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Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional
Schrödinger equation with polynomial nonlinearity of arbitrary order
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1Department of Physics, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar
2Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade, Serbia

3Department of Electronic Engineering, Shunde Polytechnic, Shunde 528300, China
(Received 27 October 2010; published 28 February 2011)

We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional
nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily
high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of
cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms
of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity.
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I. INTRODUCTION

The generalized nonlinear Schrödinger equation (NLSE) is
a generic model that appears in many fields of physics [1,2].
It is very important in NL optics, where it describes the full
spatiotemporal optical solitons, or light bullets [3]. The stable
exact soliton solutions to the NLSE with cubic nonlinearity in
homogeneous media exist only in (1+1) dimensions [(1+1)D].
If the index of refraction is periodically modulated, then the
(2+1)D soliton solutions are also found to be stable [4].
The stabilization of localized solutions by the management
of dispersion and nonlinearity [5] has progressed far in recent
years. Still, there are no known exact stable solitary solutions
in higher dimensions.

The traveling wave and soliton solutions to the generalized
NLSE in (3+1)D for third-order nonlinearity were developed
in [6] for the anomalous dispersion and in [7] for the
normal dispersion. In this paper we present analytical periodic
traveling wave and soliton solutions for the polynomial Kerr
nonlinearity of an arbitrarily high order. We still do not possess
a formal proof of their stability; however, we found the
solitons propagating in media with periodically modulated
nonlinearities and dispersions to be stable in propagation
over extended distances [6]. Criteria for the existence and
stability of some analytical soliton solutions to the (1+1)D
cubic-quintic NLSE have been discussed in [8]. A stability
criterion for the dissipative multidimensional solitons in the
complex cubic-quintic NLSE has been formulated in [9].

II. THE MODEL

Finding exact solutions to the NL-evolution partial differen-
tial equations (PDEs) is one of the essential tasks of NL math-
ematical physics. However, much of it is confined to (1+1)D
and to constant coefficients in the equations. The objective
here is to demonstrate traveling and solitary wave solutions to
a multidimensional NLSE with variable coefficients that allow
management. We are interested in the generalized NLSE in
(3+1)D with distributed coefficients [10]:

i∂zu + β(z)

2
�u+χ1(z)|u|2u + . . . + χn(z)|u|2nu = iγ (z)u,

(1)

which describes evolution of a slowly varying envelope
u(x,y,t ; z) in a diffractive dispersive nonlinear medium,
in the paraxial approximation. We separated the z variable
in u from the rest, to distinguish the “marching” variable
from the “transverse” variables x,y, and t . Hence, z is
the propagation coordinate and � = ∂2

x + ∂2
y + ∂2

t represents
the generalized 3D transverse Laplacean, in which x and y

are the transverse spatial coordinates, and t is the reduced
time, i.e., the time in the frame of reference moving with the
wave packet. All coordinates are made dimensionless by the
choice of coefficients. The functions β(z) and γ (z) stand for
the diffraction/dispersion and gain coefficients, respectively.
Note that by choosing the positive sign of ∂2

t in the Laplacean,
we choose the regime of anomalous dispersion. The functions
χm(z) for m = 1,2, . . . ,n stand for the nonlinearities of orders
up to 2n + 1. For n = 1 one has the simple Kerr nonlinearity,
for n = 2 the cubic-quintic, for n = 3 the septic, and so on.

The motivation to look for exact solutions of the generalized
NLSE with high-order Kerr nonlinearity, inter alia comes from
the fact that such a nonlinearity is an excellent approximation
to the saturable nonlinearity 1/(1 + sI ) ≈ 1 − sI + (sI )2 −
(sI )3 + ..., where I = |u|2 is the beam intensity and s is the
saturation parameter. The NLSE with saturable nonlinearity
is an important generic model, for which unfortunately
there are no known analytical solutions. In fact—and this is
one of the major contributions of this paper—we establish
here that it is not possible to obtain exact solutions to the
NLSE with saturable nonlinearity by the F-expansion and
balance principle method, or similar expansion methods [11].
Here “F” refers to the expansion functions, which in our
case are Jacobi elliptic functions. A number of such methods
have been applied to NLSE; of relevance to this work are
the NLSE with power-law nonlinearity [12], time-dependent
coefficients [13], and non-Kerr media [14].

III. THE METHOD OF SOLUTION

Following the standard procedure of the F-expansion and
the balance principle [6,7], we write the complex field u of
Eq. (1) in terms of its amplitude and phase:

u(x,y,t ; z) = A(x,y,t ; z) exp [iB(x,y,t ; z)]. (2)
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Substituting u into Eq. (1), the following coupled equations
are obtained:

∂zA + 1
2β[2∂xA∂xB + 2∂yA∂yB+2∂tA∂tB +A�B] = γA,

(3)

− A∂zB + 1
2β[�A − A (∂xB)2 − A(∂yB)2

(4)
− A (∂tB)2] + χ1A

3 + · · · + χnA
2n+1 = 0.

We apply the balance principle [15,16] and the F-expansion
technique [17,18] as developed in [19], with modifications
to account for the higher order nonlinearities. We seek the
traveling wave solutions to Eqs. (3) and (4), and assume the
A and B functions to be of the form

A = f1(z)F
1
n (θ ) + f2(z)F− 1

n (θ ), (5)

θ = k(z)x + l(z)y − �(z)t + φ(z), (6)

B = a(z)(x2 + y2 + t2) + b(z)(x + y + t) + e(z), (7)

where f1, f2, k, l, �, φ, a, b, e are parameter functions
to be determined, and F is a Jacobi elliptic function (JEF).
These solutions resemble the solutions developed in [6],
except for the power of the function F . Seemingly minor,
the change in the power nonetheless is crucial, allowing for
the establishment of new solutions. The power has to be
such that the highest-order term from Laplacean matches the
highest-order nonlinearity.

We substitute Eqs. (5)–(7) into Eqs. (3) and (4) and require
that xjF

2p−1
n , yjF

2p−1
n , t jF

2p−1
n , (j = 0,1,2, p = −n, . . . ,n +

1), and
√

c0 + c2F 2 + c4F 4 of each term be separately equal
to zero. This is a rather formidable computational task,
accomplished by the use of symbolic numerical packages. The
real constants c0, c2, and c4 are coefficients in the NL Jacobi
elliptic ordinary differential equation

(
dF

dθ

)2

= c0 + c2F
2 + c4F

4 (8)

and are naturally related to the elliptic modulus M of JEFs [6].
After multiplying the expressions and factoring out common
factors of f1 and f2, a system of first-order ordinary differential
equations is obtained for the parameter functions:

dfj

dz
+ 3aβfj − γfj = 0, (9)

dk

dz
+ 2kaβ = 0, (10)

dl

dz
+ 2laβ = 0, (11)

d�

dz
+ 2�aβ = 0, (12)

dφ

dz
+ β(k + l − �)b = 0, (13)

db

dz
+ 2βab = 0, (14)

da

dz
+ 2βa2 = 0, (15)

−de

dz
− 3

2
βb2 + qc2 +

n∑
i=1

χi

(
2i + 1

i + 1

)
= 0, (16)

where j = 1,2, q = β(k2+l2+�2)
2n2 , and by definition χm =

χmf m
1 f m

2 (m = 1, . . . ,n). A number of algebraic relations
involving χm are also obtained:

n∑
i=1

χi

(
2i + 1

i + p

)
= 0, (17)

χn−1 + (2n + 1)χn − (n − 1)qw = 0, (18)

χn + (n + 1)qw = 0, (19)

where w = c0( f1

f2
)n = c4( f2

f1
)n and p = 2, . . . ,n − 1. Indeed,

Eqs. (16), (18), and (19) are obtained from the terms next to
F

1
n , F 2− 1

n , and F 2+ 1
n , respectively. Note that Eq. (18) appears

only for n > 1 and Eq. (17) only for n > 2. The binomial
coefficient

(2i+1
i+p

)
is defined to be 0 for i + p > 2i + 1.

Equations (9)–(19) resemble a similar system of equations
obtained in [6], the major difference being that the equations
for e(z) and χn(z) have to be generalized. By solving these
equations self-consistently, one obtains a set of conditions on
the coefficients and parameters necessary for Eq. (1) to have
exact traveling wave solutions. We consider the most generic
case, in which β(z) and γ (z) are arbitrary.

IV. RESULTS

We first solve Eqs. (9)–(15), to obtain expressions for f1,
f2, k, l, �, φ, b, and a. Note that the equations for all these
parameter functions depend explicitly or implicitly on a, while
the equation for a, Eq. (15), depends only on the coefficient
β. This testifies about the importance of the function a, which
is known as the chirp function. Hence, one has to first solve
Eq. (15) for a, and then find the rest of parameter functions.

From the condition on w it follows that f2 = εf1
2n

√
c0
c4

and

so w = εn√c0c4, where ε = ±1. We then proceed to solve
for χm recurrently, starting from m = n and ending at m =
1. We easily obtain χm = rmqw and

∑n
i=1 χi(

2i+1
i+1 ) = rqw,

where the r parameters r , r1, . . . ,rn are integer functions of n.
Although it is difficult to find generic formulas for r , r1, . . . ,rn,
in principle it is easy to calculate these parameters recurrently
for any given n:

rn = −(n + 1), (20)

rn−1 = (n − 1) − (2n + 1)rn = 2n(n + 2), (21)

rm = −
n∑

i ′=m+1

ri ′

(
2i ′ + 1

m + i ′ + 1

)
,m = 1, . . . ,n − 2, (22)

r =
n∑

i=1

ri

(
2i + 1

i + 1

)
. (23)

In the end, the following set of exact solutions is found:

f1 = (α)3/2f0e
∫ z

0 γ dz, f2 = ε 2n

√
c0

c4
f1; (24)

k = αk0, l = αl0, � = α�0; (25)

φ = φ0 − α(k0 + l0 − �0)b0

∫ z

0
βdz; (26)

a = αa0, b = αb0; (27)
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e = e0 + α

[(
k2

0 + l2
0 + �2

0

)
2n2

(c2 + rεn√c0c4) − 3b2
0

2

]

×
∫ z

0
βdz; (28)

where α = [1 + 2a0
∫ z

0 βdz]−1 is the normalized chirp func-
tion. The subscript 0 denotes the value of the given function at
z = 0 and f0 = f10. The final form of the solution is thus

u = (α)3/2f0 exp

(∫ z

0
γ dz

)[
F 1/n(θ ) + ε 2n

√
c0

c4

1

F 1/n(θ )

]

× exp i[a(x2 + y2 + t2) + b(x + y + t) + e], (29)

where θ = φ0 + kx + ly − �t − (k + l − �)b0
∫ z

0 βdz.

There are, however, a number of restrictions that have to
be observed in order for the solutions to be valid. Since A has
to be real, for even n we must have F > 0 at all times, so
that F 1/n is real. This restricts the range of allowed solutions
in terms of JEFs. Another restriction involves the nonlinearity
coefficients, which by the solution procedure are found related
to β and γ :

χm = εn+mrmβα2−3m

2n2f 2m
0

2n

√
cn+m

4 cn−m
0 exp

(
−2m

∫ z

0
γ dz

)
,

(30)

where m = 1,2, . . . ,n. This relation should be understood as
an integrability condition on Eq. (1) for finding solutions by
the present method. Note that the nonlinearity coefficients χm

are directly proportional to the rm parameters, while the only
parameter to explicitly appear in the solutions is r in Eq. (28).

We consider separately the case f2 = 0. In this case the
solutions are given in terms of single JEFs. We have one
negative exponent of F in the term �A of Eq. (3), namely
(n − 1)f1c0F

−2+ 1
n . However, all other terms in Eq. (3) will

be with a positive degree of F ; hence for n �= 1 we must
have c0 = 0. One finds χn = −q(n + 1)c4f

−2n
1 and all other

χm = 0 (m = 1, . . . ,n − 1); Eq. (1) then contains only the
highest-order nonlinearity term. The correct solutions are
still obtained from Eqs. (24)–(28), provided one takes ε = 0.
The case n = 1 was covered in [6]; the expression for χ

there remains unchanged, c0 need not be 0, and the correct
expressions are again contained in Eqs. (24)–(28), as long as
one takes ε = 0.

All of these restrictions do not bode well for the application
of the present solution method to the saturable Kerr-like
nonlinearity, which was one of our original aims. Namely,
one can understand the NLSE with saturable nonlinearity as
the limiting case of the present model, in which all χm are
expressed in terms of powers of the saturation parameter s and
n → ∞. However, as n increases from the solution procedure
it is clear that for each new n one has to find new expressions
for r and rm coefficients, and correspondingly new expressions
for χm, which cannot be presented as simple power functions
of one variable s. There exist no limiting values for the r , rm

coefficients and no unified procedure that treats all values of
n on the same footing. For the time being, the all-important
model with saturable nonlinearity remains nonintegrable [20].
However, there exist exact solutions to the saturable discrete
NLSE, also given in terms of JEFs [21].

FIG. 1. (Color online) Soliton solutions for the cubic-quintic
model n = 2 as a function of the propagation distance, for
(a) a0 = 0 (without chirp) and (b) a0 = 0.1 (with chirp) for the
F = sech solution. Intensity |u|2 is presented as a function of k0x +
l0y − �0t and z. Coefficients: β(z) = cos(z), γ (z) = γ0 = −0.05,
M = 1, b0 = 1, e0 = 0, ε = 0, k0 = l0 = −�0 = 1, and φ0 = 0.

A way out, not only in the treatment of saturable models
but in the solution of other multidimensional NL PDEs, is
to consider generalizations of the F expansion and balance
principle method, based on the generalized auxiliary elliptic
equation

(
dF

dθ

)2

=
N∑

i=0

ciF
i, cN �= 0. (31)

Here the power N can vary, but most of the accounts in
literature deal with the choice N = 4 [22]. A number of
cases with N = 6 have been listed in [23], but many of the
ci coefficients are then equal to 0. The case c1 = c3 = 0
leads to JEFs and the rational forms of JEFs [24,25] as
solutions; the case c2 = c4 = 0, with the notation c3 = 4,
c1 = −g2, and c0 = −g3, leads to the Weierstrass elliptic
functions p(θ ; g2,g3) as solutions [26]. Still, as exemplified
in Ref. [22], most of the solutions of Eq. (31), including
Weierstrass’s elliptic function, can be expressed in terms
of JEFs and their rational forms. When multiple JEFs are
encountered as solutions of evolution PDEs, the model and
the solution procedure are conveniently handled in terms of
the projective Riccati equations [27,28].

We now apply the results obtained here to a few specific
cases. For n = 1 we have r1 = −2 and r = −6. Hence,
Eqs. (24)–(28) reduce to the corresponding equations obtained
in [6].

FIG. 2. (Color online) Soliton solutions for the septic model as
functions of the propagation distance. The setup and parameters are
the same as in Fig. 1, except for n = 3, F = tanh, and ε = 1.

026604-3
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FIG. 3. (Color online) Periodic traveling wave solutions for the
septic model as functions of the propagation distance. The setup
and parameters are the same as in Fig. 2, except for M = 0.99 and
F = sin.

For n = 2, corresponding to the cubic-quintic model, we
obtain r1 = 16, r2 = −3, and r = 18. The only soliton solution
found so far which satisfies both F > 0 and c0 = 0 for f2 = 0
is the bright soliton solution with M = 1 and F = sech. The
solution is presented in Fig. 1.

For n = 3, corresponding to the septic model, we have
r1 = −66, r2 = 30, r3 = −4, and r = −38. We obtain the
bright soliton solution for f2 = 0, which looks very much like
the solution seen in Fig. 1. The only noticeable difference is
the transverse stretching of the wave. This is due to the fact that

the function F
1
n falls less rapidly as the argument decreases

for larger n. For the septic model we also obtain solutions for
ε = 1. These correspond to the dark solitons, with F = tanh.
Since c0 = 0 is no longer required, one can find both solitary
(M = 1) and periodic (M < 1) traveling wave solutions. These
solutions are shown in Figs. 2 and 3.

V. CONCLUSION

In conclusion, we have solved analytically the (3+1)D
generalized nonlinear Schrödinger equation with distributed
diffraction, dispersion, and gain, and with polynomial non-
linearity of an arbitrarily high order. A number of exact
traveling wave and spatiotemporal soliton solutions are found.
We established that the F-expansion and balance principle
method cannot provide traveling wave and solitary solutions
to the NLSE with saturable nonlinearity.
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