition of the percolating

cluster volume, PCV, or two-point cluster function, Sc(r), to
the reconstruction process, prove to satisfactorily reconstruct
2D and 3D isotropic two-phase media. However, anisotropic
media are more difficult to reconstruct, as the dimension
that reflects the anisotropy has significantly different physical
characteristics than the other two dimensions. Therefore, we
find the optimal reconstruction method to capture a medium’s
anisotropy should include the PCV and/or Sc(r), with the pos-
sibility of including projected two-point correlation functions.
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APPENDIX

In contrast to previous studies, which calculated two-point
correlation functions based on digitized images of the underly-
ing microstructure, this study calculates two-point correlation
functions from a continuum description of an assembly. The
assembly is composed of collections of individual inclusions
(e.g., spheres and ellipsoids). However, this method can also
be used with digitized images, such as voxelized data. In
this section, we describe the methods used to calculate the
two-point correlation functions, S(r), Sl(r), and Sc(r), in
addition to the percolating cluster volume, PCV, for these
assemblies.

Consider an assembly of inclusions, 	, comprising
Nc clusters, 	c

n, such that 	 = {	c
n : 1 � n � Nc}. Given a

line segment, li , from xa to xb, a function f (li ,t) is introduced
for 0 � t � 1, where

f (li ,t) =
{

0 if xa + t(xb − xa) /∈ 	

1 if xa + t(xb − xa) ∈ 	
, (A1)

i.e., the function is zero if the point on the line, a proportion t

along its total length, is outside the inclusion and equal to 1 if
the point is inside the inclusion.

In practice, f (li ,t) is not calculated directly. Instead, for
each line segment under consideration, we determine if the
end points are within the assembly, and record points along
the lines that intersect the inclusions in the assemblies. From
this information, it is a relatively simple matter to recover
f (li ,t) for any value of t .

The probability that two random points separated by r on
a line segment of length li > r are both contained within the
assembly is

si(r) = 1

1 − r/ li

∫ 1−r/ li

0
f (li ,t)f (li ,t + r/ li) dt . (A2)

Given a sufficiently large number of line segments, the
two-point probability function S(r) is approximated by

S(r) ≈
∑
li>r

si(r)[li − r]

/∑
li>r

[li − r] . (A3)
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The two-point cluster and lineal path functions are calcu-
lated in a similar manner by introducing two new functions,
f c

n (l,t) and f ch
n (l,t):

f c
n (l,t) =

{
1 if xa + t(xb − xa) is in the nth cluster

0 otherwise
(A4)

and

f ch
n (li ,l,t) =

{
1 if xa + t(xb − xa) is in the nth chord

0 otherwise
.

(A5)

For our purposes, a chord is defined as a line joining two points
on the edge of a cluster that lies entirely within the cluster.

The probability that two random points separated by r on
li are both contained within the same cluster is

sc
i (r) = 1

1 − r/ li

Nc∑
n=1

∫ 1−r/ li

0
f c

n (li ,t)f
c
n (li ,t + r/ li) dt, (A6)

while the probability that the line between those two points is
completely covered is

sl
i (r) = 1

1 − r/ li

Nch∑
n=1

∫ 1−r/ li

0
f ch

n (li ,t)f
ch
n (li ,t + r/ li) dt. (A7)

With a sufficiently large number of line segments, Sc(r) and
Sl(r) are approximated by

Sc(r) ≈
∑
li>r

sc
i (r)[li − r]

/∑
li>r

[li − r] (A8)

and

Sl(r) ≈
∑
li>r

sl
i (r)[li − r]

/∑
li>r

[li − r], (A9)

respectively.
The two-point correlation functions given above describe

probabilities for randomly aligned line segments. For a given
orientation, n, the probability density distribution functions
are calculated from

SX(r,n) ≈
∑
li>r

sX
i (r,n)[li − r]

/∑
li>r

[li − r], (A10)

where SX(r,n) ∈ {
S (r,n),Sc(r,n),Sl(r,n)

}
are the two-point

probability functions and sX(r,n) ∈ {
s (r,n),sc(r,n),sl(r,n)

}
are the associated line segment probabilities for the
orientation, n.

The cluster volume distribution function is calculated from
the same data used in the two-point cluster function, Sc(r).
To calculate the two-point cluster function, each connected
cluster of objects within the assembly must be found and
each chord identified with the cluster that contains it. The
volume of the nth cluster V c

n can be calculated from this
information via

V c
n = V T

∑
i

[
li

∫ 1

0
f c

n (li ,t) dt

]/ ∑
j

lj , (A11)

where V T is the total assembly volume. The percolating cluster
volume is the sum of the volumes of the space-spanning
cluster(s) in a given assembly.
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