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Resonant emission of solitons from impurity-induced localized waves in nonlinear lattices
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We propose a mechanism for soliton creation from resonantly excited localized waves via supratransmission in
band gaps of nonlinear lattices. A nonlinear localized wave, which is formed by and vibrates around an impurity
with an intrinsic frequency, is found to undergo a local resonance when subject to an external forcing. Under the
resonance, an instability develops that leads to the efficient emission of solitons at a much lower rate than that in
uniform lattices with no impurity.
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I. INTRODUCTION

With a fairly good understanding of the soliton properties
in regard to their existence, propagation, and interactions [1],
creation of solitons has become a central topic in soliton
physics, not only fundamental to understanding occurring
solitonic phenomena in nature [2–4] and physical systems
[5–12], but also very relevant to engineering applications of
solitons [13–15]. Although solitons in integrable systems can
in principle be evolved from properly given initial disturbances
[16], it seems rather problematic to precisely control and
realize the initial waveforms that would definitely evolve into
what we desire. In particular, in real physical systems that
are usually nonintegrable, the involvement of other physical
effects, including noisy fluctuation, dissipation, and coupling
interactions with ambient wave modes, would generally make
the precise control of initial conditions extremely difficult
or even impossible. Then it necessitates the development of
approaches that are practically realizable for efficient creation
of solitons.

One of the major approaches, proposed by Friedland
et al. [17,18] for continuous nonlinear wave systems, was
based on a mechanism of autoresonance. In that approach a
weak forcing with varying frequency and a specially designed
spatial distribution was used to drive a nonlinear wave system
through an ensemble of resonances and direct nonlinear waves
evolving into large-amplitude solitons. An alternative can be
realized by means of the energy supratransmission in band
gaps of nonlinear lattices that was discovered by Geniet and
Leon [19,20] in nonlinear discrete systems. The mechanism
responsible for the energy emission within a band gap was
believed [21] to be due to the intrinsic instability of evanescent
waves stirred up directly by a boundary drive. Unlike the
former, this approach simply uses a local drive at a boundary
as a source of the transmission, making it quite feasible
and manageable in practice. So far, a number of interesting
studies have been conducted to explore the existence of the
supratransmission phenomenon in other nonlinear systems
including optical waveguide arrays [22], Fermi-Pasta-Ulam
(FPU) nonlinear chains [23], and nonlinear transmission lines
[24,25]. Also, numerical simulations showed the possibility
of extending the concept of nonlinear supratransmission to
spaces of more than one dimension [26–28].
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In this work we propose creation of solitons from a resonant
localized wave that is induced by an impurity, a scheme that is
relevant to but somewhat different from what was uncovered
by Leon et al. [19–21]. Unlike an evanescent wave stirred
up by a boundary drive, an impurity-induced localized wave
[29,30] is a kind of intrinsic bound-state wave mode that also
is evanescent away from the impurity site but vibrates around
the site with an intrinsic frequency ωr. When subject to an
external driving, the localized oscillatory mode can be captured
into resonance if the driving frequency ω coincides with the
linear frequency ωr. We observe the supratransmission of a
train of solitary waves emitted from the resonant localized
wave. By the local resonance, a much smaller drive amplitude
is needed to have the input energy be resonantly absorbed by
the localized mode. When the stored energy in the localized
wave is large enough, part of it is given off as a well-profiled
large-amplitude soliton traveling away via supratransmission
in band gaps. Another noteworthy feature is that the duration
of the resonant absorption and emission, depending on the
driving strength, can be so much longer that solitons can be
emitted at an extremely low rate as compared to that without
an impurity [19]. In one aspect, the soliton emission in this
way bears a close resemblance to the stimulated emission, a
common phenomenon in physics.

We first in Sec. II discuss the linear properties of the
localized wave, which bears a close resemblance to a spring-
mass system in classic mechanics. Then in Sec. III we analyze
the stationary nonlinear solutions of the localized wave and its
instability leading to the emission of solitons. In Sec. IV we
numerically investigate in detail the properties of the process
of resonant absorption of energy and emission of solitons.
Finally, in Sec. V, the present work is concluded.

II. IMPURITY-INDUCED LOCALIZED MODES

We substantiate our idea by using a semi-infinite β-FPU
nonlinear chain in which the displacement un of the nth particle
is governed by

mnün = k2(un+1 + un−1 − 2un)

+ k4[(un+1 − un)3 − (un − un−1)3], (1)

n = 0,1,2,3, . . .

with the double dots over un denoting in the usual sense
the second derivatives with respect to time t , and k2 and k4

being the elastic constants characterizing linear and third-order
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nonlinear interactions of neighboring particles. Since both k2

and k4 in Eq. (1) can be scaled out by a simple transform
of variables, it is assumed that k2 = 1

4 and k4 = 1
96 in what

follows. In the model equation, u−1 serves as a displacement
drive, and the masses of particles take the values as

mn =
{
m < 1, for n = N

1, for n �= N
, (2)

meaning an impurity on the N th site in an otherwise homoge-
neous semi-infinite lattice.

By letting u−1 = 0 and linearizing Eq. (1), we can easily
obtain the linear solution for the free motion induced by an
impurity, which takes the general form [29,31]

un = (−1)nae−κ|n−N |e−jωt + c.c., (N � 0), (3)

with a decaying exponent κ = κr and an intrinsic frequency
ω = ωr, where “c.c.” denotes the complex conjugate of
preceding terms. For N = 0, it is easily to work out that

κr = ln
1 − m + √

1 − m

m
, (4)

ωr = 1

2
√

m

√
1 + 1√

1 − m
. (5)

It is clear that the linear solution (3) is localized if and only if
m < 3

4 . As m ↑ 3
4 , ωr ↓ 1, and κr ↓ 0, so that ωr approaches

the upper bound of the phonon band from above, and the wave
becomes nonlocal. For N > 0, ωr is the root of the eigenvalue
equation,

(
ωr −

√
ω2

r − 1
)4(N+1) +

√
1 − ω−2

r

1 − m
= 1, (6)

and κr is determined by ωr = cosh κr
2 . In the limit N → ∞,

ωr → 1/
√

m(2 − m), the linear vibration frequency of the
impurity mode in an unbounded chain. Figure 1 depicts how ωr

depends on impurity mass m for different locations of impurity.
Now let the chain be driven harmonically by a displacement

drive at site n = −1,

u−1(t) = −2γ cos ωt = −γ e−jωt + c.c., (7)
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FIG. 1. m dependence of ωr for different N . The dotted line is
the resonant frequency ωr obtained from the linearized Eqs. (10) and
(11) by omitting all nonlinear terms.

whose amplitude γ > 0 and frequency ω is lying just above
the linear phonon band; i.e., ω > 1. For N = 0, the stationary
solutions of the linearized localized wave assume the form as
same as (3), but with a stationary response given by

a

γ
= − ω−2

ω−2 − ω−2
r − 2

(√
1 − ω−2 −

√
1 − ω−2

r
) , (8)

{
<0, 1 < ω < ωr

=∞, ω = ωr

>0, ω > ωr

.

What is clearly seen is the resonance that can occur at ω =
ωr > 1. Below the resonant frequency, i.e., 1 < ω < ωr, the
local excitation in the vicinity of the impurity vibrates in phase
with the drive at site n = −1, while above ωr it is 180◦ out of
phase. The in-phase solution is identified to be purely induced
by the impurity; as the impurity becomes light, i.e., m ↓ 0,
ωr → ∞, and we have a/γ < 0 ∀ω � 1.

III. NONLINEAR SOLUTIONS AND STABILITIES

The resonant amplification will have the localized wave
soon enter into nonlinear motion. We seek its nonlinear
solutions in the form

un(t) = (−1)nξ (x,t)|x=ne
−jωt + c.c. (9)

for n = 0,1,2, . . .. In the way similar to others [32], we
assume that the wave oscillates just above the cutoff frequency,
i.e., ω2 = 1 + O(ε2), with ε being a parameter measuring
the smallness, and it is weakly nonlinear and slowly varies
both in time t and in space x along the lattice, so that the
wave amplitude ξ (x,t) = O(ε), ∂ξ/∂x = O(ε)2, and ∂ξ/∂t =
O(ε)3. Substituting Eqs. (7) and (9) into Eq. (1) and performing
the long-wave approximation, we can derive, at the cubic order
of ε, the following equation:

−2jω
∂ξ

∂t
+ 1

4

∂2ξ

∂x2
+ 1

2
|ξ |2ξ − (ω2 − 1)ξ = 0, (10)

which governs the evolution of the envelope ξ (x,t), along with
the boundary condition

8jωm
∂ξ

∂t
= (3 − 4mω2)ξ + ∂ξ

∂x
+ 1

2

∂2ξ

∂x2
+ |ξ |2ξ

+1

8
|γ + ξ |2(γ + ξ ) + γ + o(ε3), (11)

at x = 0, if the impurity is located at N = 0. Note that in
deriving Eq. (11), it is implied that γ = O(ε). Equation (10),
which is a nonlinear Schrödinger equation, admits two
stationary localized nonlinear solutions [1,31],

ξ±(x) = ±a sechκ(x − x0), (κ = a), (12)

where x0, the peak position of the solitary wave, is determined
by adapting the solution to the boundary condition (11) and

a = 2
√

ω2 − 1, (13)

a typical amplitude-frequency response for a nonlinear “hard-
spring” system.
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FIG. 2. (Color online) x0 dependence of the amplitude of the
nonlinear free motion of the localized wave: a versus x0, with the
impurity located at N = 0 having different masses m as labeled on
the curves of different styles [33].

For free motion (γ = 0), the boundary condition (11) yields
the relationship between amplitude a and peak position x0,

a tanh (ax0) = 4 ±
√

5(8 + a2) − 8m(4 + a2), (14)

which is graphically depicted in Fig. 2, where it is shown that
the localized nonlinear solution can be sustained ∀m < 1, in
contrast to the linear solution, which exists in a smaller range,
m < 3

4 . The impurity mass lying within 1
2 < m < 3

4 , perhaps,
is most significant. As shown in Fig. 2, for m taking a value in
this range, a is a single-valued function of x0, and its value can
be quite large or even approaches infinity as m ↓ 1

2 , as long as
the envelope is situated inside the chain (x0 > 0). This implies
that the localized mode acting as an energy buffer can store
a large amount of energy. For m = 1, no solution to Eq. (14)
does exist, further verifying the nonexistence of the localized
nonlinear mode in a uniform chain.

For the displacement-driven nonlinear motion (γ �= 0), x0

is a function of the driving parameters (γ,ω), which can be
derived from the boundary condition (11). Figure 3 shows
how x0 depends on γ for several different ω, with solutions

ξ+ in the solid line style and ξ− in the dashed. Note that
for ω < ωr, there exists only the ξ− solution, i.e., the thickest
dashed curve in Fig. 3(a), which is identified as induced merely
by an impurity, in agreement with the linear result discussed
above. This solution also exists for ω > ωr, owing to the typical
“hard spring” effect of the nonlinear lattice as stated above. As
shown in the figure, either of ξ+ and ξ− has two branches, one
(labeled by “I” for ξ+, by “III” for ξ−) being monotonically
increasing with x0, and the other (labeled by “II” for ξ+, “IV”
for ξ−) monotonically decreasing with x0. By contrast, only
the ξ+ solution exists in the case of no impurity, whatever the
driving frequency ω is, as can be seen from the corresponding
x0 versus γ dependence shown in Fig. 3(b). And, because of
the absence of resonant amplification mechanism in this case,
larger γ is needed in order to support a stationary evanescent
wave at the boundary.

A linear perturbation analysis [34,35] for solutions (12)
reveals that branch “I” of ξ+ is linearly stable. On the contrary,
branches “II” and “IV” are always unstable, hence irrealizable
both numerically and physically. Branch “I”, which exists
even in the case of no impurity, can be made unstable by a
saddle-node bifurcation only if γ exceeds a threshold, i.e., the
peak γ value in Fig. 3(b). This is the fundamental instability
that leads to the supratransmission, as already discussed by
Leon et al. [21]. In the present situation, we observe through
numerical simulations that the instability usually leads branch
“I” to transit to branch “III.” The stability of branch “III” of the
impurity-induced solution ξ−, however, is quite different. By
solving the eigenvalue λ of the perturbation problem, we have
calculated the growth rate Re(λ) of an infinitesimal disturbance
on ξ−, which depends highly on the driving amplitude γ

as shown in Fig. 4(a). On can find that for γ greater than
a threshold γc for a given ω, 0 < Re(λ) 
 1, implying an
instability development at an extraordinarily low speed. The
stability also is examined by direct numerical simulations,
yielding the consistent results as shown in Fig. 4(b). In the
long-term instability development, the resonantly localized
mode ξ− will absorb a large amount of energy from the drive
as the stored localized energy, which will finally be emitted in
the form of large-amplitude solitons, as shown in Fig. 5.
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FIG. 3. (Color online) γ dependences of the peak position x0 for (a) m = 0.7 and (b) m = 1. In (a), the solid lines are for the solution ξ+
and the dashed for ξ−. In the case of m = 1, only the ξ+ solution exists. Every curve is calculated for a fixed ω = ωr + 
ω, with an offset 
ω

taking value, from the thickest curve to the thinnest, −0.002, 0, 0.01, 0.02, and 0.06.
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FIG. 4. (Color online) (a) The growth rate Re(λ) versus γ for branch “III” calculated for a fixed ω = ωr + 
ω, with an offset 
ω taking
a value, from the thickest curve to the thinnest, 0.002, 0.01, 0.02, 0.04, and 0.06. (b) The numerically computed amplitude of branch “I” (the
empty circles) and “III” (the filled circles), along with their theoretical predictions (the thin dotted line for “I” and thin solid line for “III”), all
with ω = 1.04. (It is assumed here that N = 0 and m = 0.7 (ωr ≈ 1.0046).

IV. PROPERTIES OF THE SOLITON EMISSION

Intensive numerical investigations have been performed to
go into the details of the creation of solitons from resonantly
excited localized waves and the differences of the resonant
emission from the case of no impurity. To avoid the possible
formation of sudden shocks [23] in our simulation, the driving
amplitude increases smoothly form zero to a constant value as
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FIG. 5. (Color online) (a) Snapshot of soliton emission (at t =
4200) in a chain without an impurity for γ = 0.611. (b) Snapshots
of the resonant emission (at thee different instants as labeled) from
the localized wave induced by an impurity at location N = 0 (the
empty circle) and driven by a displacement source (the filled square)
of amplitude γ = 0.206. In both cases, the driving frequency ω =
ωr + 0.04, and the plots show only the first 100 sites of the vibratory
chain of total 800 sites.

γ [1 − exp (−t/τ1)], with τ1 being set 500. Since only a finite
chain is manageable by a computer, we add viscous terms,
νnu̇n, on the left-hand sides of Eq. (1) for a number of sites on
the far end of the chain, so as to minimize the reflection from
the end [20]. Then Eq. (1), together with the initial conditions,
un(0) = u̇n(0) = 0, is numerically solved by the forth-order
Runge-Kutta algorithm of variable step size.

Figure 5, as a typical example, shows the difference of the
emissions for (a) with no impurity and (b) with an impurity
of mass m = 0.7 at the site of N = 0. In the former case
(m = 1), only for a sufficiently large driving amplitude γ , say,
γ = 0.611 here, does the agitated evanescent wave develop its
instability and emit solitonic pulses. Because the evanescent
wave is incapable of buffering energy, solitons are emitted
one after another rapidly. By contrast, in the latter case, even
a quite small driving amplitude, say, γ = 0.206, can have
the localized wave resonantly amplified to an amplitude a

so large that solitons emission occurs. In this example, the
impurity-induced localized wave has an intrinsic frequency
ωr = 1.0046 in small-amplitude vibration, and the driving
frequency ω is set to be slightly higher than ωr, with a
detuning of 0.04. Since the impurity-induced localized wave
acts like a mechanical oscillator, it has the capacity of storing
and buffering energy absorbed from the driving source, in
particular, under resonance. Of course, for such a weak drive
(small γ ), this process of energy absorption and storage will
take a much longer time before the absorbed energy is large
enough to give off a large-amplitude envelope soliton. The
remarkably different rates of emissions, with and without an
impurity, can be read more clearly from the time domain
waveforms shown in Fig. 6.

The threshold γc, the minimal γ that is required for initiating
the emission of solitons, depends on driving frequency ω, as
well as other parameters, especially the impurity mass m and
its position N . Figure 7(a) presents our numerically computed
γc versus ω for an impurity of m = 0.7 located at different
sites N . It is seen that, for N = 0, the nearest site to the
drive, γc is significantly lower than that with no impurity. With
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FIG. 6. (Color online) Time domain waveforms at site n = 25 for
(a) m = 1 and (b) m = 0.7 and N = 0. The driving parameters are as
same as in Fig. 5.

the impurity located far away from the drive (large N ), large
threshold γc is needed in general, not only because of the
higher linear resonant frequency ωr, as is shown in Fig. 1, but

also because of the less efficiency of coupling the input energy
into the localized mode. In fact, the impurity plays little role
in the generation of solitons if N � 5, and soliton emission is
essentially as same as that without an impurity [21].

For an impurity of mass m = 0.8, the situation is a little
different, since in the linear case the impurity-induced wave is
nonlocal for N = 0, and there is no associated linear resonance
as well, as can be seen in Fig. 1. Only for N � 1 is the
impurity-induced wave localized with an eigenfrequency ωr.
In the nonlinear case, nevertheless, the impurity-induced wave
motion may, as already implied in Fig. 2, become localized
and be entranced into nonlinear resonance, and yet soliton
creation is possible at a small γ . In fact, we observe no evident
difference between the amplitude thresholds for the cases
N = 0 and 1, as is shown in Fig. 7(b). A direct comparison is
presented in Fig. 7(c) of the driving threshold γc for different
masses, all located at N = 0. It more clearly illustrates how
the nonlinear resonance results in soliton emissions at a
remarkably lower threshold γc.

It is observed that the duration (period) T between two
emissions on average is highly sensitive to the driving
parameters (ω,γ ). Figure 8 presents the γ dependence of the
average period T for different detuning 
ω = ω − ωr in the
log-log plots. It is shown that 103 < T < 105, which means a
very low emission rate T −1, consistent with the prediction by
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FIG. 7. (Color online) Threshold γc versus ω for impurities positioned at different sites N . (a) m = 0.7, with resonant frequencies
ωr ≈ 1.0046,1.0374, and 1.0455, respectively, for N = 0,1 and 2; (b) m = 0.8 with resonant frequencies ωr ≈ 1.0085 and 1.0159, respectively,
for N = 1 and 2; (c) for the site N = 0 with m taking different values. The curves for m = 1(the homogeneous chain) are also included for
comparison.
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FIG. 8. (Color online) Average emission period T versus γ for the impurities: (a) m = 0.7 (ωr ≈ 1.0046) located at N = 0, and (b) m = 0.8
(ωr ≈ 1.0085) at N = 1. In the legends, 
ω ≡ ω − ωr. The different data sets in different symbols are for different detuning 
ω, and the
solid line around each data set is the best fitting by the formula T = T1γ

−b, with (T1,b) ≈ (6.537,4.921) and (26.48,4.364), respectively, for

ω = 0.04 and 0.06 in (a), and (T1,b) ≈ (2.469,5.998),(37.09,4.427) and (45.79,4.648), respectively, for 
ω = 0.0061,0.0161, and 0.0261
in (b).

the growth rate shown in Fig. 4. The data can well be fitted
by T = T1γ

−b, with T1 and b both positive. As γ ↓ γc, the
resonant localized wave gives off solitons at an extremely low
rate.

Once a soliton is generated, it travels along the chain at
speed c. A traveling soliton also governed by Eq. (10) has the
following solution:

ξ (x,t) = a sech[a(x − ct−x0)] ei(−kx+φ0), (15)

with x0 and φ0 being arbitrary constants, and k = 4cω. Now
instead of formula (13), the amplitude a is given by a =√

4(ω2 − 1) + k2, and it is directly related to soliton speed c.
We observe that at the instant a soliton is emitted from the
localized wave, the wave envelope will increase its amplitude
a a little, and it then starts propagating at a constant speed c.
This is consistent with the theoretical prediction.

To examine the efficiency with which to generate solitons,
consider the local energy flux

jn = 1


t

∫ t+
t

t

dun

dt
[k2(un − un+1) + k4(un − un+1)3]dt,

(16)

averaged over a time interval 
t both at the input n = −1 and
at a site inside the chain, say, n = 25, which is so much away
from the driving end (or the impurity) that the evanescent or
localized wave is negligible there but is close enough to ensure
that there is no additional traveling solitons. Here 
t that we
use should, in principle, be the period 2π/ω of the dominant
oscillation, but here we would rather use a longer interval that
is multiple times the period, so as to minimize the effect due
to random background fluctuation. The input energy Ein and
the energy E25 passing through the 25th site are calculated
from j−1 and j 25 simply by quadrature, respectively. Figure 9
shows the energies, as well as their difference Elocal = Ein −
E25, for two cases: (a) without an impurity and (b) with an

impurity. Here Elocal well approximates the local energy that
is stored in the evanescent wave in the vicinity of the drive (or
in the localized wave if an impurity is present). When Elocal

accumulates to an upper level, max(Elocal), a soliton is emitted
and Elocal drops back to a lower level, min(Elocal). Hence,
the energy Esoliton carried away with a traveling soliton can
be approximated by Esoliton ≈ max(Elocal) − min(Elocal). We
therefore can measure the efficiency of soliton emission by

Q = Esoliton

max(Elocal)
= 1 − min(Elocal)

max(Elocal)
, (17)

which is the ratio of the energy carried with a single soliton
to the input energy during one period T of soliton emission.
In the absence of an impurity, we see that soliton creation
is possible only if Elocal first is built up beyond a minimum
level, min(Elocal), which seems remarkably high. From the
data displayed in Fig. 9(a), it is estimated that Q ≈ 49%,
showing that most input energy is trapped in the vicinity of the
drive. By contrast, in the presence of an impurity, an emitted
soliton carries almost all energy accumulated in the localized
wave, and Elocal drops back to a level, min(Elocal), that is
almost vanishing. It is estimated from Fig. 9(b) that Q ≈ 90%,
showing that soliton creation from a resonant localized wave
is more efficient.

A. Remarks

We have noted in our simulations that the localized wave
may occasionally cease or stop emitting after giving off a few
solitons. This phenomenon is caused presumably by the weak
reflection from the far end, although much of the reflection is
damped out by introducing the damping on the farthest sites,
as described at the beginning of this section. The argument is
verified by the fact that the longer (more sites) the nonlinear
chain is, the later the emission terminates. We find from our
simulations that a better way to prevent the emission halt is
imposing a weak damping on the impurity particle, that is,
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FIG. 9. (Color online) Time variations of input energy (Ein), transport energy (E25) through site n = 25, and the energy difference (Elocal =
Ein − E25) for two cases: (a) without an impurity (m = 1,γ = 0.345) and (b) with an impurity (m = 0.8,N = 1,γ = 0.234, ωr ≈ 1.0085), In
both cases, ω = ωr + 0.0061.

adding a damping term, νN u̇N , to the equation of motion for
the impurity site n = N in Eq. (1), with a damping coefficient
νN of the order as small as 10−5 ∼ 10−2.

Interestingly, we also find that damping imposed on the
impurity particle can even make emitted waves more regular
and well profiled as solitons, an extra favorable effect on
creation of solitons. Presented in Fig. 10 is an extreme example
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FIG. 10. (Color online) Time-domain waveforms of emitted
waves at site n = 25 for a damped impurity of mass m = 0.8 located
at N = 0 and excited at frequency ω = 1.0446, with (a) γ = 0.2846
and ν = 0, (b) γ = 0.2852 and ν = 0.01, and (c) γ = 0.3187 and
ν = 0.08. (d) The enlarged portion by stretching the abscissa of
(c), so as to make it easily viewable the detail of the second pulse
in (c).

that shows that (a) the emitted waves would appear turbulence-
like at a large driving amplitude, say, γ = 0.2852, but (b)
the situation is made significantly changed by introducing
the damping effect, and (c) in particular, with a reasonably
large damping coefficient, say, ν = 0.08, the turbulence-like
behaviors are depressed altogether and instead solitonic pulses
are given off from the localized wave at a constant rate. The
emitted pulses, whose detailed profile can be more clearly seen
in the stretched plot in Fig. 10(d), appear to be some standard
nonlinear Schrödinger solitons passing through the detecting
site at n = 25. Of course, a little greater γ is needed to balance
the damping dissipation.

V. CONCLUSIONS AND DISCUSSION

In summary, we have proposed a mechanism of soliton
creation from resonantly excited localized waves in nonlinear
lattices. Since a localized wave, which can be formed by
introducing an impurity in otherwise homogeneous nonlinear
lattices, is an standing oscillatory mode behaving essentially
like a classical oscillator with its own intrinsic frequency ωr, it
will resonate with an external drive when the driving frequency
ω is in proximity to ωr. It was shown that the nonlinear
resonance will make the localized wave unstable, leading to
its emission of solitons, which appears quite different from
that by directly driving a uniform nonlinear systems without
an impurity.

One of the distinct features with the present method is that
the resonance makes it possible to create solitons at very weak
driving strength γ by slow absorption and accumulation of
input energy, which might be useful in practical realizations.
Another interesting feature is that solitons can be created at a
much lower rate, which appears to be highly adjustable with
the driving parameters, implying the feasibility of precisely
controlling the creation.

It seems straightforward to extend the mechanism of soliton
creation to general nonlinear systems. For example, we have
confirmed (but omitted in this paper) that the emission of
solitons from resonant localized waves in a discrete sine-
Gordon nonlinear chain of coupled oscillators can be realized
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in much wider ranges of driving parameters [19], and in
particular, it seems more efficient than by simply driving a
boundary site without an impurity.
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