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Quantum molecular dynamics simulations of transport properties in liquid
and dense-plasma plutonium
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We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum
molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as
well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are
about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic
potential (modified embedded-atom method) obtained results 3–4 times larger than the experiment. The QMD
and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for
temperatures from 50 to 5000 eV and densities about 1–5 times ambient are compared with the one-component
plasma (OCP) model, using effective charges given by the average-atom code INFERNO. The INFERNO-OCP model
results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than
about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion
coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.
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I. INTRODUCTION

Plutonium (Pu) ranks as the heaviest naturally occurring
element, given its presence in trace amounts within uranium
ores. It has several atypical properties when compared to
standard metals [1,2]. Plutonium has a very low melt tem-
perature (913 K) and contracts while melting, a property
shared with water and some semimetals, has poor electrical
and thermal conduction characteristics, but has good elastic
compressibility. Six allotropes exist in the solid form that
exhibit a variety of different structures and properties. For
example, the α phase expands much faster than iron on
heating, while the δ phase contracts. These peculiarities can
be attributed to the location of Pu at a transition point between
itinerant and localized 5f electrons. The unusual behavior of
the substance does not cease at melt. As a liquid, plutonium
has a high surface tension and one of the largest viscosities
of any metal, although in actual flow its mass somewhat
ameliorates this distinction. While most noted in its role in
nuclear explosions, plutonium has many applications, e.g.,
supplying the heating element in radioisotope thermoelectric
generators used in remote sensing stations and deep-space craft
such as Cassini and forming a principal component in closed
fuel cycles for fast nuclear reactors as part of advanced energy
initiatives [1].

In contrast to the the extensive experimental, theoretical,
and computational efforts to elucidate the material properties
of the solid allotropes [3], the liquid phase has remained rel-
atively unexplored except around the melt temperature due to
its highly reactive, corrosive, and radioactive nature. Measure-
ments [4] of the shear viscosity exist up to 1500 K along with
measurements of various optical properties [5]. In addition,
the viscosities of some liquid Pu alloys, including U-Pu, have
been determined [4,6,7]. A few theoretical studies exist for
liquid plutonium near melt, including simulations with the
modified embedded atom method (MEAM) [8], which utilizes
an angle-dependent empirical interatomic potential, and an
estimate based on a mapping onto the Yukawa model [9].

Given the paucity of information above melt, we have
employed molecular dynamics simulation techniques to
determine the transport properties, both diffusion and vis-
cosity, of Pu from the liquid, through the warm, dense
matter (WDM) regime, to the plasma over a broad range of
temperatures (up to 5 keV) and compressions (1–5 times solid).
The WDM regime, although somewhat ill-defined, spans a
range of densities between 1/100 and 100 times solid and
temperatures from about 1 eV to several hundred electron
volts and marks a region that resembles a soup of various
particle types, including atoms, ions, free electrons, and even
molecules in a highly transient state for which a quantum
mechanical treatment obtains. As the temperature rises and
ionization increases, the particle interactions become more
classical, signaling the beginning of a conventional plasma
environment. To examine this broad range of conditions, we
applied quantum molecular dynamics (QMD) and orbital-free
molecular dynamics (OFMD) simulations, both of which treat
the electrons quantum mechanically and the nuclei classically.
The QMD method employs a finite-temperature Kohn-Sham
density-functional theory. QMD simulations of shear viscosity
first appeared over a decade ago for liquid Al [10] and a
liquid Fe-S alloy [11] at conditions found within the earth’s
core. The large computational requirements of QMD gener-
ally restrict its applications to relatively low temperatures.
Through the use of gradient-corrected, nonlocal kinetic energy
functionals, orbital-free density-functional calculations [12]
have accurately simulated solids, like Al and Si, at room
temperature. For this study, we restrict the OFMD to a
semiclassical formulation at the Thomas-Fermi-Dirac (TFD)
level, which permits its extension to much higher temperatures
and densities. Previous investigations on such diverse systems
as hydrogen [13,14], iron [15], gold [16], and lithium hydride
[17] have demonstrated that for static (equation-of-state),
transport, and optical properties the semiclassical OFMD
generally agrees well with QMD in intermediate temperature
and density regimes and can effectively reach very high
temperatures (∼5 keV). We also investigate the validity of the
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Stokes-Einstein relationship between diffusion and viscosity
and compare our results with the one-component-plasma
(OCP) model, using effective charges obtained with the code
INFERNO [18].

The remainder of this paper is organized as follows:
Section II describes the QMD and OFMD methods, the
prescriptions for determining the transport coefficients, and
the modified OCP model. Section III presents the results and
discussion of the various findings, and Sec. IV concludes with
a brief summary.

II. FORMALISM

A. Quantum molecular dynamics

The QMD simulations employed the Vienna ab initio
Simulation Package (VASP) [19–21], in which the electrons are
treated fully quantum mechanically using a plane-wave finite-
temperature density-functional-theory (FTDFT) description.
The electron-ion interaction is represented by a projector
augmented wave (PAW) pseudopotential. The ions are evolved
classically according to the forces due to the electron density
and the ion-ion repulsion. The molecular dynamics is per-
formed in the isokinetic ensemble. The system is assumed
to be in local thermodynamic equilibrium with the electron
and ion temperatures equal (Te = Ti = T ). In our simulations,
the electron temperature is fixed, and the ion temperature is
kept at this value through simple velocity rescaling (Woodcock
thermostat) [22].

At each time step t for a periodically replicated cubic
cell of length L and volume L3 containing Ne active
electrons and Ni ions in fixed spatial positions R(t), we
first perform a FTDFT calculation within the Kohn-Sham
(KS) construction [23] to determine a set of electronic state
functions [�i,k(r,t)|i = 1,Nb] and eigenenergies εi,k at each k

point k,

HKS�i,k(r,t) = εi,k�i,k(r,t), (1)

where in atomic units

HKS = −1

2
∇2 + Vext(r) +

∫
ne(r′)
|r − r′|dr′ + Vxc(r), (2)

with electron number density

ne(r) =
∑

i

fi |�i,k(r,t)|2 (3)

for the occupation number fi determined by a Fermi-Dirac
distribution at a prescribed electron temperature Te. The
terms in Eq. (2) represent the kinetic energy, the external
or electron-ion interaction, the Hartree contribution to the
electronic energy, and the exchange-correlation potential,
respectively.

The ions are then advanced with a velocity Verlet algorithm,
based on the forces due to the other ions and electronic density,
to obtain a new set of positions and velocities. Repetition
of these two steps propagates the system in time, yielding a
trajectory consisting of the positions and velocities [R(t),V(t)]
of the ions and a collection of state functions [�i,k(r,t)] for
the electrons.

All our simulations employed only � point (k = 0) sampling
of the Brillouin zone and 54 atoms (Ni) in the cubic cell

(with atomic number density ni = Ni/L
3). The mass density

is calculated using atomic weight A = 244 g/mol for Pu.
We solve the KS equations within the generalized gradient
approximation (GGA) [24] and describe the plutonium-
electron interaction with a PAW potential for 16 active
electrons with a maximum energy cutoff of 254 eV. A sufficient
number Nb of bands was included such that the occupation of
the highest band was less than 10−2. Trajectories were evolved
with time steps of 2.5 or 5.0 fs.

Plutonium metal has earned a reputation for being the most
complex and anomalous element in the periodic table. The
δ phase (fcc structure), which transforms from γ phase at
T = 593 K, has an astounding 25% larger atomic volume
than the ground state α phase (monoclinic structure, ρ0 =
19.82 g/cm3, V = 19.46 Å3/atom [25]). The electronic
structure for solid Pu at T = 0 K encompasses both localized
and itinerant 5f electrons. The state of affairs for electronic
structure calculations for solid Pu has been recently summa-
rized by Rudin [3]. Non-spin-polarized DFT in the GGA yields
structural data for α-Pu in good agreement with experiments.
To successfully describe hypothetical (not experimentally
observed) δ-Pu at T = 0 K requires enhancements to non-
spin-polarized DFT-GGA, such as the mixed level models
[26] and dynamic mean field theory [27]. Similar success
can be obtained when spin-polarized DFT-GGA is used to
introduce magnetic moments. The spin polarization emulates
the effects of electron-electron correlation in localized 5f
states. An antiferromagnetic spin density describes [28] the
equilibrium volumes and bulk modulus of δ-Pu well. For
example, V = 23.2 Å3/atom vs V = 24.93 Å3/atom, the
value obtained [25] from the analysis of the experimental
thermodynamical data for the six crystalline phases of Pu.
This result, predicted by simulation, has sparked a vigorous
debate as no magnetic moment has been observed [29] for
δ-Pu. However, when the δ-Pu is “melted” in the QMD
simulations, we find that the resulting short-range disorder
in the fluid and the finite-temperature electrons (FTDFT)
yield a nonmagnetic ground state for temperatures above
T = 0.15 eV. Thus, for consistency in the comparisons, we use
non-spin-polarized DFT for all of the QMD simulations in the
present work.

B. Orbital-free molecular dynamics

In OFMD simulations [15,30–32], the kinetic energy of
the electrons is treated in a semiclassical approximation, up
to first order in the partition function of the electrons. The
orbital-free procedure treats all electrons on an equal footing,
albeit approximately, with no distinction between bound and
ionized electrons. The orbital-free electronic free energy at ion
positions R is given by

Fe[R,ne] = 1

β

∫
dr

(
ne(r)
[ne(r)] − 2

√
2

3π2β
3
2

I 3
2
(
[ne(r)])

)

+
∫

dr Vext(r)ne(r) + 1

2

∫ ∫
drdr′ ne(r)ne(r′)

|r − r′|
+Fxc[ne], (4)

026404-2



QUANTUM MOLECULAR DYNAMICS SIMULATIONS OF . . . PHYSICAL REVIEW E 83, 026404 (2011)

where β = 1/kBT (kB is the Boltzmann constant) and Iν is the
Fermi integral [33] of order ν. The screened potential 
[ne(r)]
is related to the electronic density ne(r) by [32]

ne(r) =
√

2

π2β
3
2

I 1
2
(
[ne(r)]); (5)

charge conservation constrains the integral
∫

dr ne(r) to be
equal to the total electronic charge.

The first integral in Eq. (4), which depends only on the local
electronic density ne in the true spirit of the Hohenberg-Kohn
theorem [34], is the well-known finite-temperature Thomas-
Fermi expression [35]. The exchange-correlation term Fxc[ne]
is expressed in the local density approximation of Perdew and
Zunger [36,37]. For this study, we omit the von Weiszäcker
correction and work in a Thomas-Fermi-Dirac form using
the formula proposed by Perrot [38] to represent the kinetic-
entropic part. The divergence of the electron-nucleus potential
is regularized at each thermodynamic condition through a
procedure that closely follows the production of the norm-
conserving pseudopotential for QMD [16]. The cutoff radius
is chosen to be 30% of the Wigner-Seitz radius, sufficient to
prevent overlap of the regularization spheres. The number of
plane waves describing the local electronic density is then
adjusted to converge the thermodynamic properties to within
less than 1%.

At each time step, the electronic free energy is minimized in
terms of the local electronic density. The ions are propagated
as in the QMD method with the same number of atoms,
Ni = 54. Upon input of the mass density, the volume of the
cubic simulation cell is determined from the atomic weight
(A = 244) for Pu. The time steps, determined from the thermal
velocity of the nuclei and the Wigner-Seitz radius [39], varied
from 2.5 fs at the highest temperature (5 keV) to 5.0 fs at the
lowest temperature (50 eV) with a maximum of 20,000 steps.

C. Transport properties

The self-diffusion coefficient D can be computed from the
trajectory (so-called equilibrium molecular dynamics, EMD)
by the mean-square displacement

D = 1

6t
〈|Ri(t) − Ri(0)|2〉 (6)

or by the velocity autocorrelation function

D = 1

3

∫ ∞

0
〈Vi(t) · Vi(0)〉dt, (7)

where Ri (Vi) is the position (velocity) of the ith nucleus.
These two formulations of the self-diffusion coefficients are
formally equivalent in the long-time limit. We have generated
trajectories of sufficient temporal length to reach times such
that the velocity autocorrelation function becomes zero and
contributes no further to the integral, and the mean-square
displacement away from the origin consistently fits to a straight
line. Since the values obtained from these two approaches
generally lie within 1% of each other, we report only one
value.

The shear viscosity

η = lim
t→∞ η(t) (8)

is computed from the autocorrelation function (Green-Kubo
relation) of the off-diagonal component of the stress tensor
[40],

η(t) = V

kBT

∫ t

0
〈P12(0)P12(t ′)〉dt ′. (9)

The precision is somewhat improved by averaging the results
for the five independent off-diagonal components of the stress
tensor, Pxy , Pyz, Pzx , (Pxx − Pyy)/2, and (Pyy − Pzz)/2.

Unlike the self-diffusion coefficient, which involves only
single-particle correlations and attains significant statistical
improvement from averaging over the particles, the viscosity
depends on the entire system and therefore requires very long
trajectories in order to achieve the desired statistical accuracy.
We have previously found [17] that empirical fits to the inte-
grals of the autocorrelation functions can substantially shorten
the length of the trajectory required. In turn, extrapolation
of the fits to t → ∞ can more effectively determine the
basic dynamical properties. The partial integrals of the off-
diagonal stress-tensor autocorrelation function η(t), Eq. (9),
have been fit to an arbitrary functional form A[1 − e−( t

τ
)n],

where A and τ are free parameters, with A giving the desired
property in the t → ∞ limit, and the power n is either 1
(exponential) or 2 (gaussian). Fitting to this form at short-time
integrations produces reasonable approximations to η. This
fitting procedure also serves to damp long-time fluctuations.

The fractional statistical error in computing a correlation
function C from molecular-dynamics trajectories [41] is
given by

�C

C
=

√
2τ

Ttraj
, (10)

where Ttraj is the length of the trajectory and τ is the correlation,
or e-folding, time of the function, calculated from the fit
or from interrogations of the function itself. In the present
work, we generally fit over the interval [0,τ ] or [0,2τ ] for
n = 1 or n = 2, respectively. This interval emphasizes the fit
in the region where the function varies most quickly; as t

increases, the statistics become poorer since there are fewer
time origins to sum over when constructing the autocorrelation
function [40]. The computed statistical error in the viscosity
is 10% or less, but a total uncertainty of ∼20% is estimated
from experience due to the fitting procedure and extrapolation
to infinite time. The statistical error in the self-diffusion
coefficient is smaller than for viscosity since the particle
average gives an additional 1/

√
Ni factor.

To aid in the analysis of the simulation results, we will
consider three simple models or phenomenological forms for
describing transport: kinetic theory, the Arrhenius equation,
and the Stokes-Einstein relation. For the kinetic theory of hard
spheres, a model that is most appropriate for dilute atomic and
molecular gasses, DHS ∝ n−1

i T 1/2 and ηHS ∝ T 1/2.
The Arrhenius equation describes the general behavior of a

quantity as function of the temperature over a certain range as

A(T ) = A0e
−EA/kBT , (11)

where EA represents an activation energy for the initiation of
the process, A0 is a prefactor setting the magnitude, and kB

is the Boltzmann constant. This expression has found broad
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application in a variety of processes from diffusion to the
viscosity of liquid metals [42] such as U, Au, and Pb, as well
as chemical rates.

The Stokes-Einstein relation gives a connection between
the diffusion and shear viscosity though the expression

FSE[D,η] ≡ Dη

kBT ni
1/3

= CSE, (12)

where CSE is a constant and FSE is a shorthand notation for
the relationship between the transport coefficients. Various
prescriptions [43] exist for determining the constant CSE. From
the original derivations based on the motion of a test particle
through a solvent, CSE ranges from 1/6π (0.053) [44] to 1/4π

(0.080) [45] depending on the limits of the slip coefficient from
infinity (stick) to zero (slip), respectively. On the other hand,
Chisolm and Wallace [46] determined an empirical value of
0.18 ± 0.02 in a global fit to 21 metal species from a theory
of liquids near melt. We shall examine to what extent these
phenomenological forms represent the behavior of Pu over the
various regimes we explore.

D. INFERNO-OCP model

The classical one-component plasma presents an idealized
model in which point ions interact through the Coulomb
potential within a neutralizing background of electrons. Large-
scale molecular dynamics and Monte Carlo simulations of
the OCP [47–52] have demonstrated that many of the basic
properties such as diffusion and viscosity can be represented
in terms of a single quantity, the plasma coupling coefficient
�, defined by the ratio of the potential to kinetic energy,

� = Z2e2

akBT
, (13)

where Ze is the ion charge,

a =
(

3

4πni

)1/3

(14)

is the ion-sphere radius, and ni = ρ/M is the number density
for ions of mass M and mass density ρ. Systems in which the
ratio exceeds unity (� > 1) are designated as strongly coupled
with the particle interactions dominating the thermal motion.
The fits of the dynamical properties in terms of � range in
complexity from a simple power law to elaborate functions of
power series. For example, Hansen et al. [52] give

D

ωpa2
= 2.95�−1.34, (15)

where

ωp = (4πni/M)
1
2 Ze (16)

is the ion plasma frequency. Even this simple form masks
a complex dependence on the density and temperature, as
evinced through the ionic parameters a, �, and ωp. For the
Pu temperature and density ranges investigated in this paper,
we employ the more complicated fits of Daligault [51] for D

and of Bastea [47] for η. A more comprehensive study of the
various OCP calculations and fits appears in our earlier paper
on deuterium-tritium (DT) mixtures [14].

The OCP model applies strictly to a fully ionized system;
however, for the temperatures and densities in this study,
plutonium (Z = 94) remains only partially ionized. Therefore,
modifying the charge in such a manner as to reflect the
ionization degree may permit an extension of the OCP
formulas to cooler realms. A reasonable choice involves
replacing Z in Eq. (13) with an effective charge Z̄ determined
from a more realistic representation of an atom within the
plasma [53]. For this task, we employed the computer code
INFERNO [18], which solves the Dirac equation in a self-
consistent-field approximation assuming a finite temperature
and an average atom. Continuum states are treated on the
same basis as bound states, and “continuum lowering” is
automatically included. The high-density limit is essentially
the Thomas-Fermi-Dirac model, and the low-density limit
yields ions in equilibrium with free electrons. The effective
charge given by INFERNO is shown in Fig. 1 as a function of
temperature for the three representative densities. As expected,
Z̄ increases with increasing temperature; however, the curves
for different densities cross as a function of temperature
exhibiting the importance of both pressure and temperature
on ionization. We emphasize that, for the remainder of
the paper, we shall employ the label “INFERNO-OCP” to
designate that the OCP viscosities and diffusion coefficients
have been calculated with Z replaced by Z̄ to allow for partial
ionization effects.

As � gives an indication of the relative importance of
particle interactions and motion, the electron Fermi degeneracy
parameter � gauges the importance of quantum effects. This
parameter is defined as the ratio of the temperature to the
nonrelativistic Fermi energy as

� = kBT /EF , (17)
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FIG. 1. (Color online) Effective charge Z̄ for plutonium deter-
mined by the code INFERNO [18]. Z̄ is shown as a function of
temperature for densities of 20 (ρ1), 60, and 100 g/cm3, denoted
by circles, squares, and diamonds, respectively.
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where

EF = h̄2 (3π2ne)2/3

2me

, (18)

with ne and me being the electron number density and electron
mass, respectively. For � < 1, the system becomes degener-
ate, and quantum mechanics begins to play an increasingly
important role in the modeling of the system. We caution,
however, that � basically characterizes a classical system and
� derives from a noninteracting model of the electrons and
therefore both should be viewed as semiquantitative guides.

III. RESULTS AND DISCUSSION

A. Liquid plutonium

The shear viscosity and self-diffusion coefficients for liquid
plutonium, calculated by QMD, are given in Table I. In Fig. 2,
we compare the experimentally measured [4,6] viscosity of
liquid plutonium with results from our QMD simulations
(Ni = 54) and the previous MEAM calculations [8]. A liquid
density of ρL = 17.4 g/cm3 was used in the QMD simulations
at all four temperatures. This scaled QMD density accounts
in some measure for the difference between DFT and actual
Pu measurements. Using the ratio of the thermodynamic to
QMD atomic volumes for δ-Pu yields a scaled QMD density
of 16.2 g/cm3, close to the range of reported experimental
values for liquid Pu at melt (16.3–16.7 g/cm3) and at 1223 K
(16.19 g/cm3). In comparison, the MEAM simulations predict
a density of 17.29 g/cm3 at a melting temperature of 918 ±
5 K. The empirical MEAM potential enables simulations of
a larger number of atoms in a cell than QMD, and MEAM
calculations were performed with both equilibrium molecular

1000/T (1/K)

η 
(m

P
a 

s)

0.6 0.8 1 1.2
100

101

102

expt
QMD
MEAM-EMD
MEAM-NEMD

FIG. 2. (Color online) Shear viscosity of liquid plutonium as a
function of inverse temperature: experimental results (diamonds, no
error bars were given) [4], the present QMD calculations (circles, with
statistical error bars), and MEAM calculations [8] by equilibrium
molecular dynamics (EMD, solid squares) and by nonequilibrium
molecular dynamics (NEMD, open squares). The straight lines are
exponential (Arrhenius) fits to the data points.

TABLE I. QMD results for liquid plutonium (ρ = 17.4 g/cm3,
scaled to correspond to the experiment) self-diffusion coefficients and
viscosities. The error bars are statistical only. Numbers in brackets
represent powers of 10.

T (K) η (mPa s) D (cm2/s)

900 3.83 ± 0.15 1.8[−5]
1100 2.91 ± 0.12 2.1[−5]
1300 2.74 ± 0.11 2.8[−5]
1500 2.11 ± 0.08 3.6[−5]
2901 1.24 ± 0.05 1.2[−4]
6847 1.37 ± 0.07 2.3[−4]
10212 1.75 ± 0.09 2.8[−4]
12766 1.94 ± 0.08 3.3[−4]

dynamics (EMD) and nonequilibrium, shear-driven molecular
dynamics (NEMD). The two approaches agreed in the limits in
which the NEMD was extrapolated to zero shear rate and the
EMD was extended to long times. We note that for a Leonard-
Jones fluid, no size dependence for the calculated shear
viscosity was found [54] for Ni � 27. A spot check for OFMD
simulations of uranium at ambient density for temperatures
ranging between 200 and 1000 eV showed a sensitivity of 11%
or less between samples of Ni = 54 and 75. (Such a difference
can be attributed to the fitting procedure discussed above.)
Referring to Fig. 2, the QMD results are about 40% lower
than the experiment, while the MEAM results are 3–4 times
higher than the experiment, making the MEAM viscosities
4–7 times larger than the QMD. In both cases, the differences
with the experimental values are considerably larger than the
theoretical error bars (no error bars were given in the report
of the experiment). As can be seen from the points falling
approximately on a straight line in the semilogrithmic plot,
the results of both calculations as well as the experiment are fit
fairly well by an Arrhenius form. For the Arrhenius parameters,
the agreement between experiment vs QMD is quite good:
EA = −0.13 vs −0.11 eV and A0 = 1.09 vs 0.98 mPa s.
In comparison, for the MEAM simulations, EA = −0.2 eV
and A0 = 1.8 mPa s. Another calculation with a simple
model based on a mapping onto the Yukawa model [9] gave a
viscosity ∼20% below the QMD result at the melt point.

No experimental results exist for the diffusion constants of
plutonium. The results of the present QMD calculation and the

TABLE II. QMD results for plutonium self-diffusion coefficients
and viscosities at ρ = 26.1 g/cm3. The error bars are statistical only.
Numbers in brackets represent powers of 10.

T (eV) η (mPa s) D (cm2/s)

0.50 3.6 ± 0.2 9.5[−5]
1.00 4.3 ± 0.3 1.6[−4]
1.50 4.8 ± 0.3 2.0[−4]
2.00 5.5 ± 0.2 2.6[−4]
2.34 5.5 ± 0.3 3.1[−4]
3.00 5.8 ± 0.2 3.5[−4]
3.50 6.2 ± 0.3 4.0[−4]
4.00 6.7 ± 0.3 4.3[−4]
4.50 6.5 ± 0.5 4.9[−4]
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TABLE III. OFMD results for plutonium self-diffusion coeffi-
cients and viscosities at ρ = 26.1 g/cm3. The error bars are statistical
only. Numbers in brackets represent powers of 10.

T (eV) η (mPa s) D (cm2/s)

2.00 7.3 ± 0.3 2.0[−4]
3.00 6.3 ± 0.3 3.0[−4]
4.00 6.0 ± 0.2 3.9[−4]
5.00 6.3 ± 0.3 4.3[−4]

MEAM (done with EMD only) calculation are shown in Fig. 3.
The QMD diffusion constants are about 3–7 times larger than
the MEAM values. Again, both are well fit by an Arrhenius
form. The Arrhenius parameters for the QMD and MEAM
are EA = 0.13 and 0.37 eV and A0 = 9.4 × 10−5 and 2.5 ×
10−4 cm2/s, respectively. Thus, the QMD results decay more
slowly with temperature as compared to the MEAM results.

B. Plutonium in the intermediate regime

In the previous section, we examined the behavior of
plutonium at liquid densities and temperatures up to 1500 K.
We now raise the temperature while remaining near liquid
density (∼20 g/cm3) in order to enter the warm dense matter
regime. For plutonium in the range of 1–5 eV, � ranges from
about 550 to 150, and � varies from about 0.015 to 0.06, with
both calculated using Z = Z̄. Thus, the medium becomes both

TABLE IV. Self-diffusion coefficients D and viscosities η, deter-
mined by OFMD, and the values of Z̄, determined by INFERNO, used
in the OFMD calculations. ρ1 = 20 g/cm3.

ρ/ρ1 T (eV) η (mPa s) D (cm2/s) Z̄

1 50 8.3 0.00293 12.24
1 100 12.1 0.00389 17.59
1 200 15.5 0.00518 24.51
1 300 23.3 0.00594 30.66
1 500 29.1 0.00735 40.01
1 600 30.6 0.00786 43.76
1 650 33.5 0.00818 45.19
1 700 36.6 0.00851 47.04
1 750 34.9 0.00864 48.54
1 800 35.8 0.00886 50.14
1 1000 42.0 0.00993 55.03
3 50 22.8 0.00140 17.04
3 100 32.1 0.00215 21.16
3 200 45.7 0.00303 25.39
3 300 54.1 0.00371 28.84
3 500 68.8 0.00436 38.02
3 750 87.3 0.00558 46.00
3 1000 95.3 0.00640 51.49
3 5000 163.9 0.01710 83.60
4 5000 190.5 0.01490 83.07
5 200 71.9 0.00236 28.24
5 300 81.6 0.00291 30.75
5 500 101.6 0.00372 37.48
5 750 124.7 0.00448 45.35
5 1000 149.3 0.00513 50.87
5 5000 234.3 0.01350 82.30

1000/T (1/K)

D
 (

cm
2 /s

)

0.6 0.8 1 1.2
10-6

10-5

10-4

QMD
MEAM-EMD

FIG. 3. (Color online) Diffusion coefficient of liquid plutonium
as a function of inverse temperature: the present QMD calculations
(circles) and MEAM calculations with equilibrium molecular dynam-
ics (squares) [8]. The straight lines are exponential (Arrhenius) fits to
the data points.

strongly coupled and degenerate, with quantum mechanical
effects expected to play a major role. The QMD and OFMD
results for D and η are shown in Figs. 4 and 5 as a function
of temperature for two densities: (1) ρL = 17.4 g/cm3, the
“DFT-scaled” liquid density, for QMD (see earlier discussion)
and (2) 1.5 ρL = 26.1 g/cm3 for both QMD and OFMD
[Tables II and III].

T (eV)

D
 (

cm
2 /s

)

0 1 2 3 4 5
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

QMD (ρL)
QMD (1.5ρL)
OFMD (1.5ρL)

FIG. 4. (Color online) Diffusion coefficients of plutonium as
a function of temperature in the WDM regime, calculated by the
QMD method for densities of 17.4 g/cm3 (ρL; solid circles) and
26.1 g/cm3 (1.5 ρL; open circles) and by the OFMD method at
a density of 26.1 g/cm3 (1.5ρL; open squares). The straight line
segments between data points are provided to guide the eye only.
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OFMD (1.5ρL)

FIG. 5. (Color online) Viscosities of plutonium as a function of
temperature in the WDM regime, calculated by the QMD method for
densities of 17.4 g/cm3 (ρL; solid circles) and 26.1 g/cm3 (1.5 ρL;
open circles) and by the OFMD method at a density of 26.1 g/cm3

(1.5 ρL; open squares). The straight line segments between data
points are provided to guide the eye only, and the error bars are
statistical only.

We first examine the QMD results at liquid density ρL. The
diffusion coefficient shows a monotonic rise with increasing
temperature, although with some changes of slope. However,
the viscosity displays a clear change in character as a
function of temperature. Just above the melting temperature,
the viscosity decreases with increasing T with an Arrhenius
behavior (∼e−Eη/kBT with Eη < 0) typical of a liquid metal,
whereas at higher temperatures, the viscosity steadily rises
with temperature, resembling the behavior of a hard-sphere
fluid or a partially ionized one-component plasma. This
behavior occurs in other systems, even for the simplest case
of hydrogen [55], and represents a shift from processes
dominated by the potential interactions to those controlled
by the kinetics. The diffusion coefficient has only a kinetic
component related to the correlations in position or velocity,
while the stress tensor contains contributions both from the
motion and potential interactions of the particles. Therefore,
the change in the nature of the fluid as the temperature rises
becomes more apparent in the viscosity. This competition leads
to a distinct minimum in the viscosity at around T ∼ 0.4 eV.

In addition, this transition regime provides an excellent test
bed for comparing the QMD and OFMD approaches. Due to
the number of active electrons and the increasing number of
states required for the diagonalization of the KS equations,
the QMD becomes computationally prohibitive above about
5 eV with our choice of parameters. On the other hand, the
need to represent detailed quantum mechanical interactions
begins to wane as the temperature rises, so that the OFMD
at the TFD level gains greater validity. To this end, we
have compared the QMD and OFMD at the higher density
(1.5 ρL), as displayed in Figs. 4 and 5. The results for the

T (eV)

D
η/

k B
T

n
i1/

3

0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

CW

slip

stick

FIG. 6. (Color online) Stokes-Einstein relation FSE as a function
of temperature for the diffusion coefficients and viscosities shown in
Figs. 4 and 5. The error bars are statistical only, and the straight line
segments between data points are provided to guide the eye only. The
flat lines show the constant values of CSE for stick (solid) and slip
(long dashed) boundary conditions as well as the empirical result of
Chisolm and Wallace [46] (short dashed). The designations of the
curves are the same as in Figs. 4 and 5.

two formulations between 2 and 4 eV agree closely to within
the statistical error bars for both D and η. While comparison
over a wider regime in temperature and density as with DT
[14] and iron [16] would provide additional confirmation,
the close correspondence in magnitude and behavior tends
to corroborate the OFMD approximation and its extension to
higher densities and temperatures.

In Fig. 6, we plot the Stokes-Einstein expression FSE[D,η]
as a function of temperature, using the diffusion coefficients
and viscosities from the OFMD at 1.5ρL and the QMD at
ρL and 1.5ρL. Within the expected fitting error of ∼20%
for determining viscosity from the simulations, the QMD
and the OFMD results show relatively good agreement and
are bounded by the classical values of CSE from below
and the Chisolm-Wallace liquid metal value from above.
The function FSE[D,η] for the QMD at the lower density
ρL evinces a sharp decline at the lowest temperatures. The
near-linear rise of the diffusion coefficient with temperature
in this region basically cancels the temperature dependence
of the denominator, leaving the behavior of FSE dominated
by the viscosity and thus reflecting its sharp decline at low
temperature, as shown in Fig. 5. As discussed above, this sharp
bend in the viscosity with temperature reflects a change from
potential to kinetic dominated regimes. This steep decline is
exaggerated by the point at 900 K. If we disregard the value
at 900 K near the experimental melting point, then the QMD
results between T = 1100 and 40 000 K for both densities
are close to a constant value of CSE = 0.11 ± 0.01. Omitting
the lowest temperature seems reasonable since the melting
temperature for Pu as predicted by QMD is not known, as
too many atoms would be required to perform a moving
interface [56] melting simulation with a reasonable amount
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FIG. 7. (Color online) Self-diffusion coefficients of dense-
plasma plutonium, calculated by OFMD, as a function of temperature
for densities of 20 (ρ1), 60, and 100 g/cm3. The dashed lines connect
points calculated by the INFERNO-OCP model.

of computational resources. The OFMD results for the higher
density also remain almost constant with CSE ∼ 0.1.

C. Plutonium in the dense-plasma regime (above 50 eV)

The self-diffusion coefficient D and the shear viscosity η

are shown in Figs. 7 and 8, respectively, for plutonium at
temperatures between 50 eV and 5 keV and densities between
20 and 100 g/cm3, or approximately solid density to 5 times
compressed [Table IV]. Both transport properties increase with
temperature in this range. The diffusion coefficient decreases
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P
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FIG. 8. (Color online) Shear viscosities of dense-plasma pluto-
nium, calculated by OFMD, as a function of temperature for densities
of 20 (ρ1), 60, and 100 g/cm3. The dashed lines connect points
calculated by the INFERNO-OCP model.
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FIG. 9. (Color online) Stokes-Einstein relation FSE as a function
of temperature for the diffusion coefficients and viscosities shown
in Figs. 7 and 8. The closed symbols are the results of the OFMD
calculations, and the open symbols are the results of the INFERNO-OCP
model. The flat lines show the constant values of Stokes-Einstein for
stick (solid) and slip (long dashed) boundary conditions as well as
the empirical result of Chisolm and Wallace [46] (short dashed).

with increasing density, while the viscosity increases with
increasing density.

The Stokes-Einstein relation of D and η, given by Eq. (12),
is shown in Fig. 9. The quantity FSE is only weakly dependent
on temperature and density, with an average value around
0.075. This value is larger than the stick value of 1/6π

(=0.053) but close to that for slip 1/4π (= 0.080) for a
Brownian fluid. It is smaller than found for plutonium in the
liquid or WDM regimes (see previous sections). We note that
FSE is much more nearly constant as a function of density and
temperature than found in our recent study [14] on the DT
mixture in the WDM regime.

The INFERNO-OCP model results are shown as dashed
curves in Figs. 7, 8, and 9 for comparison with the OFMD
calculations. With Z̄ calculated with INFERNO, � ranges from
26 to 71 for the temperatures and densities considered. At solid
density the INFERNO-OCP results are within about 40% of the
OFMD results at the calculated temperatures, the OFMD being
smaller for both diffusion and viscosity. In the higher-density
cases (3 and 5 times solid density), the agreement is similar to
that at high temperatures; however, the INFERNO-OCP results
deviate from the OFMD results with a different slope at the
lower temperatures. The INFERNO-OCP values of FSE, shown
in Fig. 9 by the open data points, are larger than given by
the OFMD calculations but show the same tendencies with
temperature and density.

Some simplified models or limiting cases, such as the hard-
sphere approximation, predict power-law dependences on
temperature and density. Though such formulas are certainly
oversimplified, we have attempted to fit our numerical data on
viscosity η and self-diffusion D in the whole temperature and
density range using similar forms but different exponents. The
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FIG. 10. (Color online) Shear viscosities of dense-plasma pluto-
nium with fits (dashed) using Eq. (20).

resulting least-squares fits are

Dfit = aDT bD (ρ/ρ0)cD cm2/s, (19)

with aD = 0.000 239 ± 0.000 022, bD = 0.548 ± 0.014, and
cD = −0.383 ± 0.023, and

ηfit = aηT
bη (ρ/ρ0)cη mPa s, (20)

with aη = 3.13 ± 0.26, bη = 0.360 ± 0.010, and cη =
0.780 ± 0.034, where T is in eV and ρ is in g/cm3. The
fit of the viscosity is shown in Fig. 10. These simple formulas
fit all the calculated points to within ∼30%, except for those
at T = 50 eV and ρ/ρ0 = 1. The fits improve as T increases.
For T � 300 eV, the deviations of the fits from the data are
less than 10%. The temperature and density scaling of FSE

[Eq. (12)] predicted by the least-square fits is nearly constant,
weakly scaling as T −0.092 and ρ0.064, respectively. Though
the deviations of the fits from the actual data are sometimes
greater than the statistical errors, the fits should be satisfactory
for many purposes.

IV. SUMMARY

We have calculated the self-diffusion coefficients and
viscosities of plutonium from liquid to dense-plasma states

by employing two quantum mechanical molecular dynamics
approaches: (1) a finite-temperature density-functional theory
in the Kohn-Sham formulation and generalized gradient
approximation (QMD) and (2) an orbital-free method at the
Thomas-Fermi-Dirac level (OFMD). For reference, we also
employed a one-component plasma (OCP) model with an
effective charge determined from the average-atom program
INFERNO.

For the liquid state, we found the QMD viscosity was lower
by about 40% than experiment [4] and lower by by a factor
of 4–7 than molecular dynamics simulations using a modified
embedded-atom method (MEAM) [8]. Both the viscosity and
diffusion coefficients exhibit Arrhenius behaviors with the
QMD activation energy for the viscosity agreeing well with
experiment but about 40% lower than the MEAM calculation.
At intermediate temperatures (1–5 eV), the QMD and OFMD
results for diffusion and viscosity agree to within ∼20%. The
viscosity has a minimum at T ≈ 0.4 eV, corresponding to the
transition from a liquid into the warm, dense matter regime.
For dense-plasma conditions (T = 50 eV to 5 keV, ρ = 1–5
times solid density), both the diffusion coefficient and viscosity
increase with increasing temperature. With increasing density,
the diffusion coefficient decreases, while the shear viscosity η

increases.
A Stokes-Einstein relation between the viscosity and

diffusion coefficient holds reasonably well for both the WDM
and dense-plasma regimes, although with different constants:
CSE ≈ 0.13 and 0.075, respectively. In the dense-plasma
regime, the transport properties of the modified OCP agree
with the OFMD to within ∼40% at solid density (∼20 g/cm3)
but show greater departures at higher densities and lower
temperatures. A simple analytic fit of the calculated diffusion
coefficient and viscosity is provided.
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l’Énergie Atomique, 2007.
[49] B. Bernu and P. Vieillefosse, Phys. Rev. A 18, 2345 (1978).
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