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Fresnel integrals and irreversible energy transfer in an oscillatory system
with time-dependent parameters
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We demonstrate that in significant limiting cases the problem of irreversible energy transfer in an oscillatory
system with time-dependent parameters can be efficiently solved in terms of the Fresnel integrals. For definiteness,
we consider a system of two weakly coupled linear oscillators in which the first oscillator with constant parameters
is excited by an initial impulse, whereas the coupled oscillator with a slowly varying frequency is initially at rest
but then acts as an energy trap. We show that the evolution equations of the slow passage through resonance
are identical to the equations of the Landau-Zener tunneling problem, and therefore, the suggested asymptotic
solution of the classical problem provides a simple analytic description of the quantum Landau-Zener tunneling
with arbitrary initial conditions over a finite time interval. A correctness of approximations is confirmed by
numerical simulations.
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I. INTRODUCTION

The problem of energy transfer is currently a topic of
intense research with a broad spectrum of applications, from
multibody systems [1–3] and waves in fluids and plasmas [4,5]
to semiconductors [6,7] and nanocrystals with graphene layers
[8], among other applications. A rich variety of examples in
the diverse fields of applied mathematics, natural sciences,
and engineering can be found in [1]. However, most of the
results reported in the literature are related to energy exchange
in systems with constant parameters. This work develops
an analytical framework to investigate the dynamics of two
weakly coupled oscillators with time-varying frequencies,
with special attention to an analogy between the energy
transfer in this classical oscillatory system and the quantum
Landau-Zener tunneling.

The classic linear Landau-Zener problem [9–12] deals with
a two-level system described by a Hermitian Hamiltonian
depending linearly on time. Over last decades, growing
attention has also been paid to non-Hermitian extensions of the
classic theory, taking into account the effect of environment on
two-level systems (e.g., [13–15] and references therein). Due
to its generality, the Landau-Zener scenario has been applied to
numerous problems in various contexts, such as laser physics
[16], semiconductor superlattices [17], tunneling of optical
[18] or acoustic [19,20] waves, and quantum information
processing [21], to name just a few examples. Although a
passage between two energy levels is an intrinsic feature of
all above-mentioned processes, the demonstration of a direct
connection between energy transfer in a classical oscillatory
system with time-dependent parameters and nonadiabatic
quantum Landau-Zener tunneling is a recent development. As
shown in [22,23], the equations of the slow passage through
resonance in a system of two weakly coupled pendulums with
a time-dependent frequency are asymptotically identical to the
equations of the Landau-Zener tunneling problem, i.e., there
exists a profound analogy between irreversible energy transfer
in the oscillatory system and nonadiabatic quantum tunneling.
This conclusion may be treated as an extension of the

previously found analogy between adiabatic quantum tun-
neling and energy exchange in a chain of weakly coupled
oscillators with constant parameters [24,25].

While an exact solution to the Landau-Zener equation
is well known [10], it is actually too complicated for any
straightforward inferences about the system dynamics, and
following the seminal Landau paper [9], attention has been
focused on quasistationary solutions at infinitely large times
(see, e.g., [26]). Recently, transient nonadiabatic tunneling has
been studied asymptotically assuming quasistationary behav-
ior of the system [27,28]. The purpose of the present paper
is to formulate a rigorous asymptotic approach for studying
the transient processes. We show that in some significant
limiting cases, the second-order Landau-Zener equation can
be approximately reduced to a first-order equation with a
solution in the form of the Fresnel oscillations. The suggested
approach, in addition to providing a simple explicit descrip-
tion of energy transfer in the oscillatory system, allows a
straightforward extension to more complicated systems with
a large number of degrees of freedom. Furthermore, it gives
a simple and correct prediction of the transient Landau-Zener
tunneling with arbitrary initial conditions over a finite time
interval.

The paper is organized as follows. In Sec. II, we describe
a model of two weakly coupled oscillators with the time-
dependent frequency detuning. We transform the system of
two differential equations into a single integro-differential
equation for the coupled oscillator (the energy trap) and derive
the evolutionary equations describing the slowly varying
envelopes of near-resonance motion for both oscillators. We
demonstrate that the second-order equation for the slow
envelope of the trap oscillations is identical to that of the
Landau-Zener problem. In Sec. III, we show that the latter
equation can be reduced to the first-order equation in two
special cases; in the first case, the mass of the excited oscillator
far exceeds the mass of the coupled trap; in the second case,
the coefficients of weak coupling are less than the detuning
rate. In both cases, we find an explicit asymptotic solution
in the form of the Fresnel integrals and then illustrate the
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theory by numerical simulations. In Sec. IV we compare
the dynamics of the systems with the linear-in-time and
quadratic-in-time frequency detuning. Auxiliary results are
presented in Appendixes. In Appendix A, we discuss a
connection of irreversible energy transfer in the oscillatory
system with the Landau-Zener tunneling; in addition, we prove
the convergence of the exact solution to the Fresnel oscillations
in some limiting cases. In order to illustrate a correctness of the
approximate solutions, in Appendix B we consider a system
with a constant detuning possessing a simple exact solution.

II. MODEL AND MAIN EQUATIONS

A. Equations of motion

In this paper we investigate resonant energy transfer in a
system of two weakly coupled linear oscillators. We suppose
that the first oscillator of mass m1 and stiffness c1 is excited
by an initial impulse V ; the coupled oscillator of mass m2

and time-dependent stiffness c2(t) is initially at rest; the
oscillators are connected by linear coupling of stiffness c12.
The displacements and velocities of the oscillators are denoted
by ui and Vi = dui/dt, i = 1,2. We will demonstrate that the
second oscillator with a time-dependent frequency acts as an
energy trap and ensures a visible reduction of oscillations of
the excited mass.

In this notation, the kinetic energy T , the potential energy
�, and the total energy E of the system are written as

T = 1/2
(
m1V

2
1 + m2V

2
2

)
,

� = 1/2
[
c1u

2
1 + c2(t)u2

2 + c12(u2 − u1)2
]
,

E = T + �.

The dynamics of the system is described by

m1
d2u1

dt2
+ c1u1 + c12(u1 − u2) = 0,

(2.1)

m2
d2u2

dt2
+ c2 (t) u2 + c12(u2 − u1) = 0,

with the initial conditions t = 0, u1 = u2 = 0; V1 = V, V2 =
0,i = 1,2. We note that the initial conditions u2 = 0, V2 = 0
determine a so-called limiting phase trajectory corresponding
to motion with a maximal possible energy transfer from the
first to the second oscillator [29].

In this section we define the time-dependent stiffness as

c2(t) = c2 − (k1 − k2t), k1,2 > 0.

Quasiresonance interactions between the oscillators imply
that (c1/m1)1/2 = (c2/m2)1/2 = ω; a likely small detuning may
be included in the coefficient k1. Assuming weak coupling
and slowly varying detuning, we define the small parameter
of the problem as c12/c2 = 2ε � 1. Then we introduce the
dimensionless parameters,

c12/cr = 2ελr, r = 1,2; λ2 = 1; k1/c2 = 2εσ,
(2.2)

k2/(c2ω) = 2ε2β2,

and the dimensionless time scales τ0 = ωt, τ1 = ετ0. Now
Eq. (2.1) can be rewritten in the dimensionless form

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

(2.3)
d2u2

dτ 2
0

+ u2 + 2ελ2(u2 − u1) − 2εζ (τ1)u2 = 0,

with the initial conditions τ0 = 0, u1 = u2 = 0; v1 = V/ω =
V0, v2 = 0, vidui/dτ0. The coefficient

ζ (τ1) = σ − 2β2τ1 (2.4)

defines the detuning modulation; the coefficient β2 charac-
terizes the rate of the resonance crossing. It is necessary to
note that system (2.3) can be considered as resonant only in a
time interval wherein |ζ (τ1)| ∼ 1 in this interval the value of
εζ (τ1) is small, and instant frequencies of the system remain
close to ω.

In order to develop an effective asymptotic procedure, we
express the solution u1 of the first equation in (2.3) as

u1(τ0) = ω−1
ε V0 sin ωετ0

+ 2εω−1
ε λ1

∫ τ0

0
u2(s) sin ωε(τ0 − s) ds, (2.5)

where ωε = (1 + 2ελ1)1/2. Then we substitute (2.5) into the
second equation of (2.3) to obtain the following system:

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

d2u2

dτ 2
0

+ (1 + 2ελ2)u2 − 2εζ (τ1)u2 = 2εω−1
ε λ2V0 sin ωετ0

(2.6)

+ 4ε2ω−1
ε λ1λ2

∫ τ0

0
u2(s) sin ωε(τ0 − s) ds,

with the initial conditions τ0 = 0 : u1 = u2 = 0; v1 =
V0, v2 = 0. Hence, instead of two coupled second-order equa-
tions (2.3), we consider a single integro-differential equation
for u2. The variable u1 is then calculated by (2.5).

B. Complex envelopes

The asymptotic analysis of Eq. (2.6) is performed with help
of the so-called complexification-averaging technique based
on the complexification of the dynamics and the separation of
the fast and slow time scales [30]. Following [30], we introduce
a pair of the complex-valued variables ψand ψ∗:

ψ = v2 + iu2, ψ∗ = v2 − iu2,
(2.7)

u2 = − i
2 (ψ − ψ∗), v2 = 1

2 (ψ + ψ∗).

Substituting (2.7) into (2.6), we derive the following
equation for the variable ψ(τ0,ε):

dψ

dτ0

− iψ − iε[λ2 − ζ (τ1)](ψ − ψ∗)

= 2ελ2V0ω
−1
ε sin ωετ0 − 2iε2ω−1

ε λ1λ2 (2.8)

×
∫ τ0

0
[ψ(s,ε) − ψ∗(s,ε)] sin ωε(τ0 − s)ds, ψ(0) = 0.
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Using the same arguments as in [3], we can show that in
the resonance case,∫ τ0

0
[ψ(s) − ψ∗(s)] sin ωε(τ0 − s) ds = o(ε−1), (2.9)

and therefore, the integral term on the right-hand side of (2.8)
should be included in the first-order equation.

In order to separate resonance harmonics, we present the
solution of (2.8) as

ψ(τ0,ε) = ϕ(τ0,ε) eiωετ0 . (2.10)

Using (2.8) and (2.10) to derive the equation for the complex
amplitude ϕ, we obtain

dϕ

dτ0
− iε(ρ + 2β2τ1)(ϕ − ϕ∗e−2iωετ0 ) + iελ2ϕ

∗e−2ωετ0

= −iελ2V0ω
−1
ε (1 − e−2iωετ0 )

− ε2ω−1
ε λ1λ2

[ ∫ τ0

0
ϕ(s,ε)(1 − e−2iωε(τ0−s)) ds

+ e−2iωετ0

∫ τ0

0
ϕ∗(s,ε)(1 − e−2iωε(τ0−s))ds

]
, (2.11)

where ρ = λ2 − λ1 − σ . We construct a solution of (2.11) in
the form of the multiple-scales expansion [30,31]

ϕ(τ0,ε) = ϕ0(τ1) + εϕ1(τ0,τ1) + · · ·
(2.12)

dϕ

dτ0
= ∂ϕ

∂τ0
+ ε

∂ϕ

∂τ1
+ · · · .

Expansion (2.12) provides an accurate approximation of
the exact solution with an error of O(ε) for τ1 of O(ε) [31].

Substituting (2.12) into (2.11) and proceeding to the first-
order approximation, we obtain

∂ϕ0

∂τ1
+ ∂ϕ1

∂τ0
− i(ρ+2β2τ1)(ϕ0 − ϕ∗

0e−2iωετ0 ) + iλ2ϕ
∗
0e−2iωετ0

= −iλ2V0(1 − e−2iωετ0 )

− ελ1λ2

∫ τ0

0
[ϕ0(εs)(1 − e−2iωε(τ0−s))

+ϕ∗(εs)e−2iωετ0 (1 − s2iωε(τ0−s))] ds. (2.13)

In order to avoid the secular growth of ϕ1 with respect to the
fast time variable, i.e., to avoid a response not uniformly valid
with increasing time, we need to eliminate nonoscillating terms
from (2.13). This yields the following equation determining the
leading-order term ϕ0(τ1):

dϕ0

dτ1
− i(ρ + 2β2τ1)ϕ0

= −iλ2V0 − λ1λ2

∫ τ1

0
ϕ0(r)dr, ϕ0(0) = 0. (2.14)

Equation (2.14) is equivalent to the second-order differen-
tial equation

d2ϕ0

dτ 2
1

− i(ρ + 2β2τ1)
dϕ0

dτ1
+ (λ1λ2 − iβ2) ϕ0 = 0, (2.15)

with the initial conditions τ1 = 0 : ϕ0 = 0, dϕ0/dτ1 =
−iλ2V0. The equivalence of Eq. (2.15) and the equation of the
Landau-Zener transient tunneling problem is demonstrated in
Appendix A.

Once the slow envelope ϕ0(τ1) is found, the leading-order
approximations for u2 and v2 can be derived from (2.7) and
(2.10). We obtain

u20(τ0,τ1) = − i
2 [ϕ0(τ1)eiωετ0 − ϕ∗

0 (τ1)e−iωετ0 ]

= |ϕ0(τ1)| sin[ωετ0 + α(τ1)],
(2.16)

v20(τ0,τ1) = 1
2 [ϕ0(τ1)eiωετ0 + ϕ∗

0 (τ1)e−iωετ0 ]

= |ϕ0(τ1)| cos[ωετ0 + α(τ1)],

α(τ1) = arg ϕ0(τ1).

Partial energy of the second oscillator is expressed as

e20(τ1) = 1
2

(〈
u2

20

〉 + 〈
v2

20

〉) = 1
2 |ϕ0(τ1)|2, (2.17)

where 〈·〉 denotes the averaging over the “fast” period T =
2π/ωε. It follows from (2.14) and (2.17) that for small τ1

ϕ0(τ1) = −iλ2V0τ1, e20(τ1) = 1
2 (λ2V0τ1)2. (2.18)

C. Calculation of u1

Once u20 is determined, u1 can be directly found from
(2.5). However, in order to demonstrate an analogy between
the dynamical model (2.5) and (2.6) and the Landau-Zener
equations, we approximately calculate u1 from

d2u1

dτ 2
0

+ u1 + 2ελ1u1 = 2ελ1u20,

(2.19)
τ0 = 0 : u1 = 0, v1 = V0.

By analogy with (2.7), we introduce the change of variables
y = v1 + iu1,y

∗ = v1 − iu1 and then derive the following
equation for the complex envelope y:

dy

dτ0

− iωεy + iωλ1y
∗ =−iελ1[ϕ0(τ1)eiωετ0 − ϕ∗

0 (τ1)e−iωετ0 ],

(2.20)
y(0) = V0.

The substitution of

y(τ0,ε) = η(τ0,ε)eiωετ0 . (2.21)

into (2.20) yields

dη

dτ0
+ iελ1η

∗e−2iωετ0 = −iελ1[ϕ0(τ1) − ϕ∗
0 (τ1)e−2iωετ0 ],

(2.22)
η(0) = V0.

As above, we construct an approximate solution of
Eq. (2.22) in the form of the multiple-scale expansion
η(τ0,ε) = η0(τ1) + εη1(τ0,τ1) + · · ·. As in the previous para-
graph, we derive the following equation of the first-order
approximation:

∂η0

∂τ1
+ ∂η0

∂τ1
+ iλ1η

∗
0(τ1)e−2iωετ0

= −iλ1[ϕ0(τ1) − ϕ∗
0 (τ1)e−2iωετ0 ], η0(0) = V0. (2.23)
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After eliminating nonoscillating terms from (2.23), the
resulting system for the variables η0,ϕ0 becomes

dη0

dτ1
= −iλ1ϕ0(τ1), η0(0) = V0,

dϕ0

dτ1
− i(ρ + 2β2τ1)ϕ0 = −iλ2V0 − λ1λ2

∫ τ1

0
ϕ0(r)dr,

(2.24)
ϕ0(0) = 0.

It is easy to deduce that the main approximations of the
solution u1,v1 takes the form

u10(τ0,τ1) = − i
2 (y0 − y∗

0 ) = − i
2 (η0e

iωετ0 − η∗
0e

−iωετ0 )

= |η0(τ1)| sin[ωετ0 + δ(τ1)],
(2.25)

v10 = 1
2 (y0 + y∗

0 ) = |η0(τ1)| cos[ωετ0 + δ(τ1)]

= arg[η0(τ1)].

The partial energy of the first oscillator is calculated as

e10(τ1) = 1
2

(〈
u2

10

〉 + 〈
v2

10

〉) = 1
2 |η0(τ1)|2. (2.26)

In particular, for small values of τ1 we obtain

η0(τ1) = V0
(
1 − 1

2λ1λ2τ
2
1

)
, e10(t1) = 1

2V 2
0

(
1 − λ1λ2τ

2
1

)
.

(2.27)

It follows from (2.18) and (2.27) that on the initial time
interval the energy of the excited oscillator decreases, while the
energy of the second oscillator (the trap) increases. A time
instant τ ∗

1 at which e1(τ ∗
1 ) = e2(τ ∗

1 ) can be found from
the equality (λ2V0τ1)2 = V 2

0 (1 − λ1λ2τ
2
1 ); that is,

τ ∗
1 = 1√

λ2(λ1 + λ2)
. (2.28)

An increase in the coupling coefficients λ1,λ2 obviously
entails a decrease in τ ∗

1 . This conclusion agrees with the
experimental results of [22,23].

III. APPROXIMATE ANALYSIS OF ENERGY TRANSFER

The analysis of the full system (2.6) can be significantly
simplified if the integral terms in (2.6) and (2.14) can be
omitted. As shown in Appendixes A and B, the integral
term on the right-hand side of (2.14) may be omitted if
(i) 2β2 � λ1λ2 and/or (ii) m1 � m2. We consider these two
cases in detail.

For the first case, suppose that 2β2 � λ1λ2. In this case,
we introduce the small parameters ε by the equality c12/c2 =
2ε3/2; the dimensionless initial impulse is V/ω = ε−1/2V0; all
other parameters are defined as in (2.2). For brevity, we take
λ1 = λ2 = λ. Then we substitute ε3/2λ for ελ and ε−1/2V0

for V0 in Eqs. (2.3) and (2.5). As in Sec. II, we obtain the
dimensionless equations

d2u1

dτ 2
0

+ ω2
1εu1 − 2ε3/2λu2 = 0,

d2u2

dτ 2
0

+ ω2
1εu2 − 2εζ (τ1)u2 = 2εω−1

1ε λV0 sin ω1ετ0

(3.1)

+ 4ε3ω−1
1ε λ2

∫ τ0

0
u2(s) sin ω1ε(τ0 − s) ds,

τ0 = 0, u1 = u2 = 0; v1 = ε−1/2V0, v2 = 0,

vi = dui/dτ0,

where ω1ε = (1 + 2ε3/2λ)1/2. As shown in [3], the integral term
of O(ε3) can be excluded from further analysis. This leads to
the truncated system

d2u1

dτ 2
0

+ ω2
1εu1 − 2ε3/2λu2 = 0,

(3.2)
d2u2

dτ 2
0

+ ω2
1εu2 − 2εζ (τ1)u2 = 2ελV0 sin ω1ετ0,

with the same initial conditions as in (3.1). A change of
variables similar to that in (2.7) and (2.10) leads to the
following equation for the complex amplitude ϕ(τ0,ε):

dϕ

dτ0
+ iεζ (τ1)(ϕ − ϕ∗e−2iω1ετ0 ) = iελV0(1 − e−2iω1ετ0 ),

(3.3)
ϕ(0) = 0.

As in Sec. II, ϕ(τ0,ε) is constructed in the form of
the multiple-scale expansion ϕ(τ0,ε) = ϕ0(τ1) + εϕ1(τ0,τ1) +
· · ·. Reproducing the transformations of Sec. II, the equation
for the slowly varying envelope ϕ0(τ1) is obtained as

dϕ0

dτ1
− i(ρ0 + 2β2τ1)ϕ0 = −iλV0, ϕ0(0) = 0, (3.4)

where ρ0 = −σ . The solution of Eq. (3.4) takes the form

ϕ0(τ1) = −iλV0i(τ1)

i(τ1) =
∫ τ1

0
exp

{
i
[
ρ0(τ1 − s) + β2(τ 2

1 − s2)]} ds

= eiB(τ1)
∫ τ1

0
e−iB(s)ds, (3.5)

where B(s) = β2s2 + ρ0s = (βs + θ0)2 − θ2
0 ; θ0 = ρ0/2β =

−σ/2β, and thus eiB(τ1) = e−iθ2
0 ei(βτ1+θ0)2

. This implies that∫ τ1

0
e−iB(s)ds = eiθ2

0

∫ τ1

0
e−i(βs+θ0)2

ds = 1

β
F (τ1,θ0)eiθ2

0 ,

F (τ1,θ0) =
∫ βτ1+θ0

θ0

e−ih2
dh = [C(βτ1 + θ0) − C(θ0)]

(3.6)− i[s(βτ1 + θ0) − s(θ0)],

where S(x) and S(x)are the cosine- and sine-Fresnel integrals
defined in (A19). Finally, we write

ϕ(τ1) = −i λV0
β

F (τ1,θ0)ei(βτ1+θ0)2
. (3.7)

If the envelope ϕ0(τ1) is known, the approximations
u20 and u10 are calculated by (2.16) and (2.25), respectively;
the envelope η0(τ1)is expressed as

η0(τ1) = ε−1/2V0 − iε−3/2λ

∫ τ1

0
ϕ0(r1) dr1. (3.8)

We evaluate the amplitude of oscillations in the following
limiting cases.

(1) If βτ1 � √
2, then we obtain from (3.4) that

|ϕ0(τ1)| ≈ λV0τ1. (3.9)
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(2) If βτ1 � √
2, then the asymptotic representations (A20)

hold, and therefore,

ϕ0(τ1) → ϕ̄0 = −i
λV0

β

{[√
π

8
− C(θ0)

]
− i

[√
π

8
− S(θ0)

]}
,

|ϕ̄0| = λV0

β

{[√
π

8
− C(θ0)

]2

+
[√

π

8
− S(θ0)

]2}1/2

,

as τ → ∞. (3.10)

The energy of quasistationary oscillations of the trap is
determined as ē20 = 1/2|ϕ̄0|2; the residual energy of the first
oscillator ē10 can be calculated using the integral of motion
(A9). As remarked in Sec. II, an analysis as τ1 → ∞ is
formally incorrect, but expression (3.10) can be considered
as an illustration of a transition from the initial rest state to
quasistationary oscillations.

Here we demonstrate and discuss the numerical solutions
of the full system (2.3) and the truncated system (3.2). In
computations, we use the following numerical values of the
system parameters:

ε = 0.1 36; ε3/2 = 0.05; ε−1/2V0 = 1;
(3.11)

εσ = 0.1125; (εβ)2 = 0.025; λ = 1.

Numerical simulations have been carried out in the
interval 0 � τ0 �80; in this interval, we have −3.375�
ζ (ετ0) �1.125. It is easy to calculate that the instantaneous
partial frequency of the trap ω2(τ1) = 1 + ε3/2λ − εζ (τ1)
lies within the interval 0.994 � ω2(τ1) � 1.22, whereas the
constant partial frequency of the first oscillators is ω1 =
1 + ε3/2λ = 1.05. This means that in the interval 0 � τ0 � 80
the resonance mode of motion is preserved and the asymptotic
approach is applicable.

We denote the solutions of the full system (2.3) and the
truncated system (3.2) by ui and ũi , respectively. Numerical
solutions ui of the full system (2.3) are interpreted as
exact solutions of the system under consideration; numerical
solutions ũi of the truncated system (3.2) are interpreted as
approximations of the exact solutions. In Figs. 1 and 2 one can
observe a transition from the initial state to quasistationary
motion with a decreasing amplitude of oscillations of the first

0 50 100 150
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-0.5

0

0.5

11

u 1, 
u 2

FIG. 1. (Color online) Solution of the full system (2.3): u1, starred
line; u2, dashed line.
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-0.8

-0.4

0
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1.21.2

u~ 1
, u

~ 2

FIG. 2. (Color online) Solutions of the truncated system (3.2): ũ1,
starred line; ũ2, dashed line.

oscillator and an increasing amplitude of the second oscillator
(the energy trap).

Figures 3 and 4 prove a close proximity of exact solutions
and their analytic approximations for each oscillator sepa-
rately. Therefore, approximation (3.7) can be used instead of
solving Eq. (2.3).

Figure 5 illustrates the occurrence of targeted energy
transfer in the system. The energy of the trap is calculated
by Eqs. (3.7) and (2.17); the energy of the first oscillator is
calculated by Eqs. (2.24) and (2.26).

As seen in Fig. 6, e1 = e2 at τ ∗
0 ≈ 15,τ ∗

1 = 0.75. It is
important to note that formula (2.28) gives a close value of
τ ∗

1 = √
1/2 = 0.71.

For the second case, suppose that m2 = εδm1,δ = O(1).
Since c20/m2 = c1/m1 = ω2, then c1 = m1c20/m2 = c20/εδ

and c12/c1 = 2ε2δλ2. With these parameters, Eq. (2.6) is
rewritten as

d2u1

dτ 2
0

+ ω2
2εu1 − 2ε2δλ1u2 = 0,

d2u2

dτ 2
0

+ (1 + 2ελ2)u2 − 2εζ (τ1)u2 = 2εω−1
2ε λ2V0 sin(ω2ετ0)

0 20 40 60 80
-1

-0.5

0

0.5

1

u 1, 
u~ 1

FIG. 3. (Color online) Exact solution u1 (dashed line) and
approximate solution ũ1 (starred line).
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FIG. 4. (Color online) Exact solution u2 (dashed line) and
approximate solution ũ2 (starred line).

+ 4ε3ω−1
2ε δλ2

2

∫ τ0

0
sin ω2ε(τ0 − s)u2(s) ds, (3.12)

τ0 = 0 : u1 = u2 = 0; v1 = V0, v2 = 0,

where ω2ε = (1 + 2ε2δλ1)1/2. As in Eq. (3.1), we exclude the
integral term of O(ε3) from consideration and replace (3.12)
with the truncated system

d2u1

dτ 2
0

+ ω2
2ε u1 − 2ε2δλ1u2 = 0,

(3.13)
d2u2

dτ 2
0

+ (1 + 2ελ2)u2 − 2εζ (τ1)u2 = 2ελ2V0 sin ω2ετ0

with the initial conditions τ0 = 0 : u1 = u2 = 0; v1 =
V0,v2 = 0. The approximation u20(τ0,ε) is then calculated
by formula (2.16); the envelope of the process u20(τ0,ε) is
defined by

dϕ0

dτ1
− i(ρ1 + 2β2τ1)ϕ0 = −iλ2V0, ϕ0(0) = 0, (3.14)

where ρ1 = λ2 − σ . It is obvious that the solution of (3.14) is
similar to (3.7), namely,

ϕ0(τ1) = −i
λV0

β
F (τ1,θ1)ei(βτ1+θ1)2

, θ1 = ρ1

β
. (3.15)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e 1,e
2

FIG. 5. (Color online) Energy of the oscillator (starred line) and
the trap (solid line).
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u 1, 
u

2

FIG. 6. (Color online) Solutions of the full system (2.3): u1, blue
starred line; u2, red dashed line.

The asymptotic behavior of the complex envelope ϕ0(τ1)
is described by expressions similar to (3.9) and (3.10). The
envelope of process u1 can be found from (2.26).

Figures 6 and 7 demonstrate the results of numerical
simulation for systems (2.3) and (3.13) with the following
parameters:

m1 = 5m2, εδ = 0.2; ε = 0.05; V0 = 1,
(3.16)

εσ = 0.1125, εβ = 0.1, λ = 1.

The exact solutions u1,u2 of the full system (2.3) are
depicted in Fig. 6; Fig. 7 demonstrates the solutions ũ1,ũ2 of
the truncated system (3.13). Figures 6 and 7 indicate that the
exact and approximate periods and amplitudes of slow and fast
oscillations are almost identical for both oscillators up to an
instant of transition to quasistationary motion, corresponding
to a global minimum of the envelope of the first oscillator.
The times of transition from the initial state to quasistationary
oscillations (a counterpart of the Landau-Zener transition time)
are equal to τ0 ≈ 75 and τ̃0 ≈ 80 for the exact and approximate
solutions, respectively; the difference is about 6%. After this
moment, the slow envelope of the approximate solution ũ2

has a more distinctive minimum Ã2 ≈ 1.5 at τ0 ≈ 95 versus
A2 ≈ 1.7 at τ0 ≈ 95 for the exact solution u2; the difference is
about 12%. A corresponding maximum of the slow envelope

0 20 40 60 80 100 120
-3

-2

-1

0

1

2

3

u~ 1
, 
u~ 2

FIG. 7. (Color online) Solutions of the truncated system (3.13):
ũ1, starred line; ũ2, dashed line.
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FIG. 8. (Color online) Energy of the oscillators (starred line) and
the trap (solid line) calculated by (3.13).

of the approximate solution u1 is equal to A1 ≈ 0.48 versus
A1 ≈ 0.5 for the exact solution u1; the difference is about 4%.

Figure 8 demonstrates irreversible energy transfer from the
first oscillator to the trap. Figure 9 depicts the behavior of
the full system (2.3) with the parameters in (3.11) but with
different masses m1 = 5m2. A comparison of the results
presented in Figs. 8 and 9 with those in Figs. 1 and 5 shows
that energy transfer in a system with different masses is more
intensive but requires an increased transition time against a
system with equal masses. This stems from the fact that the
minimal mass m2 is able to take a large portion of energy
from the maximal mass m1 only during a protracted resonance
interaction. This conclusion is consistent with relationship
(2.28): A decrease in the parameter λ1 increases the time τ ∗

1
and the total duration of the transient process.

IV. ENERGY TRANSFER IN THE SYSTEM WITH THE
QUADRATIC-IN-TIME DETUNING LAW

In this section we briefly describe the analysis of system
(2.3) with equal coupling λ1 = λ2 = λ and with the quadratic-
in-time detuning law (see also [23])

ζ (τ1) = 2
(
σ − 2β2

2τ 2
1

)
. (4.1)

0 20 40 60 80 100 120
-1.5

-1

-0.5

0

0.5

1

1.5

u 1, 
u 2

FIG. 9. (Color online) Solutions of system (2.3) with the param-
eters in (3.11) and m1 = 5m2: u1, starred line; u2, dashed line.

First, we consider the oscillators in which the rate of resonance
crossing is large against weak coupling. In this case, the
exact and approximate equations of motion are written in
the forms (3.1) and (3.2), respectively; the slowly varying
envelope ϕ0(τ1) satisfies an equation similar to Eq. (3.4); that
is,

dϕ0

dτ1
− i

( − σ + 2β2
2τ 2

1

)
ϕ0 = −iλV0, ϕ0(0) = 0. (4.2)

Let us denote 2β2
2τ 2

1 = f (τ1),2/3β2τ
3
1 = F (τ1). In this

notation, the solution of Eq. (4.2) is written as

ϕ0(τ1) = −iλV0Y (τ1), (4.3)

where

Y (τ1) =
∫ τ1

0
exp{i[−σ (τ1 − s) + F (τ1) − F (s)]}ds

(4.4)
= eiB(τ1)

∫ τ1

0
e−iB(s)ds,

B(s) = −σs + F (s).

It follows from (4.3) and (4.4) that

ϕ0(τ1) = −iλV0Y1(τ1)eiB(τ1), Y1(τ1) =
∫ τ1

0
e−iB(s)ds. (4.5)

The stationary phase method [32] allows us to approximate
the solution by the Fresnel integrals. If B(s) is a rapidly varying
function of s, then significant contributions to the integral value
take place in small intervals near the stationary phases θs such
that B′(θs) = 0 [32]. In the problem under consideration, a
unique stationary phase θs is defined by

B ′(θs) = −σ + 2β2
2θ2

s = 0, θs = (
√

σ/2)/β2. (4.6)

Expanding B(s) in the Taylor series near s = θs and keeping
only the first two nonzero terms, we obtain

B(s) ≈ B(θs) + 1/2k(s − θs)
2. (4.7)

where k = B" (θs) = 4β2
2θs . Substituting (4.7) into (4.5), we

obtain the following approximation:

Y1(τ1) =
∫ τ1

0
e−iB(s)ds ≈ e−iB(θs )

∫ τ1

0
e−ik[(s−θs )2/2]ds, (4.8)

0 20 40 60 8080
-1

-0.5

0

0.5

11

u 1, 
u

2

FIG. 10. (Color online) Solutions of the full system (2.3):
u1, starred line; u2, dashed line.
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FIG. 11. (Color online) Solutions of the truncated system (3.2):
ũ1, starred line; ũ2, dashed line.

and by analogy with (3.10),

Y1(τ1) → Ȳ1 ≈
√

π

2k
e−i[B(θs )+π/4] + O

(
1

k

)
. (4.9)

Formulas (4.8) and (4.9) demonstrate the convergence of
highly oscillating integral (4.4) to a stationary value. As noted
in Sec. III, this implies the occurrence of energy transfer from
the first oscillator to the trap. Note that this formal approach
gives a proper approximation if k � 1; however, numerical
simulations show that irreversible energy transfer occurs for a
wide range of parameters.

Using the stationary phase method, one can construct the
solution of system (2.3) with the quadratic-in-time detuning in
the same way as in Sec. II. We study a system with the parame-
ters in (3.11), but we replace ε2β2 = 0.025 with ε3β2

2 = 0.025.
A straightforward calculation gives θs = 0.2, k = 7.7; that is,
in principle, the stationary phase approximation is acceptable.
However, for brevity, we omit a detailed derivation of the
approximate analytic solution. We compute the numerical
solutions of Eqs. (2.3) and (3.2) with detuning (4.1) and then
compare the results with that of Sec. II.

Solutions of systems (2.3) and (3.2) with detuning (4.1) are
shown in Figs. 10 and 11, respectively. A good agreement
between the exact and approximate solutions is obvious.
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FIG. 12. (Color online) Energy of the oscillator (blue stars) and
the trap (red line).
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FIG. 13. (Color online) Solutions of the full system (2.3) with the
parameters in (3.11) and ε3β2

2 = 0.01: u1, blue starred line; u2, red
dashed line.

Figure 12 depicts energy transfer from the excited oscillator
to the energy trap in the system with detuning (4.1).

Now we compare the results of simulation for the oscillators
with the linear and quadratic-in-time detuning. For the first
oscillator, the time to attain the first minimum of the slow en-
velope is τ0 ≈ 35 in Figs. 1 and 5 versus τ0 ≈ 44 in Figs. 10 and
12 However, as seen in Figs. 1 and 5, the system with the linear-
in-time detuning demonstrates a sequence of beat oscillations
before the transition to quasistationary oscillations. This means
that the real transition time needed for the formation of qua-
sistationary oscillations is about τ0 ≈ 100. At the same time,
the quadratic modulation suppresses beating and ensures a
smooth transition from the initial state to small quasistationary
oscillations. In addition, correlating the plots in Figs. 5 and
12, one can observe that the energy of stationary motion of
the first oscillator in Fig. 5 is about 5 times less than the
initial energy, but Fig. 12 demonstrates a tenfold decrease. This
means that the system with the quadratic-in-time detuning is
more effective than the model with the linear time dependence.

Next, we investigate the dynamics of the system with
different masses. As in Sec. III, we consider the case
m1 = 5m2. The theoretical analysis can be performed in
the same way as in Sec. III, but here we demonstrate only
the numerical results. The parameters of simulations are the
same as in (3.16) with ε3β2

2 = 0.01 in place of ε3β2 = 0.01.
A comparison of Figs. 6 and 13 shows that the transition
time is τ0 ≈ 70 in Fig. 13 versus τ0 ≈ 75 in Fig. 6, but as
in the previous case, the quadratic time dependence of the
frequency suppresses beating, and the decaying transient
process smoothly changes to quasistationary oscillations,
while in the system with the linear-in-time detuning, beating
oscillations precede quasistationary oscillations. This renders
the system with the quadratic-in-time modulation more
effective in suppressing undesired oscillations (cf. [23]).

V. CONCLUSIONS

The analytical study of irreversible energy transfer in a clas-
sical oscillatory system with time-dependent parameters has
not been addressed thus far in the literature. This paper demon-
strates a closed-form asymptotic solution of this problem for a
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system of two weakly coupled linear oscillators, in which the
first oscillator with constant parameters is excited by an initial
impulse, whereas the coupled oscillator with a time-dependent
frequency is initially at rest but then acts as an energy trap. It
has been shown that in physically meaningful limiting cases
the problem of irreversible energy transfer from the excited
oscillator to the trap is reduced to a first-order equation with
the solution in the form of the Fresnel integrals. In view of a
mathematical analogy between energy transfer in a classical
oscillatory system with variable parameters and nonadiabatic
quantum Landau-Zener transition, the results of this paper,
in addition to providing an analytical framework for
understanding the transient dynamics of coupled oscillators,
suggest an approximate procedure for solving the linear
Landau-Zener problem with arbitrary initial conditions over
a finite time interval.
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APPENDIX A

In this Appendix we demonstrate a connection between
the complex envelopes ϕ0(τ1) and η0(τ1) and the solution
of the Landau-Zener tunneling problem. We consider again
the system of the weakly coupled oscillators (2.3) with the
parameters in (2.2):

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

d2u2

dτ 2
0

+ u2 + 2ελ2(u2 − u1) − 2εζ (τ1)u2 = 0, (A1)

τ0 = 0, u1 = u2 = 0; v1 = V0, v2 = 0, vi = dui/dτ0.

As in [22,23], we introduce the change of variables

v1,2 + iu1,2 = a1,2e
iτ0 . (A2)

The amplitudes a1,2 are sought in the form of the multiple-
scale expansions ar (τ0,ε) = ar0(τ1) + εar1(τ0,τ1) + · · · ,r =
1,2. As shown in [22,23], the functions ar0(τ1) satisfy the
equations

i
da10

dτ1

= −λ1(a10 − a20),

i
da20

dτ1

= σ (1 − γ τ1)a20 − λ2(a20 − a10), (A3)

τ1 = 0 : a10 = V0, a2(0) = 0,

describing a particular case of the linear quantum Landau-
Zener problem. It is easy to deduce that the functions

η0(τ1) = a10(τ1) e−iλ1τ1 , ϕ0(τ1) = a20(τ1) e−iλ2τ1 (A4)

satisfy the following equations:

i
dη0

dτ1
= λ1ϕ0(τ1), η0(0) = V0,

i
dϕ0

dτ1

= (ρ + 2β2τ1)ϕ0 + λ2η0(τ1), ϕ0(0) = 0, (A5)

where 2β2 = σγ,ρ = λ2 − λ1 − σ . Formally, system (A5)
seems to be non-Hermitian, as its matrix has unequal antidi-
agonal terms [33]. However, the change of variables

η0 = (λ1/λ2)1/4x, ϕ0 = (λ2/λ1)
1
4 y (A6)

transforms (A5) into the Hermitian form

i
dx

dτ1
=

√
λ1λ2y, χ (0) = (λ2/λ1)

1
4 V0,

i
dy

dτ1

= (ρ + 2β2τ1)y +
√

λ1λ2χ, y(0) = 0. (A7)

This implies a direct connection between systems (A3) and
(A5) and the classic (Hermitian) Landau-Zener problem.

System (A7) conserves the integral of motion

|x(τ1)|2 + |y(τ1)|2 = |x(0)|2 = (λ2/λ1)1/2V 2
0 , (A8)

or by (A6),

|η0(τ1)|2 + (λ1/λ2 |ϕ0(τ1)|2 = V 2
0 . (A9)

In the case λ1 = λ2, we obtain the well-known integral
of energy |η0(τ1)|2 + |ϕ0(τ1)|2 = V 2

0 . As remarked in Sec. II,
system (A5) provides an approximate description of the full
system (2.3) with an error of O(ε) if τ1 is of O(1), and
therefore, the conservation law (A9) is applicable only in
this time interval. Simple algebra proves that the total energy
of the initial system (2.1) and the corresponding quantity for
the dimensionless system (2.3) increase as ετ1. This result is
consistent with the theory.

Next, we show that Eq. (A5) is equivalent to the second-
order Weber equation of the Landau-Zener problem [10], and
then we prove the convergence of the exact solution to the
Fresnel integrals as λ1λ2/β

2 → 0.
It follows from (A5) that

dϕ0

dτ1

i(ρ + 2β2τ1)ϕ0 = −iλ2V0 − λ1λ2

∫ τ1

0
ϕ0(s) ds,

ϕ0(0) = 0, (A10)
dη0

dτ1
= −iλ1ϕ0(τ1), η0(0) = V0.

It is obvious that (A10) is identical to system (2.24).
Differentiation of the first equation in (A10) in τ1 yields the
second-order equation coinciding with (2.15),

dϕ0

dτ1

− i(ρ + 2β2τ1)
dϕ0

dτ1
+ (λ1λ2 − 2iβ2) ϕ0 = 0,

(A11)
τ1 = 0 : ϕ = 0,

dϕ0

dτ1
= −iλ2V0.

Substituting ϕ0(τ1) = φ(τ1)eiψ(τ1),ψ(τ1) = 1
2

∫ τ1

0 (ρ +
2β2s) ds transforms (A11) into

d2φ

dτ 2
1

+ [
λ1λ2 + 1

4
(ρ + 2β2τ1)2 − iβ2]φ = 0, (A12)

026602-9



KOVALEVA, MANEVITCH, AND KOSEVICH PHYSICAL REVIEW E 83, 026602 (2011)

Then we introduce the independent variable x =
i−1/2z,z(ρ + 2β2τ1)/(

√
2β) and define the parameter � =

λ1λ2(2β2). As a result, we obtain

d2φ

dx2
+

(
i� − 1

4
x2 + 1

2

)
φ = 0, (A13)

with the initial conditions τ1 = 0 : x = i−1/2ρ/(
√

2β),φ =
0,dφ/dx = −i1/2λ2V0/(

√
2β). Equation (A13) is identical

to the Weber equation derived in [10]. The Weber functions
D−i�−1(±ix) are linearly independent particular solutions of
(A13); their linear combination

φ(x) = AD−i�−1(ix) + BD−i�−1(−ix) (A14)

with a proper choice of constants A, B satisfies arbitrary initial
conditions.

The analysis of Eq. (A13) can be simplified if � � 1 or
λ1λ2 � 2β2. In this case,

φ(x) → φ0(x) = AD−1(ix) + BD−1(−ix), (A15)

where [34]

D−1(r) = e
r2

4

√
π

2

[
1 − �

(
r√
2

)]
, (A16)

�(r) = 2√
π

∫ r

0 e−r2
dr is the probability integral. Since r =

ix = i1/2z, then

φ(z) = AD−1(i1/2z) + BD−1(−i1/2z),
(A17)

z = i1/2(ρ + β2τ1)/β,

where

D−1(i1/2z) =
√

π

2

[
1 − 2√

π
�1

(√
iz√
2

)]
e

iz2

4 ,

D−1(−i1/2z) =
√

π

2

[
1 − 2√

π
�1

(
z√
2i

)]
e

iz2

4 ,

�1

(√
iz√
2

)
=

∫ √
iz√
2

0
e−r2

dr = i1/2
∫ z√

2

0
e−is2

ds

(A18)

= i1/2

[
C

(
z√
2

)
− iS

(
z√
2

)]
,

�1

(
z√
2i

)
=

∫ z√
2i

0
e−r2

dr = −i1/2
∫ z√

2

0
eis2

ds

= −i1/2

[
C

(
z√
2

)
+ iS

(
z√
2

)]
,

C(y) and S(y) are the cosine- and sine-Fresnel integrals, and

C(y) =
∫ y

0
cos(s2) ds, S(y) =

∫ y

0
sin(s2) ds. (A19)

We recall that the following asymptotic representations hold
[34]:

C(y) = 1

2

(√
π

2
+ sin y2

y

)
+ O

(
1

y2

)
,

S(y) = 1

2

(√
π

2
− cos y2

y

)
+ O

(
1

y2

)
ify � 1. (A20)

Formally, an analysis of the asymptotic stationary solution
as τ1 → ∞ or, equivalently, as y → ∞ is incorrect, but ex-
pression (A20) can be considered an indication of the transition
from the initial rest state to quasistationary oscillations.

It can be easily checked that as � → 0, the second-
order equation (A11) is reduced to the following first-order
differential equation:

dϕ0

dτ1

− i(ρ + 2β2τ1)ϕ0 = −iλ2V0, ϕ0(0) = 0, (A21)

with the solution (A17). A more detailed analysis of this
equation is given in Sec. III.

APPENDIX B

In the time interval τ1 � |ρ|/(2β2), an increase in the
frequency is negligible, and system (2.3) may be approximated
by its conservative counterpart. An exact solution of the
conservative system enables us to illustrate the accuracy of the
approximation procedure for different relationships between
the parameters.

We consider a conservative counterpart of system (2.3):

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

d2u2

dτ 2
0

+ u2 + 2ελ2(u2 − u1) − 2εσu2 = 0, (B1)

τ0 = 0, u1 = u2 = 0; v1 = V0,v2 = 0, vi = dui/dτ0.

This system possesses the solution

u1(τ0,τ1) = λ2V0

2κ
[cos(�2ετ0) − cos(�1ετ0)],

(B2)
u2(τ0,ε) = λ2V0

2κ

[
�−1

2ε sin(�2ετ0) − �−1
1ε sin(�1ετ0)

]
,

where

�2
iε = 1 + 2ερi, ρ1,2 = −μ ± μ2 + λ1σ )1/2,

μ = 1/2(λ1 + λ2 − σ ),

2κ = ρ1 − ρ2 = 2(μ2 + λ1σ )1/2

= [(λ2 + λ1)2 − 2σ (λ2 − λ1) + σ 2]1/2.

The leading-order approximation of (B2) as ε → 0 corre-
sponds to beating oscillations

u10(τ0,τ1) = λ2V0

κ
sin(κτ1) sin(τ0 + μτ1),

u20(τ0,τ1) = λ2V0

κ
sin(κτ1) cos(τ0 + μτ1), (B3)

with the amplitudes r10 = r20(τ1) = λ2V0
κ

| sin κτ1|. Next, we
verify the correctness of the integral transformation. We
transform Eq. (B1) into a form similar to (2.6):

d2u1

dτ 2
0

+ u1 + 2ελ1(u1 − u2) = 0,

d2u2

dτ 2
0

+ (1 + 2ελ2)u2 − 2εω−1
ε λ2V0 sin ωετ0

(B4)
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+ 4ε2ω−1
ε λ1λ2

∫ τ0

0
u2(s) sin ωε(τ0 − s) ds,

τ0 = 0 : u1 = u2 = 0; v1 = V0, v2 = 0,

where ωε = (1 + 2ελ1)1/2. Then we approximately solve
Eq. (B4) using the complexification procedure of Sec. II. As
a result, we obtain the approximate representation u20 in the
form (2.16), where the complex envelope ϕ0(τ1) is defined by

dϕ0

dτ1
− iρϕ0 = −iλ2V0 − λ1λ2

∫ τ1

0
ϕ0(r1) dr1,

ϕ0(0) = 0 (B5)

or

d2ϕ0

dτ1
− iρ

dϕ0

dτ1
+ λ1λ2ϕ0 = 0,

(B6)
τ1 = 0 : ϕ0 = 0,

dϕ0

dτ1
= −iλ2V0.

It is easy to obtain from (B6) that

ϕ0(τ1) = λ2V0

p2 − p1
(eip1τ1 − eip2τ1 ),

(B7)
p1,2 = 1

2
[ρ ± (ρ2 + 4λ1λ2)1/2].

Simple algebra shows that (ρ2 + 4λ1λ2)1/2 = [(λ2 +
λ1)2 − 2σ (λ2 − λ1) + σ 2]1/2 = 2κ . Hence, p1,2 = 1/2(ρ ±
2κ), and therefore,

ϕ0(τ1) = −i
λ2V0

κ
eiρτ1/2 sin κτ1. (B8)

Substituting (B8) in (2.16), we get

u20(τ0,τ1)

= −λ2V0

2κ
sin κτ1

(
e

i
2 (ρ+λ1)τ1eiτ0 + e− i

2 (ρ+λ1)τ1e−iτ0
)
. (B9)

Note that 1/2ρ + λ1 = 1/2(λ2 + λ1 − σ ) = μ, and
therefore,

u20(τ0,τ1) = −λ2V0

2κ
sin κτ1[ei(τ0+μτ1) + e−i(τ0+μτ1)]

= −λ2V0

κ
sin κτ1 cos(τ0 + μτ1). (B10)

Expression (B10) obviously coincides with (B2).
Now we suppose that the relationships between the system

parameters allow us to ignore the integral term in Eqs. (B4)
and (B5) and reduce (B5) to the first-order differential
equation.

(1) Suppose that m1 � m2; in this case, m2 = εδm1, δ =
O(1). Since c20/m2 = c1/m1 = ω2, the resonance system,
then c1 = m1c20/m2 = c20/εδ, and c12/c1 = 2ε2δλ2. Hence,
we obtain the dimensionless equations of motion in the form

d2u1

dτ 2
0

+ u1 + 2ε2δλ2(u1 − u2) = 0,

(B11)
d2u2

dτ 2
0

+ u2 + 2ελ2(u2 − u1) − 2εσu2 = 0,

with the initial conditions τ = 0,u1 = u2 = 0; v1 = V0,v2 =
0,vi = dui/dτ0. It follows from the first equation in (B11) that

u1 = ω−1
1ε V0 sin ω1ετ0

+ 2ε3ω−1
1ε δλ2

2

∫ τ0

0
u2(s) sinω1ε(τ0 − s) ds,

where ω1ε = (1 + 2ε2δλ2)1/2. Thus, Eq. (B4) takes the form

d2u1

dτ 2
0

+ u1 + 2ε2δλ2(u1 − u2) = 0,

d2u2

dτ 2
0

+ (1 + 2ελ2)u2 − 2εσu2 = 2εω−1
1ε λ2V0 sin ω1ετ0

+ 4ε3ω−1
1ε δλ2

∫ τ0

0
sin ω1ε(τ0 − s)u2(s) ds. (B12)

Referring to (2.9) and (2.14), we can show that the
contribution of the integral term on the right-hand side of
(B12) is of O(ε2). This implies that the integral term is not
involved in the equation of the first-order approximation, and
therefore, Eq. (B5) is reduced to

dϕ0

dτ1
− iρ1ϕ0 = −iλ2V0, ϕ0(0) = 0,

ρ1 = λ2 − σ. (B13)

This yields

ϕ0(τ1) = λ2

ρ1
(1 − eiρ1τ1 ). (B14)

Compare the solutions (B7) and (B14). As λ1λ2/ρ
2 → 0

and λ1/λ2 → 0, then p1 = ρ1,p2 = 0. This means that the
solution (B7) is transformed into (B14).

(2) Suppose that k/c12 � 1. As in Sec. II, we introduce the
dimensionless parameters k/c2 = 2εσ , but c12/ci = 2ε3/2λi ,
V/ω = ε−1/2V0. In this case, the dimensionless equations of
motion are given by

d2u1

dτ 2
0

+ u1 + 2ε3/2λ1(u1 − u2) = 0,

(B15)
d2u2

dτ 2
0

+ u2 + 2ε3/2λ2(u2 − u1) − 2εσu2 = 0,

with the initial conditions τ0 = 0, u1 = u2 = 0; v1 =
ε−1/2V0,v2 = 0. It is easy to obtain from the first equation
that

u1 = ε−1/2ω−1
2ε V0 sin ω2ετ0

+ 2ε3/2ω−1
2ε λ2

2

∫ τ0

0
u2(s) sin ω12ε(τ0 − s) ds, (B16)

where (ω2ε = 1 + 2ε3/2λ1)1/2. Substituting (B16) into (B15),
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we derive the integro-differential equation for u2:

d2u2

dτ 2
0

+ (1 + 2ε3/2λ2) − 2εσu2 = 2εω−1
1ε λ2V0 sin ω1ετ0

+ 4ε3λ1λ2ω
−1
1ε

∫ τ0

0
sin ω1ε(τ0 − s)u2(s) ds. (B17)

Transformations similar to those of Sec. II result in the
following leading-order equation for the complex envelope

ϕ0(τ1):

dϕ0

dτ1
− iρ0ϕ0 = −iλ2V0, ϕ0(0) = 0. (B18)

It follows from (B18) that

ϕ0(τ1) = λ2

ρ0
(1 − eiρ0τ1 ), ρ0 = −σ. (B19)

It is easy to check that expression (B7) is transformed into
(B19) in the limiting case p1 = −σ, p2 = 0.

[1] A. F. Vakakis, O. Gendelman, L. A. Bergman, D. M. McFarland,
G. Kerschen, and Y. S. Lee, Passive Nonlinear Targeted Energy
Transfer in Mechanical and Structural Systems (Springer,
New York, 2008).

[2] L. I. Manevitch, O. Gendelman, A. Musienko, A. F. Vakakis,
and L. A. Bergman, Phys. D 178, 1 (2003).

[3] A. Kovaleva, L. Manevitch, and E. Manevitch, Phys. Rev. E 81,
056215 (2010).

[4] J. A. Biello, P. R. Kramer, and Y. V. Lvov, Discrete Contin. Dyn.
Syst. 113, 482 (2003).

[5] A. C. Newell, S. Nazarenko, and L. Biven, Phys. D 152/153,
520 (2001).

[6] Y. V. Lvov, R. Binder, and A. C. Newell, Phys. D 121, 317
(1998).

[7] Y. V. Lvov and A. C. Newell, Phys. Rev. Lett. 84, 1894
(2000).

[8] Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus,
ACS Nano 4, 2964 (2010).

[9] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
[10] C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).
[11] E. Majorana, Nuovo Cimento 9, 43 (1932).
[12] E. C. G. Stückelberg, Helv. Phys. Acta 5, 369 (1932).
[13] V. M. Akulin and W. P. Schleich, Phys. Rev. A 46, 4110 (1992).
[14] R. Schilling, M. Vogelsberger, and D. A. Garanin, J. Phys. A 39,

13727 (2006).
[15] K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, and P. Hänggi,

Phys. Rev. B 75, 214308 (2007).
[16] N. Sahakyan, H. Azizbekyan, H. Ishkhanyan, R. Sokhoyan, and

A. Ishkhanyan, Laser Phys. 20, 291 (2010).
[17] B. Rosam, K. Leo, M. Glück, F. Keck, H. J. Korsch, F. Zimmer,
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