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We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using
a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a
nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature
components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the
three components of the kinetic temperature, namely, the difference between the component in the direction of
a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is
accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation
equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory,
along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement
with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation
parameters obtained from the reference solution.
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I. INTRODUCTION

Continuum theories of hydrodynamic flow confront the
most stringent test of their limits of validity in the description
of shock-wave fronts. Because these inhomogeneous fronts are
highly localized in both distance (a few interatomic spacings)
and time (a few mean collision times), and because the
hydrodynamic fields—the independent variables that describe
the fluid flow—exhibit large gradients, the linear constitutive
models that have traditionally been employed are stretched
to the limits of their validity, requiring new generalizations,
particularly for strong shocks.

Shock waves are so thin in spatial dimension and so rapid
in time that their details are difficult to measure by laboratory
experiments, but by the same token, they are therefore
amenable to atomistic nonequilibrium molecular-dynamics
(NEMD) computer simulations. The five hydrodynamic
fields—two local thermodynamic variables (upon which the
internal energy and pressure depend), namely, mass density ρ

and temperature T, along with the three components of the local
fluid velocity u, all functions of position x and time t—can
be obtained from NEMD simulations with appropriate initial
and boundary conditions, and then compared to continuum
numerical solutions under the same conditions. The continuum
equations of change are generally expressed as partial time
derivatives of the densities of mass, momentum, and energy,
which are equal to negative gradients of their respective fluxes.
To close the continuum equations, that is, to solve for the
hydrodynamic fields, constitutive equations for forces and
fluxes are invoked.

The most venerable constitutive models arrived in the
momentous year 1822, when Claude-Louis Navier proposed
the Navier-Stokes equations for viscous fluid flow, and his
mentor, Joseph Fourier, proposed Fourier’s law of heat con-
duction. Both together, known as Navier-Stokes-Fourier (NSF)
hydrodynamics, relate fluxes to forces (i.e., gradients of the

hydrodynamic fields); in the case of momentum, the pressure
tensor components are proportional to negative gradients of
fluid velocity, with the proportionality (transport) coefficients
being bulk viscosity (ηV ) and shear viscosity (ηS); in the
case of energy, the heat-flux vector is proportional to the
negative gradient of the temperature, with the proportionality
coefficient being the thermal conductivity (κ). Equilibrium
molecular-dynamics simulations are able to generate, as
functions of density and temperature, both the equation of
state (or EOS, namely, pressure and energy), and the limiting,
zero-gradient transport coefficients (though the latter are more
efficiently generated by homogeneous, steady-state NEMD
simulations).

In a previous study of ours [1], we compared earlier
NEMD strong-shock simulations in the dilute (ideal) gas
limit [2] to NSF continuum theory, augmented by the
Holian-Mareschal (HM) heat-flux vector containing (i) a
higher-order term—the dominant Burnett correction, namely,
the product of gradients of velocity and temperature—and
(ii) an approximate relaxation term. The extension of these
ideal-gas results (where only kinetic-energy terms are in-
volved) to dense fluids (where potential-energy contribu-
tions are significant) is complicated by the difficulty of
generalizing the Boltzmann equation. In a follow-up study
of ours [3], we compared NEMD simulations of strong
shocks in the dense Lennard-Jones (LJ) fluid to HM theory;
earlier NEMD studies were compared to NSF theory [4],
which had been deemed only moderately successful. We now
take our second study one step further in this present paper,
where our continuum theory includes an additional relaxation
time integration and thereby comes very close to full agreement
with NEMD in both ideal gas and dense fluids.

In both our previous papers [1,3], there were five important
NEMD observations that we made:

(1) In the shock front, there is an absence of equipartition
among the three spatial components of local peculiar kinetic
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energy (i.e., kinetic energy measured relative to the center-
of-mass fluid velocity in a local volume), which can be
expressed as diagonal kinetic temperature-tensor components,
by analogy with the pressure tensor. In the remainder of
the paper, because we are dealing with far-from-equilibrium
states, we identify the average kinetic temperature T as the
local hydrodynamic field in continuum theories, and define
it in terms of this local peculiar kinetic energy; hence T
is one-third the trace of the kinetic temperature tensor.
(In other nonequilibrium situations, different authors have
employed alternative measures of the effective temperature [5];
however, in atomistic dynamics, definitions of instantaneous
temperature other than kinetic are either difficult or impossible
to evaluate in all circumstances.)

(2) In the shock front, the kinetic temperature component
in the direction of shock propagation, Txx , is higher than the
transverse components, Tyy and Tzz, which are equal to each
other by symmetry in the long-time average and for sufficiently
large cross-sectional areas. Therefore T is also always lower
than Txx , except at equilibrium, which occurs long before
the shock has arrived and long afterwards, when equipartition
holds. Moreover, Txx shows a distinct peak near the center of
the shock front, and this disequilibrium is due to collisions in
the shock compression process [1,3] (see also Holian et al. [4]).

(3) Compared to NEMD, the early-time rise of the shock
front (on the cold, pre-shocked side) is seen to be too slow in
NSF continuum theory, so we proposed incorporating Burnett
nonlinearity into the HM heat-flux vector [1,3], characterized
by a dimensionless parameter δ1 � 0 that we can estimate from
ideal-gas kinetic theory.

(4) There is a relaxation process that brings the (com-
pressional) longitudinal kinetic temperature Txx back into
equilibrium with the average T on a time and distance scale
approximately equal to the width of the shock front. The
relaxation of the pressure-tensor component in the shock
direction Pxx to its spatial average P , which, to a very
good approximation, is proportional to Txx − T , motivated
an additional temperature-relaxation term in the HM heat-flux
vector, characterized by a second dimensionless parameter
δ2 � 0. These two new HM augmentations to the NSF
heat-flux vector do a much better job of describing NEMD
shock-wave results [1,3]. (When δ1 = δ2 = 0, the NSF linear
continuum theory is recovered from HM.)

(5) Compared to NEMD, however, the final approach
toward equilibrium (on the hot, shocked side) is seen to be
too rapid in earlier continuum theories (NSF and HM), both
of which involved direct, one-pass integrations [1,3]. Thus we
are motivated to seek a more complete theory of relaxation.

In the next section, we outline the important differences
that distinguish NEMD simulations of shock waves from the
usual atomistic computer simulations, and then lay out the
continuum equations we solve for our reference (unrelaxed)
solution. In Sec. III, we set forth our generalized Cattaneo-
Maxwell relaxation approach, which requires a second time
integration of the hydrodynamic fields over their past history
to achieve the final, relaxed continuum theory. Sec. IV reports
the results of comparing NEMD shock-wave profiles to both
reference and relaxed continuum solutions, followed by the
Conclusions section.

II. SHOCK-WAVE PROFILES: ATOMISTIC SIMULATIONS
VS THE REFERENCE CONTINUUM SOLUTION

A steady-state, planar, left-running shock wave can be
described by a profile coordinate variable, x = X + ust , where
X is the initial fixed laboratory coordinate of a given mass
element relative to the initial position of the piston, and the
shock front is stationary at x = 0. Thus for a mass element
at fixed X, time flies like x, namely, t = (x − X)/us , in the
steady profile. In the reference frame of the moving shock
front at x = 0, cold material streams in from the left at fluid
velocity us and stagnates as hotter, denser material at the
piston, which recedes at velocity us − up. For steady-state
planar shock waves, the 5 hydrodynamic fields are reduced
to 3: density ρ, the component of velocity u in the shock
propagation direction (x), and the temperature T. Because the
gradients of fluxes (mass, momentum, and energy) are zero in
the steady state, the density becomes a function of the fluid
velocity, and the three hydrodynamic fields are thereby reduced
to 2: u and T. NEMD shock-wave profiles are transformed
into this shock-front reference frame for comparison to the
reference continuum solution.

NEMD simulations of shock waves differ from other
nonequilibrium atomistic applications in five distinct ways
(see Ref. [3] for more details on NEMD methodology):

(1) Momentum-mirror boundary conditions are used to
generate shock waves. For example, the right-hand mirror
boundary of the computational cell is moved leftward at
constant piston velocity −up, generating a leftward-moving
shock wave as atoms collide with the mirror; the shock velocity
−us outraces the moving mirror (piston).

(2) Shock-wave profiles are generated by lumping parti-
cles into constant-mass (Lagrangian) bins—slabs along the
x direction—and computing all the variables and fluxes that
appear in the various flavors of continuum theory.

(3) The steady-state transformation to the reference frame
of the shock front is then applied to the NEMD profiles. Once
transients have decayed, steady profiles at snapshots in time
can be further averaged, so as to reduce statistical fluctuations.

(4) Density, velocity, and temperature are all point func-
tions and are unambiguous in their atomistic interpretation;
however, pressure-tensor components and energy involve
potential-energy contributions that are nonlocal, due to long-
range intermolecular interactions, and care must be taken to
check that steady shock waves have constant mass, momen-
tum, and energy fluxes. (In general, we find that sharing bonds
equally across different bins is sufficient.)

(5) The computational time step must be sufficiently small,
in order that collisions are accurately resolved in the NEMD
integration.

The linear Navier-Stokes (and Fourier) constitutive “laws”
of viscous flow and thermal conduction relate fluxes of
momentum in the shock direction Pxx and heat Q to the
gradients of fluid velocity du/dx and temperature dT/dx,
respectively, through the transport coefficients of viscosity and
thermal conductivity, thereby augmenting the Euler equations
of change that describe a step-function jump (Hugoniot) from
cold, unshocked material to hot, shocked material, as obtained
from the local equilibrium EOS. In the continuous shock rise
predicted by NSF theory, the transport coefficients are also
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functions of density and temperature, and noticeably so for
strong shock waves. (For HM, there is an additional Burnett-
like strain-rate contribution to the thermal conductivity, but it,
too, relies on the local thermodynamic collision time from the
EOS.)

Starting with the continuity equation for conservation of
mass, ∂ρ/∂t + (∂/∂x)(ρu) = 0, and the steady-state condi-
tion, ∂ρ/∂t = 0, we see that the mass flux ρu is constant in
a steady planar shock wave, so that u is proportional to the
volume per unit mass, and the density is given by

ρ(x) = ρ0us

u(x)
. (1)

Similarly, the hydrodynamic equation of change for con-
servation of momentum, ∂(ρu)/∂t + (∂/∂x)(Pxx + ρu2) = 0,
implies that the xx component of the pressure tensor in a steady
planar shock wave is given by

Pxx(x) = P (ρ,T ) − ηL(ρ,T )
du

dx
= P0 + ρ0u

2
s

(
1 − u

us

)
, (2)

where the longitudinal viscosity ηL = ηV + (4/3)ηS , and P is
the isotropic equilibrium pressure from the EOS (P0 is the
value in the initial, unshocked state). Note that Pxx and u
are linear functions of each other. Since the fluid velocity
(properly scaled by the shock velocity) is the volume per unit
mass (scaled by the initial value), the second equality in Eq. (2)
is the so-called pressure-volume Rayleigh line, the area under
which is the internal energy change through the shock process.

Finally, the hydrodynamic equation of change for conserva-
tion of energy, ∂[ρ(E + u2/2)]/∂t + (∂/∂x)[ρu(E + u2/2) +
Pxxu + Q] = 0, implies that the heat-flux vector Q (evaluated
here for the HM constitutive theory [1,3]) for the steady planar
shock wave is given by

Q(x) = −κ(ρ,T )

[
1 − δ1τc(ρ,T )

du

dx

]
dT

dx
− δ2(Pxx − P )u

= −ρ0us

[
E(ρ,T ) − 1

2
(us − u)2 − E0

−P0

ρ0

(
1 − u

us

)]
, (3)

where E is the internal energy from the EOS (E0 is the value
in the initial, unshocked state), the mean collision time is
τc = ηL/BS , which can be calculated from the longitudinal
viscosity and the EOS (the isentropic bulk modulus is BS),
and δ1 is the dimensionless Burnett parameter. (For the HM
theory we employ as a reference continuum solution in this
paper, the relaxation parameter is chosen to be δ2 ≡ 0, since
larger values did not sufficiently well account for the slow
approach to the hot, final state, as seen in NEMD [1,3].)

NSF and HM continuum theories assume local thermo-
dynamic equilibrium throughout the shock-wave profile; no
mention is made in any continuum theory of the truly
nonequilibrium variable Txx , the temperature in the direction
of the shock that arises from rapid uniaxial compression. In
Ref. [3], we showed that, to a very good approximation in the
dense fluid (and exactly in the case of the ideal gas), we could
compute Txx from (i) the average over the three components

of the kinetic temperature T (which we use, along with ρ, to
obtain the EOS), (ii) Pxx , and (iii) P (from the EOS):

Txx
∼= T +

(
∂T

∂P

)
ρ

(ρ,T ) [Pxx − P (ρ,T )], (4)

where the thermodynamic derivative (∂T /∂P )ρ =
1/(∂P/∂T )ρ from the EOS is approximately linear in
fluid velocity u throughout the shock wave profile. We
emphasize that the kinetic temperature components in the
shock front are mechanically well defined at every point and
easily measured in atomistic simulations; it is only via Eq. (4)
that their relationship to the local thermodynamic temperature
from the equilibrium EOS can be obtained for NSF and HM
continuum theories.

In order to obtain steady-state shock-wave profiles for
the reference HM solution (δ1 � 0,δ2 ≡ 0), we solve the
particle-velocity and temperature equations by first-order
finite differences. Note that the integration is backwards in the
coordinate, i.e., the integration step �x is negative, since the
piston, located far to the right, is the cause of the left-moving
shock wave (and in any event, the cold temperature provides
nothing much to integrate):

du

dx
= −

P0 + ρ0u
2
s

(
1 − u

us

) − P (ρ,T )

ηL(ρ,T )
, (5a)

dT

dx
=

ρ0us

[
E(ρ,T ) − 1

2 (us − u)2 − E0 − P0
ρ0

(
1 − u

us

)]
κ(ρ,T )

[
1 − δ1τc(ρ,T ) du

dx

] .

(5b)

In the LJ fluid, the conditions at the hot end of the shock
wave are given by solving iteratively for the Hugoniot jump
conditions, while in the ideal-gas case, the EOS is analytic.
We identify the origin of the steady shock front in the LJ fluid
with the halfway point between cold (us) and hot (us − up)
particle velocities, as is commonly done in NEMD shock-wave
simulations; for the ideal gas, we can choose the peak in Txx as
the shock front, since that point is common to all continuum
solutions for strong shocks and is nevertheless close to the
average of the hot and cold fluid velocities, as well as the
maximum (negative) velocity gradient.

III. GENERALIZED CATTANEO-MAXWELL
RELAXATION APPLIED TO SHOCK WAVES

In this paper, we take an approach to the relaxation
process in continuum hydrodynamics that differs from all
earlier Cattaneo-Maxwell treatments [6]. This (generalized)
Cattaneo-Maxwell approach produces a relaxed solution
for the five hydrodynamic fields, ρ, T, and u, by taking an
independent, previously computed reference solution, i.e.,
ρref , Tref , and uref , and performing an extra time integration
over its exponentially damped past history. For example, we
can apply the generalized Cattaneo-Maxwell approach to the
temperature field:

∂T

∂t
= −T (x,t) − Tref(x,t)

τ
(Maxwell),

T (x,t) + τ
∂T

∂t
= Tref(x,t) (Cattaneo),

⇒ T (x,t) =
∫ ∞

0
ds e−sTref (x,t − sτ ), (6a)
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where τ is the exponential relaxation time; the first line is
the usual form of Maxwell relaxation, the second is Maxwell
rearranged in the style of Cattaneo, and the third is the formal
integral solution. We emphasize that the relaxation is for
hydrodynamic fields, rather than fluxes, as we will discuss in
more detail later.

The time dependence of temperature relaxation, as outlined
in Eq. (6a), is shown schematically in Fig. 1(a), which could
represent, for example, either the passage of a shock wave
through a fluid initially at temperature T0 as it reaches the
final shocked temperature T1, or the transient response of fluid
located between hot and cold reservoirs as temperature rises
from T0 and approaches the appropriate steady-state (linear-
profile) value T1. By construction, the maximum time deriva-
tive at the midpoint of the temperature rise is �T/�trise =
(Tref − T )/τ , so that τ/�trise = (Tref − T )/�T � 1; this is
consistent with the physical requirement that the relaxation
time τ be approximately τc, the mean atomic collision time
in the fluid, as measured at the midpoint of the rise, so that
�trise must be at least a few times τc. The relaxed solution
T is delayed from Tref (to first order) by a time ∼τ , and
the duration, or width of the profile—the shock rise time
in the case of a shock wave—is also increased by a like
amount. As depicted in Fig. 1(a), �trise is only a handful
of relaxation times, similar to the case for shock waves,
and the difference between reference and relaxed solutions
(Tref − T ) is nontrivial compared to the total temperature rise
�T; consequently, the highly nonequilibrium relaxation effect
is nonlocal in time, and history dependence cannot be ignored.
Therefore a single-pass, time-marching integration of the
hydrodynamic equations is not feasible: A second relaxation
integration, as in the third line of Eq. (6a), is essential.

By analogy with Eq. (6a), we write the generalized
Cattaneo-Maxwell exponential relaxation equation for a more
complicated function of the hydrodynamic fields, such as the
heat flux vector Q, as follows:
(

1 + τ
∂

∂t

)
Q(ρ,T ,u | x,t) = Qref(ρref,Tref,uref | x,t)

⇒ Q(ρ,T ,u | x,t)

=
∫ ∞

0
ds e−sQref(ρref,Tref,uref | x,t − sτ ). (6b)

If the reference solution is Fourier’s law, for example, then
the right-hand side of Eq. (6b) is Qref = −κref∇Tref , where
κref = κ(ρref,Tref). This right-hand side has been written
heretofore [6] as −κ(ρ,T )∇T , which is strictly correct only
in the perturbation limit where τ/�trise → 0, so that ρ → ρref

and T → Tref .1 While this may seem to be a hair-splitting
distinction, such near-equilibrium shortcuts to relaxation
processes are not even remotely valid for shock waves, and

1Cattaneo’s equation in this perturbation limit has often been used
to derive the hyperbolic telegrapher’s equation for temperature (at
constant density and small temperature variations). We can obtain it
from the perturbation limit of the partial time derivative of Eq. (6a):
∂T /∂t + τ∂2T/∂t2 = ∂Tref/∂t → λ∇2T , where λ = κ/ρCV is the
thermal diffusivity (CV is the constant-volume heat capacity); τ = 0
gives the familiar parabolic Fourier’s equation of thermal conduction.

t

T

reference solution (τ = 0)
relaxed solution (τ > 0)

ΔT = T
1

− T
0

Δt
rise

τ

T
0

T
1

t

0

Q

reference solution (τ = 0)
relaxed solution (τ > 0)

Δt
rise

τ

(a)

(b)

FIG. 1. Schematic of solutions: reference (τ = 0, solid curve)
and relaxed (τ > 0, dashed curve) vs time t; (a) temperature T,
(b) heat flux Q. Delay time for relaxed solution is ∼τ ; rise time
(duration) of reference solution �trise is increased by ∼τ in the relaxed
solution.

they can lead to singularities in any resulting single-pass,
time-marching integration. Figure 1(b) illustrates relaxation
for the heat-flux vector Q, representing, for example, either
the passage of a left-moving shock wave through a fluid, or a
heat pulse coming from a source to the right.

Before specializing our generalized relaxation treatment to
steady planar shock waves, we note that the Fourier’s law
relationship between temperature field and heat flux shown in
Fig. 1 has a direct analogy in the Navier-Stokes equations,
namely, the relationship between fluid velocity (field) and
shear stress (flux), as first elucidated by James Clerk Maxwell
in 1866. Again, for momentum flux, as in the case of heat
flux, the perturbation limit τ/�trise → 0 is not valid for shock
waves. To go beyond the reference solution of NSF (and
also when we include a Burnett-type contribution in HM),
an extra integration in time is absolutely essential, particularly
for shocks.

In order to describe the relaxation of the kinetic
temperature-tensor components in the shock wave, we extend
the Navier-Stokes-Fourier plus Burnett (HM) solution for the
fluid velocity uref in Eq. (5a) and the temperature Tref in
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Eq. (5b), so as to include a microscopic Maxwell relaxation
process, using the generalized Cattaneo-Maxwell equation
introduced in Eq. (1a) and demonstrated schematically in
Fig. 1:

∂u

∂t
= −u − uref

τc

,
∂T

∂t
= −T − Tref

τT

. (7a)

The temporal relaxation of the two hydrodynamic fields
occurs on microscopic time scales τc and τT , which are the
mean collision time and a thermal relaxation time, respec-
tively; these relaxation times are not necessarily identical, but
they cannot physically be too different from each other, either.

Because steady, planar, shock-wave profiles can be trans-
formed to the reference frame of the shock front (recall
from Sec. II that the profile coordinate is x = X + ust), the
time derivative in Eq. (7a) can therefore be replaced by the
spatial derivative, ∂/∂t = usd/dx, and the Cattaneo-Maxwell
relaxation equations become

du

dx
= −u − uref

λu

,
dT

dx
= −T − Tref

λT

, (7b)

where we have identified the two relaxation lengths λu = usτc

and λT = usτT , which are somewhat greater than the mean
free path between atomic collisions near the middle of the
shock front, but still noticeably less than the shock thickness
(us�trise).

The formal solution to Eq. (7b) for velocity and temperature
can be expressed in integral form:

u(x) =
∫ ∞

0
ds e−suref(x − sλu),

(8a)

T (x) =
∫ ∞

0
ds e−sTref(x − sλT ),

where Eq. (7b) can be recovered by differentiation with respect
to x, followed by partial integration over s. If the reference
solution is constant over a number of relaxation lengths (as
it is at either the cold or hot end of the shock-wave profile),
then the relaxed solution is equal to the reference solution,
thereby preserving the Hugoniot jump conditions for both
hydrodynamic fields. The solution for u and T can be obtained
to third-order accuracy in the spatial integration step �x by
simple recursion, beginning at the cold (left-hand) side of the
shock profile:

u(x + �x) = u(x)e−�x/λu

+ �x

2λu

[uref(x + �x) + uref(x)e−�x/λu ],
(8b)

T (x + �x) = T (x)e−�x/λT

+ �x

2λT

[Tref(x + �x) + Tref(x)e−�x/λT ].

Thus the generalized Cattaneo-Maxwell relaxation inte-
gration (in contrast to the original continuum integration
for the reference solution itself) is carried out forward in
time, as shown explicitly in Eq. (8b). We emphasize that
the Cattaneo-Maxwell relaxation solution is highly nonlinear,
since it depends not just on the coordinate x (or equivalently
for the steady shock, time t), but on previous history, i.e.,

earlier coordinates (or times). While the steady shockwave
might appear to involve spatial nonlocality, we emphasize that
the nonlocality is actually temporal.

In contrast to HM theory, where we invoked Cattaneo in
order to motivate a relaxation term in the heat flux, Burnett-
Cattaneo actually relaxes the reference-solution hydrodynamic
fields—the velocity and temperature—whose gradients exhibit
maxima that precede the response (the maxima of the fluxes)
in time. (On the other hand, when transport coefficients are
assumed to be independent of density or temperature, i.e.,
simply constants, it is not surprising to find at the NSF level
that maxima of gradients and fluxes coincide [7]; but this is
never a realistic assumption.)

Motivated by the HM model for the temperature relaxation
in Ref. [1], Hoover and Hoover studied shock propagation in
a two-dimensional system of particles interacting by a soft
repulsive potential [7]. They assumed constant transport coef-
ficients, and approximated the thermal pressure by a Grüneisen
model. Instead of taking advantage of the steady shock-wave
condition, the Hoovers supplemented spatial integration of
NSF on a staggered mesh with fourth-order Runge-Kutta
temporal integration of two temperature relaxation equations.
While the idea of going beyond HM temperature relaxation
is laudable, the Hoovers’ approach involves unnecessary
complexity, as well as suffering instabilities, in contrast to
the approach we have taken here.

Note that we could have applied Cattaneo-Maxwell
relaxation to fluxes, Pxx and Q, though the linear relationship
between Pxx and u makes the relaxation of one identical to
the other. However, Q is a function of both u and T [see
Eq. (3)], so that, given u (and therefore ρ), one must invert
the internal energy E to get T from Q. In the case of the
ideal gas, this is a piece of cake, since E is proportional to
T; in the case of the dense LJ fluid, inversion of the EOS
is not quite so simple, though an iterative search is made
feasible by the monotonicity of E as a function of T, at least at
high densities and temperatures. We show later that this added
complexity of relaxing fluxes, as opposed to fields, is not really
necessary.

IV. RESULTS

In Fig. 2, the Navier-Stokes-Fourier, Holian-Mareschal,
and Burnett-Cattaneo continuum solutions are compared with
nonequilibrium molecular-dynamics simulations for the aver-
age temperature T, the longitudinal component of temperature
in the shock-wave direction Txx , and the heat-flux vector Q as
functions of coordinate x for strong shockwaves in the ideal
gas; the same kinds of profiles are displayed in Fig. 3 for
a strong shockwave in the Lennard-Jones dense fluid. The
profiles for the longitudinal component of the pressure tensor
and normal stress difference (i.e., twice the shear stress) are
shown in Fig. 4 for the ideal gas and Fig. 5 for the LJ fluid.

The dimensionless Burnett parameter δ1 in Eq. (3) can be
estimated from kinetic theory [8] to be 3.6 for binary collisions
of hard spheres; for softer potentials, such as LJ 6–12, the
value can be estimated to be about 10% higher. For shocks in
dense fluids, binary collisions dominate, so there is no reason
to believe that δ1 would change very much from the hard-
sphere ideal-gas value. On the other hand, there is no obvious
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FIG. 2. (Color online) Temperature and heat-flux profiles as
functions of position x/l0 (l0 is the cold mean free path at the far left-
hand side of the shock front) for strong shock waves in the ideal gas;
T is the average temperature, Txx is the longitudinal component in the
direction of the shock wave, and Q is the heat-flux vector. Nonequi-
librium molecular-dynamics (NEMD) simulation data for Txx (solid
circles), T (open circles), and Q (X’s); Navier-Stokes-Fourier [blue
lines (thin black), δ1 = δ2 = λu = λT = 0 in Eqs. (3) and (8)];
Holian-Mareschal [red lines (gray), δ1 = 3.6, δ2 = 0, λu = λT =
0]; Burnett-Cattaneo, ab initio prediction (thick black lines, δ1 =
3.6, δ2 = 0, λu = λT = 0.77l0).

a priori way to predict for the Holian-Mareschal heat-flux
vector what the relaxation parameter δ2 should be, apart from
not being too large compared to 1. For that reason, and since it
is an approximation to the relaxation process (while Burnett-
Cattaneo provides an explicit solution), and since we have
found that the Burnett term in the heat flux accounts for the
principal effect on the cold compression side of the shock
front, we have set δ2 ≡ 0 in this paper.

The fluid velocity at the shock front is defined in the
ideal-gas case to coincide with the peak of Txx (i.e., u is half
the shock velocity for a strong shock); therefore a plausible
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shock waves in the ideal gas (scaled by ρ0u
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FIG. 3. (Color online) Temperature and heat-flux profiles as
functions of position x/σ for a strong shockwave in the dense
Lennard-Jones fluid (LJ length unit σ , energy unit ε) [3]; T is
the average temperature, Txx is the longitudinal component in the
direction of the shockwave, and Q/ρ0us is the heat-flux vector
divided by the constant mass flux ρ0us . Nonequilibrium molecular-
dynamics (NEMD) simulation data for Txx (solid circles), T (open
circles), and Q (X’s); Navier-Stokes-Fourier [blue lines (thin black),
δ1 = δ2 = λu = λT = 0 in Eqs. (3) and (8)]; Holian-Mareschal [red
lines (gray), δ1 = 3.6, δ2 = 0, λu = λT = 0]; Burnett-Cattaneo,
ab initio prediction (thick black lines, δ1 = 3.6, δ2 = 0, λu =
λT = 0.43σ ). For the continuum theories, Txx was evaluated from
the LJ EOS using Eq. (4). The NEMD profiles for the temperature
components are smooth data obtained from simulations with large
cross sections [3].

value for the relaxation lengths in the case of the ideal gas
is λu/l0 = λT /l0 = l/ l0 = ρ0/ρ = u/us = 1/2, where l is
the mean free path at the shock front and l0 is the value at
the cold initial state. We can get a better approximation by
evaluating the mean free time near the shock front [1], which
gives λu/l0 = usτc/ l0 ∼ λT /l0 = 0.77, so that the measured
shock thickness from NEMD is approximately 3.1λu. For
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FIG. 5. (Color online) Profiles of the longitudinal pressure com-
ponent Pxx and twice the shear stress 2τ = Pxx − Pyy for a strong
shockwave in the Lennard-Jones dense fluid (in LJ units of ε/σ 3) (see
legend in Fig. 3).
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the dense LJ fluid, we can evaluate λu = usτc = usηL/BS at
the midpoint of the NSF shock front [3], so that λu ∼ λT =
0.43σ , whereby the measured shock thickness from NEMD
is approximately 3.7λu. Because the isothermal sound speed
cs ∼ us/2 in both cases, the true shock thickness is about
six times the mean free path, as given by l = csτc. In the
conventional wisdom of the hydrodynamics community, it is
shocking that any continuum theory (like Burnett-Cattaneo)
could apply so well to shock fronts that are only a handful of
mean free paths thick. Apart from the fact that “half a dozen”
is demonstrably a large enough number, we have no deeper
philosophical comment.

As we said in the previous section, one could apply the
Cattaneo-Maxwell relaxation to the heat flux Q, rather than the
temperature T, though such an approach is more complicated
because of the need to invert the internal energy to get the
temperature. In fact, the resulting shock profiles are somewhat
worse than in the preceding figures, so that the extra effort is
unwarranted. Also, relaxing the stress is identical to relaxing
the fluid velocity, since the two are linearly related to each
other; as a result, we find indeed that Txx and Pxx show no dif-
ferences whatsoever when fluxes are relaxed, rather than fields.

The continuum modeling by HM theory is noticeably better
than NSF, but it still suffers from a defect that we had noted
earlier in Refs. [1] and [3]: In both the ideal gas and the
dense LJ fluid, the continuum prediction of the relaxation of
the profiles on the hot side of the shock front is too rapid,
with NSF and HM theories being strikingly similar in that
regard. On the other hand, the Burnett nonlinear term in
HM theory accounts quite well for the shock compression
on the cold side of the shock front, when compared to
NEMD, while NSF is not at all satisfactory on this score.
What is particularly notable is that the relaxation mechanism,
represented by our generalized Cattaneo-Maxwell integration
of the reference Burnett solution (Burnett-Cattaneo), gives
continuum shock-wave profiles that are very close to NEMD,
even for the so-called “ab initio” choices for the relaxation
lengths. Obviously, if one were to “fine tune” the values of
δ1, λu, and λT , the resulting theory would become almost
quantitative for strong shocks.

V. CONCLUSIONS

The heat-flow equation proposed earlier by Holian and
Mareschal [1], based on studies of shock waves in the ideal
gas, and tested further for dense fluids [3], can be improved
upon by using the generalized Cattaneo-Maxwell exponential
relaxation equation [Eqs. (8)], as applied to hydrodynamic

fields in planar steady shock waves—fluid velocity u and
average temperature T—provided that the fields are the
solutions to Navier-Stokes [Eq. (5a)] and Fourier’s law of heat
conduction, as augmented by a nonlinear Burnett strain-rate-
dependent conductivity [Eq. (5b)]. The unrelaxed NSF plus
Burnett shock profiles describe the cold compressive side of
the profiles better than NSF alone, but neither describes the
slow relaxation from the shock front to the final hot, shocked
state. The nonlinear generalized Cattaneo-Maxwell integration
with constant relaxation lengths is the essential component to
a continuum description of the temperature relaxation to the
final state, as seen in NEMD shock-wave simulations.

We recapitulate the important features of our new Burnett-
Cattaneo continuum theory: (i) An enhancement of the thermal
conductivity by strain rate, a nonlinear feature common to the
Burnett expansion beyond Navier-Stokes-Fourier, is crucial
to the early-time shock rise on the cold side of the front.
(ii) An additional relaxation time integration that brings the
longitudinal component of temperature (in the shock direction)
into equilibrium with the transverse components is critical to
describing the late-time relaxation on the hot side of the shock
front. The velocity and temperature fields of the reference
solution (NSF continuum theory with the Burnett heat-flux
term) are integrated over their exponentially damped past
history, using a priori estimates for constant relaxation lengths
obtained from the EOS and NSF transport coefficients.

Among all the continuum theories we have applied to the
shock problem, Burnett-Cattaneo is uniquely able to capture
the NEMD shock thickness as well as magnitudes of the
fluxes. Continuum Burnett-Cattaneo shock profiles are almost
quantitative throughout in their faithfulness to atomistic shock-
wave simulations. Even though the shock thicknesses are only
a handful of mean free paths, it would appear that complexity
beyond the Burnett-Cattaneo level would bring only marginal
improvement. The generalized Cattaneo-Maxwell approach
we have presented here can be applied to other temporally
nonlocal phenomena, including relaxation of internal degrees
of freedom of polyatomic molecules under strong external
driving.
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