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Equations of fast phase transitions, in which the phase boundaries move with velocities comparable with the
atomic diffusion speed or with the speed of local structural relaxation, are analyzed. These equations have a
singular perturbation due to the second derivative of the order parameter with respect to time, which appears
due to phenomenologically introduced local nonequilibrium. To develop unconditionally stable computational
schemes, the Eyre theorem [D. J. Eyre, unpublished] proved for the classical equations, based on hypotheses of
local equilibrium, is used. An extension of the Eyre theorem for the case of equations for fast phase transitions
is given. It is shown that the expansion of the free energy on contractive and expansive parts, suggested by
Eyre for the classical equations of Cahn-Hilliard and Allen-Cahn, is also true for the equations of fast phase
transitions. Grid approximations of these equations lead to gradient-stable algorithms with an arbitrary time step
for numerical modeling, ensuring monotonic nonincrease of the free energy. Special examples demonstrating the
extended Eyre theorem for fast phase transitions are considered.
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I. INTRODUCTION

Freezing of a system into the disordered state leads to relax-
ation of frozen degrees of freedom during some characteristic
time [1]. Sizes of ordered regions of new phases, forming
under degeneration of the initial disordered state (symmetrical
phase), change with the velocity controlled by thermodynamic
driving forces. A difference in growth velocities leads to
competition of various phases with broken symmetry and to the
appearance of one of the ordered states. In accordance with this
scheme, equations for phase transitions of local equilibrium
systems are described by partial differential equations that
are of first order with respect to time. Well-known equations,
based on the hypothesis of local equilibrium, are the equations
of Allen and Cahn (a model of antiphase domain motion [2]),
Cahn and Hilliard (a model of spinodal decomposition [3]),
Swift and Hohenberg (a model for hydrodynamic instability
[4]), and Elder and Grant (a model of phase-field crystals
[5,6]).

Numerical modeling of equations for phase transitions is
an important tool for the investigation of pattern formation
evolving in real systems and materials under nonequilibrium
conditions [6,7]. Usually, existing computational algorithms
are inefficient due to their limitation by the time of numeric
modeling of phase transitions with small numeric time step.
For example, numeric “checkerboard instability” appears in
the integration of the Cahn-Hilliard equation by the Euler
method due to chosen time step for a length scale larger than
some characteristic distance δx [8]. This leads to a fixed time
step δt , which limits computation of a whole stage of the
system dynamics. Therefore, for usual numeric schemes and
algorithms following straightforwardly from them, there is an
essential restriction of an opportunity of modeling, because
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numerical modeling with constant and limited time step is
superfluously exact and demands excessive computer memory.
In an ideal situation, a stable algorithm of integration is
necessary which defines the time step from the requirement of
accuracy, instead of restriction on the stability of the numerical
algorithm. Rather recently, in this direction a certain progress
has been reached with the development of the gradient-stable
methods [9–13]. These methods were applied to the phase
transformations, the description of which rests on the local
equilibrium hypothesis. This description is well justified for
systems not too far from equilibrium, that is, for infinitesimal
deviation from local thermodynamic equilibrium [14]. It can be
applied essentially to phase transitions having a linear response
against small perturbation.

For many classes of materials—such as non-Newtonian
fluids, viscoelastic bodies, rapidly solidifying alloys and
systems, materials deeply quenched into the spinodal region,
and, more generally, systems with memory—the hypothesis
of local equilibrium does not apply (for an overview, see
literature in Ref. [15]). This hypothesis also fails for fast phase
transformations and during transient periods from an unstable
state to a metastable or even stable state [16,17]. Therefore,
a wide class of materials and processes cannot be coherently
described by the formalism based on the hypothesis of local
equilibrium, which is avoided by the introduction of fast
independent thermodynamic variables such as thermodynamic
fluxes or some internal variables [18,19].

The use of methods of extended irreversible thermodynam-
ics [19] leads to singular perturbation in equations of fast phase
transitions due to the appearance of the second derivative of the
order parameter with respect to time [16,17]. Complex-valued
dispersion relations for equations of phase transitions [20,21]
testify that the systems described by these equations may
have a behavior associated with transition from an oscillatory
regime to a regime with monotonic relaxation [21,22]. This
behavior adds complexity to numerical modeling of problems
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of fast phase transitions due to the instability of the known
algorithms. In this sense, because the success of gradient-stable
methods [11–13] in a modeling of the local equilibrium tasks
is based on the Eyre theorem [9–11], the main goal of this
paper is to extend the Eyre theorem for description of fast
phase transitions under local nonequilibrium conditions.

The paper is organized as follows. In Sec. II, equations for
fast phase transitions are analyzed. Using the Eyre theorem,
Sec. III presents main results of the work in the form of
gradient-stable numeric schemes for systems undergoing fast
phase transitions. Section IV illustrates the Eyre theorem in
application to the problems of fast transitions with conserved
and nonconserved order parameters. In Sec. V, the condition of
nonincrease of the free energy for developed numeric schemes
is proved. Section VI briefly summarizes the main results
of the present work. Finally, the Appendix gives inequalities
necessary for proofs of the work.

II. EQUATIONS FOR SYSTEMS UNDERGOING FAST
PHASE TRANSITIONS

Extension of equations of Cahn-Hilliard (CH) equation and
Allen-Cahn (AC) equation as well as the phase-field crystals
(PFC) equation and Swift-Hohenberg (SH) equation to the
case of fast phase transitions leads to the extension of a set
of independent thermodynamic variables due to introducing
dynamical fluxes (for the conserved order parameter) and the
rate of change of the order parameter (for the nonconserved
order parameter) [16,17,21].

Assuming isothermal approximation, first, the relaxation
dynamics is defined by the free energy density, which is chosen
as the sum of the local equilibrium contribution f (ϕ) and
gradient terms. As a result, the local equilibrium free energy is
defined by the functional of the Ginzburg-Landau form [23,24]
for AC and CH equations,

F1[ϕ] =
∫

V

[
1

2
ε2( �∇ϕ)2 + f (ϕ)

]
dV, (1)

and it is defined by the functional of the Brazovskii and Swift-
Hohenberg form [4,25] for SH and PFC equations,

F2[ϕ] =
∫

V

[
1

2
ε2

1(∇2ϕ)2 − 1

2
ε2

2( �∇ϕ)2 + f (ϕ)

]
dV. (2)

Second, extension of the space of thermodynamical variables
to the case of phase transitions leads to the pure nonequilibrium
contributions to the free energy in the following form [17]: for
AC and SH equations (with nonconserved order parameter),

Fn[u] = 1

2
αn

∫
V

u2dV, αn > 0, (3)

where u is the rate of change of the order parameter given by

ϕ̇ = u, (4)

and for CH and PFC equations (with conserved order
parameter),

Fc[ �J ] = 1

2
αc

∫
V

�J · �JdV, αc > 0, (5)

where �J is the dynamical flux which guarantees the bal-
ance law

ϕ̇ + �∇ · �J = 0. (6)

Here (and in the text that follows), a dot over the functions
denotes, as usual, the partial derivative ∂/∂t with respect to
time t .

Nonequilibrium contributions (3) and (5) have a meaning
of kinetic energy as has been shown in examples of spinodal
decomposition [26]. The kinetic coefficients αn and αc in
Eqs. (3) and (5) are assumed to be positive, because the local
nonequilibrium contribution should lead to an increase of the
free energy and limit a range of accessible states in a phase
space of the system [20]. Combining Eqs. (1) and (2) with
Eqs. (3) and (5) results in four functionals which decrease
monotonically during relaxation of the system in time.

A. Dynamics of nonconserved order parameter

Consider the dynamics with a nonconserved variable in a
system with volume V and outer surface S. After differentia-
tion of the free energy F =F1[ϕ]+Fn[u] with respect to time
and using Eqs. (1), (3), and (4), one obtains

d

dt
F =

∫
V

u

[
αnu̇ + δF1

δϕ

]
dV + ε2

∮
S

u( �∇ϕ) · (d �S) � 0,

(7)

where d �S is the vectorial element of the surface S. To exclude
free energy exchange on S which is described by the second
integral in Eq. (7), we consider an isolated system with the
following natural boundary condition:

∇nϕ|S = 0, (8)

where ∇n is the projection of the nabla operator �∇ on the vector
�n normal to the outer surface S. Then a monotonic decrease of
F is guaranteed in the simplest case by the following choice:

αnu̇ + δF1

δϕ
= − 1

Mn

u, (9)

where Mn(ϕ) > 0 is the mobility for the nonconserved order
parameter. Equations (9) and (4) lead to the following system
of equations: ⎧⎨⎩ τnu̇ + u = −Mn

δF1

δϕ
,

ϕ̇ = u,
(10)

where the coefficient

τn = αnMn (11)

is the relaxation time of the rate ϕ̇ = u of change of the
order parameter ϕ. For many materials, the time τn has a
small value (for metals, τn ≈ 10−9–10−12 s); therefore, we
assume τn ≡ const, although the mobility Mn may depend on
the order parameter ϕ. The obtained system of equations (10)
is equivalent to the single equation of second order in time
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(which is the hyperbolic AC equation) [17]:

τnϕ̈ + ϕ̇ = −Mn

δF1

δϕ

≡ Mn

(
ε2∇2ϕ − ∂f (ϕ)

∂ϕ

)
. (12)

Substituting F1 →F2 into Eq. (12) leads to the hyperbolic
SH equation [21]

τnϕ̈ + ϕ̇ = −Mn

δF2

δϕ

≡ −Mn

(
ε2

1�
2ϕ + ε2

2�ϕ + ∂f (ϕ)

∂ϕ

)
. (13)

For the isolated system, described by the hyperbolic SH
equation (13), we assume again an absence of the free energy
transfer through the outer surface S. This leads to∮

S

[
ε2

1(�ϕ �∇u − u �∇(�ϕ)) − ε2
2u

�∇ϕ
] · d �S = 0, (14)

with u = ϕ̇. Obviously, Eq. (14) holds if

∇nϕ|S = 0 and ∇n(�ϕ)|S = 0. (15)

B. Dynamics of conserved order parameter

For the conserved variable with the balance law (6),
differentiation of the free energy F =F1[ϕ]+Fc[ �J ] with
respect to time leads to the following expression:

d

dt
F =

∫
V

�J ·
[
αc

�̇J + �∇
(

δF1

δϕ

)]
dV

+ ε2
∮

S

ϕ̇( �∇ϕ) · (d �S) −
∮

S

(
δF1

δϕ

)
�J · d �S � 0.

(16)

The natural boundary conditions for Eq. (16) are

∇nϕ|S = 0 and Jn|S = 0, (17)

where Jn is the projection of the vector �J on the vector �n
normal to the outer surface S. Taking conditions (17) into
account (monotonic nonincrease of the free energy F ), Eq. (16)
is guaranteed by the linear relation between the flux and
conjugated thermodynamic force:

αc
�̇J + �∇

(
δF1

δϕ

)
= − 1

Mc

�J , (18)

In Eq. (18), the driving force for flux �J consists of a
contribution from the gradient of δF1/δϕ and from the time

relaxation ∝ �̇J . Note, especially, that nonincreasing of the
free energy in isolated systems occurs with the positive value
of mobility, Mc(ϕ) > 0, which may depend on the spatial
distribution of ϕ. Introducing the relaxation time

τc = αcMc (19)

of the atomic flux �J to a steady state, assuming it is constant
[independently of choice of Mc(ϕ)], and using Eq. (18), one

can obtain the following system of equations:⎧⎨⎩τc
�̇J + �J = −Mc

�∇
(

δF1

δϕ

)
,

ϕ̇ + �∇ · �J = 0.

(20)

Because the second of Eqs. (20) has only �∇ · �J , and defining

�∇ · �J ≡ u, (21)

one can obtain the following system of equations:⎧⎨⎩τcu̇ + u = −�∇ ·
[
Mc

�∇
(

δF1

δϕ

)]
,

ϕ̇ + u = 0.

(22)

Equation (22) shows that, due to the identity �∇ · ( �∇×) =
div(rot) = 0, the curl component of the vector field �J does
not influence the dynamics of the order parameter. Thus, the
physics of the process is defined by the divergence of fluxes
completely. The fluxes themselves just have a role of additional
variables. In this sense, the system of equations in its form (22)
is preferred to system (20) because it does not require obtaining
vector fields and it represents two equations equivalent to the
hyperbolic CH equation [16,17]:

τcϕ̈ + ϕ̇ = �∇ ·
[
Mc

�∇
(

δF1

δϕ

)]
≡ �∇ ·

[
Mc

�∇
(

∂f (ϕ)

∂ϕ
− ε2∇2ϕ

)]
. (23)

Finally, substituting F1 →F2 into Eq. (23) leads to the
hyperbolic PFC equation

τcϕ̈ + ϕ̇ = �∇ ·
[
Mc

�∇
(

δF2

δϕ

)]
≡ �∇ ·

[
Mc

�∇
(

ε2
1�

2ϕ + ε2
2�ϕ + ∂f (ϕ)

∂ϕ

)]
. (24)

Physically reasonable argumentation for Eq. (24) originates
from the model of fast transitions [17,21] and also from the
self-consistent incorporation of both fast elastic relaxation and
multiple crystal orientations in the behavior of nanocrystals
[27].

In addition to condition (14), the surface contribution from
the fluxes appears: ∮

S

δF2

δϕ
�J · d �S (25)

for Eq. (24). For the isolated system, the surface contribution
(25) disappears if the flux through the outer surface is absent:

Jn|S = 0. (26)

III. GRADIENT STABILITY IN THE DYNAMICS
OF FAST TRANSITIONS

The theorem of Eyre [9–11] defines conditions at which the
unconditionally stable numeric computations for the parabolic
AC and CH equations are guaranteed. These conditions were
also used in numerical solutions of the PFC equation [13,28]
and in various numerical experiments described by the AC
equation [29].
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The main quantity of the Eyre theorem is the Hessian matrix

Hij = ∂2F [ϕ]

∂ϕi∂ϕj

, (27)

where F [ϕ] is the free energy that depends on the order
parameter, and ϕi represents the field of the order parameter
on the ith grid node (for simplicity, only a one-component
scalar field is considered). For the free energy used to describe
pattern formation [see Eqs. (1), (2), (3), and (5)], the Hessian
matrix (27) has both positive and negative eigenvalues.

Eyre found a numeric scheme of first order in time for
the AC and SH parabolic equations by separating the free
energy F [ϕ] into a contractive part FC[ϕ] and an expansive
part FE[ϕ] [9,10]:

F [ϕ] = FC[ϕ] + FE[ϕ]. (28)

In Eq. (28), the contractive part FC[ϕ] is a convex function;
that is, for any interval [ϕa,ϕb] and ∀ϕ ∈ [ϕa,ϕb] the value of
the function FC[ϕ] is bounded above by the linear function

FC[ϕ] � ϕ − ϕa

ϕb − ϕa

FC[ϕb] + ϕb − ϕ

ϕb − ϕa

FC[ϕa],

having the boundary points ϕa and ϕb of the interval.
Analogously, the expansive part FE[ϕ] in Eq. (28) is a concave
function; that is, ∀ϕ ∈ [ϕa,ϕb] the value of ϕ is bounded from
below by the value of the linear function

FE[ϕ] � ϕ − ϕa

ϕb − ϕa

FE[ϕb] + ϕb − ϕ

ϕb − ϕa

FE[ϕa].

In this case, the eigenvalues λC of the Hessian HC
ij for the

convex function FC[ϕ] are strictly not negative, but the eigen-
values λE of the Hessian HE

ij for the concave function FE[ϕ]
are strictly not positive for every configuration of the ϕ field.

Now we formulate the main results which present spectral
relations, obtained on the basis of the Eyre theorem due
to expansion (28), which hold for the local nonequilibrium
system described by Eqs. (22), (23), (13), and (24) for the fast
phase transitions. It allows the construction of computational
algorithms which are gradient stable.

Note one important feature for the Hessian (27) in applica-
tion to the considered case of a local nonequilibrium system.
Due to the quadratic structure of expressions for the local
nonequilibrium contributions (3) and (5) into the free energy,
Hessian (27) has a block-diagonal structure by the flux �J (or
by the rate of change ϕ̇ for the nonconserved order parameter)
and by the order parameter ϕ. In other words, the Hessian has
the following form: (

αc(n) 0

0 Hij (ϕ)

)
. (29)

Therefore, in what follows, we save the notation Hij for the
contribution from the order parameter into Hessian, explicitly
writing respective contribution from the flux �J (or from the
rate of change ϕ̇ for the nonconserved order parameter).

Let λmin < 0 represent a lower boundary for eigenvalues of
the matrix Hij for any field ϕ. This boundary exists due to the
Eyre theorem [9] and the quadratic structure of nonequilibrium
contributions (3) and (5). Furthermore, let λE

max � 0 be the

upper boundary for eigenvalues of the Hessian HE
ij . The first

main result consists in that if the condition

λE
max � 1

2λmin (30)

holds, then the difference scheme for the nonconserved order
parameter may be written as

⎧⎪⎪⎨⎪⎪⎩
ϕ(k+1) + Mnδt

2

δt + 2τn

δFC

δϕ

∣∣∣∣(k+1)

= ϕ(k) − Mnδt
2

δt + 2τn

δFE

δϕ

∣∣∣∣(k)

+ 2τn

δt + 2τn

u(k),

u(k+1) = − u(k) + 2

δt

(
ϕ(k + 1) −ϕ(k)

)
.

(31)

Assuming that nonconstant mobility Mn = Mn(ϕ(x)) should
be taken from the previous time step, Mn ≡ M (k)

n , then the
difference scheme (31) leads to a monotonic nonincrease of
the free energy in time:

F [ϕ(k+1),u(k+1)] � F [ϕ(k),u(k)]. (32)

In the limit τn → 0, the rate of the order parameter splits
and the difference scheme (31) transforms into Eq. (A3) of
Ref. [11] obtained for the parabolic AC equation.

Analogously, the second main result for the conserved
order parameter consists of the formulation of the following
numerical scheme:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ(k+1) − δt2

δt + 2τc

�∇ ·
[
Mc

�∇
(

δFC

δϕ

)]∣∣∣∣(k+1)

= ϕ(k) + δt2

δt + 2τc

�∇ ·
[
Mc

�∇
(

δFE

δϕ

)]∣∣∣∣(k)

− 2τc

δt + 2τc

u(k),

u(k+1) = −u(k) − 2

δt

(
ϕ(k+1) − ϕ(k)

)
,

� �J (k+1) = �∇ · u(k+1),

(33)
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where the mobility has to be taken from the previous numerical
time step: Mc ≡ M (k)

c . With condition (30), numerical scheme
(33) leads to a monotonic nonincrease of the free energy in
time for the system with conserved order parameter:

F [ϕ(k+1), �J (k+1)] � F [ϕ(k), �J (k)]. (34)

Within the limit τc → 0, Eqs. (33) simply transform into
Eq. (A4) of Ref. [11], which is obtained for the parabolic CH
equation. As in the case of the nonconserved order parameter,
the limit τc → 0 splits equations of the system (33) in two
independent expressions in such a way that the nonstationarity
on the flux does not play a role in the dynamics of the order
parameter.

Equations (31) and (33) are true for every configuration of
the ϕ(k+1) field and corresponding fast variables (u and �J ) as
well as for any time step δt >0. The convexity of FC guarantees
that the implicit equation for ϕ(k+1) has a unique solution.
Note that spatial indices are omitted in Eqs. (31) and (33) and
temporal values of fields are denoted as ϕ(k+1) =ϕ(t + δt) and
ϕ(k) =ϕ(t).

The feature of energy dissipation in Eqs. (32) and (34)
(together with other natural requirements, e.g., with the
requirement of positive definite F ) is referred to by Eyre
as gradient stability [9]. As far as the gradient stability can
be obtained for many algorithms (also for an explicit Euler
scheme with a small enough time step δt), algorithms, defined
by Eqs. (31) and (33), guarantee stability for arbitrarily large
values of δt limited only by the accuracy requirement.

A useful consequence of the Eyre theorem lies in the fact
that, if the condition on eigenvalues (30) is held for some
limited set of fields ϕ, then the monotonic behavior in Eqs. (32)
is always held for any values of δt. This can be useful when the
order parameter ϕ is physically limited by its own dynamics.
For example, it is true for a concentration field or a phase field
when ϕ is the field with ϕ2

i < ϕ2
0 for any i and some constant

ϕ0. In particular, it should be noted that separation of the free
energy into the convex part FC and concave part FE, leading
to numeric schemes (31) and (33), can be a complicated task
and is not uniquely defined.

Proof of the nonincreasing free energy in Eqs. (32) and (34)
for schemes (31) and (33) is given in Sec. V. Before this proof,
two examples of the application of the Eyre theorem to the
problems of fast transitions with conserved and nonconserved
order parameters are presented.

IV. APPLICATION OF THE EYRE THEOREM TO FAST
PHASE TRANSITIONS

A. Example for hyperbolic AC and CH equations

To illustrate the presently extended Eyre theorem, we
choose an equilibrium part of the free energy in a form of
double-well potential

f (ϕ) = 1
4 (ϕ2 − 1)2, (35)

which has equilibrium values ϕ=±1. Dimensionless Eq. (12)
for the nonconserved order parameter is given by

τnϕ̈ + ϕ̇ = �ϕ − ϕ3 + ϕ, (36)

and dimensionless Eq. (23) for the conserved order parameter
is presented as

τcϕ̈ + ϕ̇ = �(ϕ3 − ϕ − �ϕ). (37)

The total free energy, dependent only on the order parameter

F [ϕ] =
∫

V

[
1

2
( �∇ϕ)2 + 1

4
(ϕ2 − 1)2

]
dV, (38)

can be treated as a sum of three contributions (with accuracy
up to additive constant):

F [ϕ] = F1 + F2 + F3,

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F1 = − 1

2

∫
ϕ2 dV,

F2 = 1
2

∫
( �∇ϕ)2 dV,

F3 = 1
4

∫
ϕ4 dV.

For each of these contributions, grid Hessians (27) are equal to

(M1)ij = −δij , (M2)ij = −�ij , (M3)ij = 3ϕ2
i δij ,

where δij is Kronecker’s delta and �ij is the grid Laplace
operator. For estimation of the lower-bound eigenvalues of the
whole Hessian we take into account the nonpositive spectrum
of the grid Laplace operator with homogeneous boundary
conditions of second order,

�ijfj = −μ2fi.

Then one obtains the matrix sums as

λ(M) = λ(M1 + M2 + M3) � −1 + μ2 + 3ϕ2.

This expression reaches its minimum at the eigenvalue λmin =
−1. As a result, from Eq. (30) one finds λE

max � −1/2.

For the contractive and expansive parts of the free energy,
we choose the following interpolation:

FE(ϕ) =
3∑

i=1

aiFi, FC(ϕ) =
3∑

i=1

(1 − ai)Fi,

from which it follows that, for the upper-bound eigenvalues of
the matrix ME , one can write

λ(ME) = −a1 + a2μ
2 + 3a3ϕ

2.

To obtain the lower-bound limit for the latter expression, we
skip the contribution from eigenvalues of the Laplacian by
assuming a2 � 0. Taking for simplicity a2 = 0 and using the
maximal contribution of the arbitrary configuration of the
field for order parameter ϕ2 = 1, one can get the following
condition:

λE
max = −a1 + 3a3 � −1/2.

To avoid iterations at every time step, it is convenient to
calculate the nonlinear contribution in equations explicitly. It is
equivalent to the equality a3 =1. As a result, we obtain a direct
linear method for iteration by time. For the coefficient a1, one
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then obtains the condition a1 � 7/2, which is in agreement
with the previous result [11].

In a general case of d measurable Cartesian space, the
maximal eigenvalue of the grid Laplace operator on the grid
with a space δxi (i = 1, . . . ,d) can be evaluated as

μ2 � π2
d∑

i=1

1

δx2
i

� π2d

min(δxi)2
. (39)

In this case, the region of values of the task parameters,
satisfying the inequality

a1 − a2
π2d

min(δxi)2
− 3a3 � 1/2, (40)

defines possible values of the coefficients a1, a2, and a3.

With these coefficients, the difference scheme (31) for the
hyperbolic AC equation is described by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(k+1) − δt2

δt + 2τn

[(1 − a1)ϕ + (1 − a2)�ϕ − (1 − a3)ϕ3]|(k+1) = ϕ(k) + δt2

δt + 2τn

[a1ϕ + a2�ϕ − a3ϕ
3]|(k) + 2τn

δt + 2τn

u(k),

u(k+1) = −u(k) + 2

δt
(ϕ(k+1) − ϕ(k)),

(41)

and the difference scheme (33) for the hyperbolic CH equation is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(k+1) + δt2

δt + 2τc

�[(1 − a1)ϕ + (1 − a2)�ϕ − (1 − a3)ϕ3]|(k+1)

= ϕ(k) − δt2

δt + 2τc

�[a1ϕ + a2�ϕ − a3ϕ
3]|(k) − 2τc

δt + 2τc

u(k),

u(k+1) = −u(k) − 2

δt
(ϕ(k+1) − ϕ(k)),

� �J (k+1) = ∇u(k+1).

(42)

Numerical schemes (41) and (42) provide monotonic nonin-
creasing of the free energy in time (see Sec. V A) and are
gradient stable.

B. Example for hyperbolic SH and PFC equations

For the SH and PFC equations, we choose the potential of
the form

f (ϕ) = 1
4ϕ4 + 1

2 (1 − ε)ϕ2, (43)

where ε is the undercooling into the metastable (unstable)
region of the phase diagram. In the dimensionless form,
Eq. (13) for the nonconserved order parameter is described
by

τnϕ̈ + ϕ̇ = [ε − (1 + �)2]ϕ − ϕ3, (44)

and the dimensionless equation (24) for the conserved order
parameter is

τcϕ̈ + ϕ̇ = �{[−ε + (1 + �)2]ϕ + ϕ3}. (45)

The whole free energy of the system, excluding the pure
nonequilibrium contribution, is given by

F [ϕ] =
∫

V

[
1

2
(�ϕ)2 − ( �∇ϕ)2 + 1

4
ϕ4 + 1

2
(1 − ε)ϕ2

]
dV.

(46)

This free energy can be represented by four terms,

F (ϕ) = F1 + F2 + F3 + F4,

which are defined as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F1 = − ∫
( �∇ϕ)2 dV,

F2 = 1
2

∫
(�ϕ)2 dV,

F3 = 1
4

∫
ϕ4 dV,

F4 = 1
2 (1 − ε)

∫
ϕ2 dV.

Each of these terms has the following grid Hessians (27):

(M4)ij = (1 − ε)δij , (M1)ij = �ij ,

(M2)ij = �2
ij , (M3)ij = 3ϕ2

i δij .

Lower-bound eigenvalues of the whole Hessian are obtained
by

λ(M) � 1 − ε − μ2 + μ4 + 3ϕ2.

Expression μ4 − μ2 has a minimum equal to −1/4 at μ2 =
1/2. Therefore, the minimal value of λ(M) is reached at the
eigenvalue λmin = 3/4 − ε. Consistent with relation (30), it
leads to the following limitation:

λE
max � 3

8 − 1
2ε.

Taking contractive and expansive parts of the free energy
in the form

FE(ϕ) =
4∑

i=1

aiFi, FC(ϕ) =
4∑

i=1

(1 − ai)Fi,

we find the expression

λ(ME) = a1(1 − ε) − a2μ
2 + a3μ

4 + 3a4ϕ
2
0 ,
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which is limited at a2 �0 and a3 �0. To evaluate the upper-
bound eigenvalues of the matrix ME , one may choose, for
simplicity, a2 = 0 and a3 = 0. Then, taking into account the
maximal contribution of arbitrary configuration of the field of
order parameter ϕ0, we find the following condition:

λE
max = a1(1 − ε) + 3a4ϕ

2
0 .

Using an explicit interpolation for nonlinear terms by explicit
form (a4 = 1), one obtains a direct linear method for time
iteration. For the coefficient a1 we obtain the following

condition:

a1(1 − ε) + 3a4ϕ
2 � 3

8 − 1
2ε.

In the general case, from estimation of spectrum (39), one
obtains possible values of the coefficients a1, a2, a3, and a4:

a1(1 − ε) − a2
π2d

min(δxi)2
+ a3

π4d2

min(δxi)4
+ 3a4ϕ

2
0 � 3

8
− 1

2
ε.

(47)

For these coefficients, numeric scheme (31) for the hyperbolic
SH equation is described by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ(k+1) + δt2

δt + 2τn

[(1 − a1)(1 − ε)ϕ + 2(1 − a2)�ϕ + (1 − a3)�2ϕ + (1 − a4)ϕ3]|(k+1)

= ϕ(k) − δt2

δt + 2τn

[a1(1 − ε)ϕ + 2a2�ϕ + a3�
2ϕ + a4ϕ

3]|(k) + 2τn

δt + 2τn

u(k),

u(k+1) = −u(k) + 2

δt
(ϕ(k+1) − ϕ(k)),

(48)

and difference scheme (31) for the hyperbolic PFC equation is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(k+1) + δt2

δt + 2τc

�[(1 − a1)(1 − ε)ϕ + 2(1 − a2)�ϕ + (1 − a3)�2ϕ + (1 − a4)ϕ3]|(k+1)

= ϕ(k) − δt2

δt + 2τc

�[a1(1 − ε)ϕ + 2a2�ϕ + a3�
2ϕ + a4ϕ

3]|(k) + 2τc

δt + 2τc

u(k),

u(k+1) = −u(k) − 2

δt
(ϕ(k+1) − ϕ(k)),

� �J (k+1) = �∇u(k+1).

(49)

Numeric schemes (48) and (49) provide monotonic nonin-
creasing of the free energy in time (see Sec. V B) and are
gradient stable.

V. MONOTONIC NONINCREASE IN TIME
OF THE FREE ENERGY

As is shown in the extended irreversible thermodynamics
[15], hyperbolic equations of transport or motion provide
monotonic relaxation of thermodynamic functions to their
extremal values in the evolution of the system to global
equilibrium. It has been clearly demonstrated, for example,
for monotonic increasing of the entropy to its maximum in a
thermally nonequilibrium system (see Fig. 2.1 in Ref. [19]).
Here we also assume that hyperbolic equations (12), (13), (23),
and (24) provide a monotonic nonincrease of the free energy
even though highly nonequilibrium fast transitions may result
in both oscillating behavior and monotonic relaxation of the
order parameter (as described in Refs. [21,22]).

A. Proof for the nonconserved order parameter

A proof of Eq. (32) for the discrete equation of the
dynamics with nonconserved order parameter (31) is based
on inequalities (A5) and (A7) from the Appendix. These

inequalities express the properties of a function of many
variables and transform to the following form:

F [ϕ(k+1),u(k+1)] − F [ϕ(k),u(k)]

�
〈
δϕ

∂F

∂ϕ

∣∣∣∣(k+1)

+ δu
∂F

∂u

∣∣∣∣(k+1)〉
− 1

2
λmin〈δϕ2〉− 1

2
αn〈δu2〉,

(50)

and 〈
δϕ

(
∂FE

∂ϕ

∣∣∣∣(k+1)

− ∂FE

∂ϕ

∣∣∣∣(k))〉
� λE

max〈δϕ2〉. (51)

In Eqs. (50) and (51), brackets 〈· · ·〉 represent the summation
over grid nodes 〈A〉 ≡ ∑

i Ai ; notations δϕ and δu give the
variations of fields ϕ and u at each grid node: δϕi ≡ ϕ

(k+1)
i −

ϕ
(k)
i and δui ≡ u

(k+1)
i − u

(k)
i , respectively.

Considering the numeric approximation of the first of
Eqs. (10), one may write

τnu̇ + ϕ̇ = −Mn

δF

δϕ
. (52)

Replacing time derivatives by finite differences and using
functions on the grid, one finds

τn

δui

δt
+ δϕi

δt
+ Mn

δFC

δϕi

∣∣∣∣(k+1) = −Mn

δFE

δϕi

∣∣∣∣(k)

, (53)
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where Mn ≡ M (k)
n . Adding MnδFE/δϕi |(k+1) to both sides of

the equation of motion (53), one gets

δF

δϕi

∣∣∣∣(k+1)

= − 1

Mn

(
τn

δui

δt
+ δϕi

δt

)

+
(

δFE

δϕi

∣∣∣∣(k+1)

− δFE

δϕi

∣∣∣∣(k))
. (54)

Substituting Eq. (54) into inequality (50) and calculating
δF/δu from Eq. (3) leads to

F [ϕ(k+1),u(k+1)] − F [ϕ(k),u(k)]

�
〈
δϕ

(
δFE

δϕ

∣∣∣∣(k+1)

− δFE

δϕ

∣∣∣∣(k))〉
+ αn〈u(k+1)δu〉

− 1

2
αn〈δu2〉 − 1

2
λmin〈δϕ2〉

− 1

δt

〈
M−1

n δϕ2〉 − 1

δt

〈
δϕτnM

−1
n δu

〉
. (55)

Equation (55), together with inequality (51) and expression
(12), gives

F [ϕ(k+1),u(k+1)] − F [ϕ(k),u(k)]

�
(

λE
max − 1

2
λmin

)
〈δϕ2〉 − 1

δt

〈
M−1

n δϕ2
〉

+αn

〈
δu

(
1

2
(u(k+1) + u(k)) − δϕ

δt

)〉
. (56)

With Mn > 0, the term 〈M−1
n δϕ2〉/δt can be omitted. Choosing

δϕ = 1
2δt(u(k+1) + u(k)),

the free energy nonincreases in time by Eqs. (32) if

λE
max � 1

2λmin.

The latter semi-inequality agrees with the Eyre theorem
condition (30) for the parabolic AC equation. Finally, we find
the following difference scheme in time:⎧⎪⎪⎨⎪⎪⎩

τn

δui

δt
+ δϕi

δt
+ Mn

δFC

δϕi

∣∣∣∣(k+1)

= −Mn

δFE

δϕi

∣∣∣∣(k)

,

δϕi = 1

2
δt

(
u

(k+1)
i + u

(k)
i

)
,

(57)

from which Eq. (31) directly follows.

B. Proof for the conserved order parameter

Proof of Eq. (34) for the discrete equation with conserved
order parameter (33) is based on inequalities (A5) and (A7)
from the Appendix, which are reduced to the following
expressions:

F [ϕ(k+1), �J (k+1)] − F [ϕ(k), �J (k)]

�
〈
δϕ

δF

δϕ

∣∣∣∣(k+1)

+ δ �J · δF

δ �J

∣∣∣∣(k+1)〉
− 1

2
λmin〈δϕ2〉 − 1

2
αc〈δ �J 2〉, (58)

and 〈
δϕ

(
δFE

δϕ

∣∣∣∣(k+1)

− δFE

δϕ

∣∣∣∣(k))〉
� λE

max〈δϕ2〉. (59)

As before, brackets 〈· · ·〉 in Eq. (59) represent the summation
over the grid nodes 〈A〉 ≡ ∑

i Ai, and δϕ and δ �J give the
variations of fields ϕ and u, respectively, at each grid node:
δϕi ≡ ϕi

(k+1) − ϕi
(k) and δ �Ji ≡ �J (k+1)

i − �J (k)
i .

Note that the analysis of conserved dynamics is complicated
due to the appearance of the elliptical Laplace operator in
Eq. (33). We consider a grid of arbitrary dimensionality
with n nodes, on which the grid elliptical Laplace operator
( �∇ · Mc

�∇)ij ≡ Aij is defined. Here we again assume that
Mc ≡ M (k)

c . The Laplacian is defined by the symmetric n × n

matrix with eigenvalues λ1 = 0 and λm < 0 for all m > 1. Let
v

(m)
i represent the ith component of the mth eigenvector of

the matrix A. Then, regarding the condition of completeness,
one has

δik =
n∑

m=1

v
(m)
i v

(m)
k =

n∑
j=1

ÃijAjk + v
(1)
i v

(1)
k , (60)

where the pseudoinverse matrix Ã is defined by

Ãij =
n∑

m�=1

1

λm

v
(m)
i v

(m)
j . (61)

The eigenvalue λ1 = 0 corresponds to a uniform field v
(1)
i =

1/
√

n for all ith indices. Substituting the identity operator (60)
into the sum for expression (58) and summing over the grid,
one finds

F [ϕ(k+1), �J (k+1)] − F [ϕ(k), �J (k)]

�
〈
δϕÃA

δF

δϕ

∣∣∣∣(k+1)〉
+ αc〈 �J (k+1)δ �J 〉 − 1

2
λmin〈δϕ2〉

− 1

2
αc〈δ �J 2〉. (62)

Here the contribution from the zero mode has dropped out due
to the existence of the conservation law 〈δϕ〉 = 0.

By analogy with the dynamics of the nonconserved order
parameter (see Sec. V A), the first of Eqs. (22) can be written as

τcu̇ − ϕ̇ = −�∇ ·
[
Mc

�∇
(

δF

δϕ

)]
. (63)

Then the corresponding difference scheme in time is given by

τc

δui

δt
− δϕi

δt
+ Aij

(
δFC

δϕj

)∣∣∣∣(k+1)

= −Aij

(
δFE

δϕj

)∣∣∣∣(k)

. (64)

Adding Aij [∂FE/∂ϕj ](k+1) to both sides of Eq. (64) gives

∑
k

Ajk

δF

δϕk

∣∣∣∣(k+1)

= −τc

δui

δt
+ δϕi

δt
+

∑
k

Ajk

(
δFE

δϕk

∣∣∣∣(k+1)

− δFE

δϕk

∣∣∣∣(k))
.

(65)
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Substituting Eq. (65) into expression (62) leads to

F [ϕ(k+1), �J (k+1)] − F
[
ϕ(k), �J (k)

]
�

〈
δϕ

(
δFE

δϕk

∣∣∣∣(k+1)

− δFE

δϕk

∣∣∣∣(k))〉
+ αc〈 �J (k+1)δ �J 〉

− 1

2
λmin〈δϕ2〉 + 1

δt
〈δϕÃδϕ〉

− 1

δt
〈δϕτcÃδu〉 − 1

2
αc〈δ �J 2〉. (66)

Using Eq. (59) and combining the fluxes in the last two terms
on the right-hand side of Eq. (66), we arrive at the following
expression:

F [ϕ(k+1), �J (k+1)] − F [ϕ(k), �J (k)]

�
(

λE
max − 1

2
λmin

)
〈δϕ2〉 + 1

δt
〈δϕÃδϕ〉

+ 1

2
αc〈( �J (k+1) + �J (k))δ �J 〉 − 1

δt
〈δϕτcÃδu〉. (67)

Regarding the nonpositivity of the spectrum of the grid
Laplacian and by definition (61), the following quadratic form
is negatively defined:

1

δt
〈δϕÃδϕ〉 � 0. (68)

Therefore, the corresponding term in Eq. (67) can be omitted.
To evaluate the contribution from the last two terms in

Eq. (67), one can take into account that the field dynamics
of the conserved order parameter is defined only up to a
divergence of the vector field �J that follows from Eqs. (22).
As is known [30], applying the Helmholtz theorem for
the three-dimensional Euclidean space, any vector field is
unambiguously defined through the expansion of gradient and
curl contributions:

�J = �∇ψ + �∇ × �A.

Note that only the gradient contribution gives the divergence
term:

�∇ · �J = �∇ · ( �∇ψ + �∇ × �A) = �ψ,

where ψ is some differentiable function.
Taking into account the form of the elliptic operator in the

right-hand side of Eq. (22), the flux can be presented in a
more general form (in comparison with the standard gradient
operator):

�J = Mc
�∇ψ. (69)

Obviously, the curl of such a substitution is not zero:

�∇ × (Mc
�∇ψ) = �∇Mc × �∇ψ �= 0,

but it is defined only by inhomogeneity of mobility. Conse-
quently, the gradient part of vector field �J is contained in
�J = Mc

�∇ψ, which gives the expression for estimation of
terms in inequality (67).

Using the above statements, the divergence of the flux
is u = �∇ · (Mc

�∇ψ). Because the difference operator is
taken from the previous time step in Eq. (64), we assume
for the difference approximation that �J (k+1) = Mc

�∇ψ (k+1),

�J (k) = Mc
�∇ψ (k), u(k+1) = �∇ · (Mc

�∇ψ (k+1)), and u(k) = �∇ ·
(Mc

�∇ψ (k)). Accordingly, one obtains

δ �J = Mc
�∇δψ, δu = �∇ · (Mc

�∇δψ).

Then, substituting δui into Eq. (67) and using δui = Aij δψj ,
one finds

1

δt
〈δϕτcÃδu〉 = 1

δt
〈τcδϕδψ〉. (70)

Similarly, substituting δ �Ji = Mc
�∇ij δψj (where ∇ij is the grid

approximation of the operator �∇) into Eq. (67) allows us to
write

1
2αc〈( �J (k+1) + �J (k))δ �J 〉 = 1

2αc〈( �J (k+1) + �J (k))Mc
�∇δψ〉

= 1
2τc〈( �J (k+1) + �J (k)) �∇δψ〉. (71)

Using partial summation and boundary conditions for fluxes
(17) and (26) and taking into account the difference approxi-
mation of definition (21) in the form of

ui = �∇ij
�Jj ,

one finds
1
2αc〈( �J (k+1) + �J (k))δ �J 〉 = − 1

2τc〈 �∇( �J (k+1) + �J (k))δψ〉
= − 1

2τc〈(u(k+1) + u(k))δψ〉. (72)

Equation (72) asserts that the last two terms in Eq. (67)
mutually annihilate if the condition

δϕi

δt
= −1

2

(
u

(k+1)
i + u

(k)
i

)
is satisfied. In this case, the Eyre condition (30) arises again and
the respective unconditionally stable numeric scheme takes the
following form:⎧⎪⎪⎨⎪⎪⎩

τc

δui

δt
− δϕi

δt
+ Aij

(
δFC

δϕj

)∣∣∣∣(k+1)

= −Aij

(
δFE

δϕj

)∣∣∣∣(k)

,

δϕi

δt
= −1

2

(
u

(k+1)
i + u

(k)
i

)
.

(73)

From Eq. (73), obviously, it follows the system of equa-
tions (33).

VI. CONCLUSIONS

An approach to the numerical solution of equations of
fast phase transitions, describing the local nonequilibrium
evolution of spatially inhomogeneous systems, is presented.
Using the Eyre expansion for free energy on contractive
and expansive parts for equations of fast transitions, the
gradient-stable computational algorithms can be developed.
These algorithms are defined by numerical schemes (31) and
(33), which (1) guarantee computational stability for arbitrary
time steps limited only by the requirement of computational
accuracy, and (2) provide a monotonic nonincrease of the
free energy with arbitrary time step in numerical modeling.
In examples of dynamics with conserved and nonconserved
order parameters, an application of the Eyre theorem to the
problems of fast phase transitions is shown.

Finally, the second temporal derivatives in Eqs. (12), (13),
(23), and (24) describe the inertia in local nonequilibrium
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systems [17]. In this sense, local nonequilibrium phenomena
in Eqs. (12), (13), (23), and (24) are introduced phenomeno-
logically by the temporal nonlocality. In more general case,
a local nonequilibrium contribution is introduced into the
system dynamics by the temporal memory function and spatial
nonlocality [17,21]. For the latter case, gradient-stable numeric
schemes might be developed additionally.
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APPENDIX: NECESSARY INEQUALITIES

To complete the analysis, we summarize here the in-
equalities [11] which are necessary to prove the gradient
stability. Consider an arbitrary function f (x) which can
be differentiated twice in Euclidian space E(n). From the
fundamental theorem of calculus, one gets

f (x + y) − f (x) =
∑

i

yi

∫ 1

0
ds1∂if

∣∣∣∣
x+s1y

, (A1)

where ∂if ≡ ∂f /∂xi and the parameter s1 changes from 0 to 1.
Analogously, for the first derivatives, one gets

∂if
∣∣
x+s1y − ∂if

∣∣
x =

∑
j

yj

∫ s1

0
ds2Hij

∣∣∣∣
x+s2y

, (A2)

where Hessian Hij ≡ ∂2f /∂xi∂xj is the matrix of the second
derivatives. Combination of Eqs. (A1) and (A2) leads to the

following obvious identity:

f (x + y) − f (x)

=
∑

i

yi∂if

∣∣∣∣
x
+

∫ 1

0
ds1

∫ s1

0
ds2

∑
i,j

yiyjHij

∣∣∣∣
x+s2y

.

(A3)

Let the eigenvalues of the Hessian Hij be limited from
below by some value λmin for any value of x. Then, for the
quadratic form with matrix Hij , the following estimation holds:∑

i,j

yiyjHij

∣∣∣∣
x+s2y

� λmin〈y2〉, (A4)

where 〈y2〉 = ∑
i y

2
i . Combination of Eqs. (A3) and (A4)

leads to

f (x + y) − f (x) �
∑

i

yi∂if

∣∣∣∣
x
+ 1

2
λmin〈y2〉, (A5)

where the factor 1/2 appears in Eq. (A5) after integration
by si .

Also, at s1 =1 in Eq. (A2), one can get the second inequality
from Eq. (A2) by multiplying it by yi . After summation,
one has∑

i

yi(∂if |x+y − ∂if |x) =
∑
i,j

yiyj

∫ 1

0
dsHij |x+sy. (A6)

If the spectrum of the Hessian Hij is limited from above
by the number λmax, then we arrive, finally, at the following
estimation: ∑

i

yi(∂if |x+y − ∂if |x) � λmax〈y2〉. (A7)

Conditions for the lower boundary (A5) and upper boundary
(A7) define the initial inequalities (50) and (51), as well as
inequalities (58) and (59). These inequalities are used for the
proof of the monotonic nonincrease of the free energy in the
system described by the difference schemes (57) and (73).
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