
PHYSICAL REVIEW E 83, 026403 (2011)

Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem:
Equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb
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The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully
variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron,
copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion
sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the
variational equations. The formula used for the electronic pressure is simple and does not require any numerical
differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the
model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and
interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density
approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and
Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented.
Comparisons with other approaches, including the INFERNO model, and with available experimental data are
given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom
models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the
models is proposed. A preliminary study of the validity domain of the INFERNO model is also included.
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I. INTRODUCTION

Theoretical models of matter at high-energy-density,
typically 1011J m−3 and beyond, became necessary in the
1930s in the context of astrophysics. The problem of opacity
was addressed, for example, by Rosseland in 1930 [1]. Since
then, interest in this problem has remained constant, and ever
more elaborate approaches have appeared (see, for example,
[2–4]). Like opacity, the equation-of-state (EOS) was the
object of constant efforts (see, for example, Refs. [5,6]).

While the need for models of matter at high-energy-density
is still of great interest in astrophysics, other fields of appli-
cations have appeared. Among these are inertial confinement
fusion (ICF, see Refs. [7,8]), the realization of x-ray sources
(see Refs. [9,10]), and the interpretation of xuv spectroscopy
experiments (see Refs. [11,12]).

These various applications usually involve matter densities
from a fraction of solid density to several hundred times solid
density, at temperatures between a few electron volts to tens
of kiloelectron volts.

In this paper, we address plasmas in local thermodynamic
equilibrium (LTE) where the ions are moderately or strongly
coupled (� > 1, � � 1), and electrons are partially or totally
degenerate (kBT � EF ). Free electrons are taken to be non-
relativistic in the sense that (kBT � mc2). However, elements
taken into account can be heavy and may require a relativistic
wave equation for atomic electrons. These plasmas are typical
for ICF and astrophysics and combine aspects of hot matter,
such as ionization and fluid behavior, and aspects of cold
matter, such as electron degeneracy.

*robin.piron@cea.fr

In the theoretical context that we have just expressed, we
can consider treating bound electrons with various degrees
of complexity and precision. We can account for the detailed
atomic levels that exist in the plasma, consider configuration
averages, superconfiguration averages [13], or even only
consider the mean configuration of an atom. In this last case,
we deal with what is called an average atom. All these methods
rely on a common theoretical basis that is a particular concept
of an atom in a plasma. This concept is not obvious and several
difficulties are inherently connected to its formulation.

Among the first approaches to atoms in plasmas, the most
important and still very useful is the Thomas-Fermi (TF)
model at finite temperature proposed by Feynman, Metropolis,
and Teller in Ref. [14]. In this model, the atom may be
viewed as confined to the Wigner-Seitz (WS) sphere, which is
immersed in a homogeneous jellium composed of delocalized
electrons neutralized by a uniform ion background. At low
temperatures, however, the TF WS atomic sphere may also
be considered as an approximation to the basic cell of a
periodic solid (see, for instance, Ref. [15]). In the TF model,
calculations are performed inside the WS sphere, resulting in
the self-consistent-field potential and electron density. They
provide also the homogeneous electron or jellium density
beyond the WS radius, obtained as the boundary value of
the TF electron density at the WS radius. The jellium density
provides the chemical potential and the average number of
delocalized electrons per atom. The TF model has an important
feature which is the thermodynamic consistency. That means it
can be obtained from a variational minimization of the system
free-energy and fulfills the virial theorem. This theorem allows
one to express the electron pressure as a combination of the
electron kinetic and interaction energies. Thus in the case of
the TF model, the variational approach provides the plasma
electronic structure and the average ionization simultaneously.
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However, being quasiclassical, the model does not lead to
any shell structure. Nevertheless, potentials obtained from this
model have sometimes been used to calculate wave functions
connected to radiative properties of plasmas (see Refs. [3,16]).
Some works have also been performed to include shell effects
in the TF model (see, for example, Refs. [17–19]).

A first comprehensive and useful self-consistent quantum
extension of the TF model was the average-atom model of
Rozsnyai (see Ref. [20]). In this model, the bound electrons are
treated quantum mechanically while the delocalized electron
population is still treated as a TF fluid. Such a dual approach to
electrons makes a variational derivation of Rozsnyai’s model
impossible, leads to discontinuities in thermodynamic quan-
tities, and is one of the reasons for the violation of the virial
theorem in this model. Due to its relative simplicity, Rozsnyai’s
model has been used in many approximate approaches to
plasma radiative properties or as a starting point in detailed
configuration codes.

The first purely quantum approach to an average atom
in plasma is Liberman’s INFERNO model (see Ref. [21]). In
Liberman’s model, the WS sphere appears explicitly as the
cavity into which noncentral ions do not enter. The delocalized
electrons are treated quantum mechanically in the INFERNO

model, which would result, in principle, in Friedel-type
oscillations of the self-consistent electron density and potential
extending beyond the WS radius. However, in the model,
these oscillations are disregarded beyond the WS sphere,
with the potential and density consequently approximated
as homogeneous. This assumption implies the neutrality of
the WS sphere. Both the confined-atom aspect and the WS
sphere neutrality introduced in this model (in analogy to
the TF model) imply that from a formal point of view, the
INFERNO model does not have a variational character (see
Refs. [22–25]). It appears that this nonvariational character
of the model may have some practical implications, although
probably only in a rather restrained region of plasma temper-
atures and densities (see Sec. IV). Recently, a new version
of the INFERNO model, called PURGATORIO, was developed by
Wilson and his collaborators (see Refs. [26,27]).

Perrot proposed [28] an improved quantum average atom
in plasma model by eliminating the requirement of the
WS sphere neutrality. In his AJCI (“Atome dans le Jellium
de Charge Imposée,” that is, atom-in-jellium with imposed
charge) model, the self-consistent potential and electron
density are considered in the whole space with the condition
that the potential is screened. This corresponds to the neutrality
condition in the whole space. The concept of the WS cavity
where the noncentral ions are absent is preserved in the AJCI
model. However, the formulation of the AJCI model does not
provide the ion mean charge or, in other words, the jellium
density of the surrounding medium. For that reason, one has
to impose in the model the mean ion charge, which explains
the origin of its name. In practice, it was usually set to the
value stemming from the TF model. This fact suggested that
something was missing in the AJCI model. This problem
was solved in Refs. [22,23], in which the presence of the
zero-order free-energy term in the cluster expansion provided
the lacking variational equation for the average mean charge.
The first practical realization of the new variational model of
Refs. [22,23] was reported in Refs. [24,25]. In these two last

publications, the ionization model, which was introduced in
Refs. [22,23] as a postulate, was found to have the meaning
of the cluster expansion of the total number of electrons per
atom. This observation simplified the model and made it more
consistent. In the new formulation, the model simply relies
on the cluster expansions of two observable quantities: the
average free-energy per ion and the total number of electrons
per ion.

In this paper, we apply the VAAQP code, which is based
on the ideas developed in Refs. [22–25], to equation-of-
state calculations. The theory is outlined in Sec. II. The
numerical method and main options of the code are presented
in Sec. III. The EOS results, mainly in form of the mean
ionization in the case of aluminum, iron, copper, and lead
in the warm-dense-matter (WDM) regime, are displayed in
Sec. IV. This section also contains comparisons with results
from the INFERNO and the Thomas-Fermi-Dirac (TFD) models.
Hugoniot shock adiabats for the same materials are presented
in Sec. V, together with comparisons to results from the
INFERNO and TFD versions of the code as well as with available
experimental data. Section VI contains the direct proof of
the virial theorem in both relativistic and nonrelativistic
cases. Following Ref. [14], a sketch of a proof of the virial
theorem based on the scaling properties was proposed for
the nonrelativistic case in Ref. [22]. During work on the
code, it became necessary to calculate and control directly
all virial contributions as well as to check the virial theorem.
It became important also to verify if the virial theorem is
fulfilled whatever the choice of the local-density exchange
correlation free-energy. We show in Sec. VI that the virial
and thermodynamic pressures are identical if the variational
equations of the model are respected. An important result is the
fact that the proof remains true for all forms of the local-density
exchange-correlation term, and that this statement holds in
both the relativistic and nonrelativistic cases. The problem of
the exchange-correlation contribution to pressure in the case
of high-temperature compressed matter remains an important
issue (see, for instance, [29]). Recently, there have been some
continuous efforts aimed at developing a new EOS model
for the Super-Transition Arrays (STA) code (the so-called
EOSTA approach; see Refs. [30–32]). The starting point in
this new EOS is the INFERNO-type model. In this approach,
a new exchange-correlation potential is constructed from
the requirement that the thermodynamic and virial pressures
be equal. We think that our proof and considerations from
Sec. VI may allow one to better understand the EOSTA
approach and its limitations. Section VII contains conclusions.

II. OUTLINE OF THE VARIATIONAL-AVERAGE-ATOM-
IN-QUANTUM-PLASMAS (VAAQP)

MODEL

A. Cluster expansion

We consider a plasma composed of ions of element having
atomic number Z at local thermodynamic equilibrium (LTE)
characterized by the temperature T and the ion density ni . Let
us consider the electron free-energy per unit volume averaged
over all possible ion distributions. We may perform a cluster
expansion of this free-energy density and retain only the first
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two terms of this expansion (see Refs. [22–25] and references
therein for more details):

f = f0 + 〈f 〉1 + · · · . (1)

The zeroth-order term f0 corresponds to the free-energy per
unit volume of a uniform electron gas with a density n0 that
is unknown and has to be determined from the model. The
first-order term 〈f 〉1 corresponds to the averaged contributions
of all one-center ions and has the form

〈f 〉1 = ni

∫
d3r
{
f

jel
1 {n0,X; ni,Z,T ,e2,m; r}

− f0(n0; ni,Z,T ,e2,m)
} = ni�F1, (2)

where f
jel
1 is the free-energy per unit volume of the system

composed of a central ion immersed in an infinite jellium.
By X we denote all internal structure variables of the ion. In
the preceding expression, according to the cluster-expansion
technique, the zeroth-order term is subtracted, which assures
the convergence of the integral. It is worth noting that we
display explicitly the dependence of functionals on the squared
electron charge e2 as well as on the electron mass m. These
dependences will be needed in Sec. VI.

We limit ourselves to the treatment of the cluster expansion
up to the first-order term, which means that we only consider
effects of up to one central ion. This hypothesis may be viewed
as defining the framework of the atomic physics of plasmas.

In the present paper, we study the electrons in the frame-
work of the density-functional theory (DFT), as defined in
Ref. [33]. For that reason, we can assume that all internal
structure variables previously denoted by X reduce to the
electron density n(r) or equivalently to the trial potential v(r)
corresponding to that density. For the sake of simplicity, our
choice is to construct the free-energy functional using v(r)
as the unknown variable. Consequently, the notation n(r) that
we will use for the electron density is to be understood as
a shorthand notation for the functional n{n0,v(r ′); T ,m; r}.
Once the full dependence of a functional has been stated, we
will often omit it in order to shorten the notation.

From Eq. (1), we can write the free energies per ion as
follows:

F {n0,v(r); ni,Z,T ,e2,m}
≡ F0(n0; ni,T ,e2,m) + �F1{n0,v(r); ni,Z,T ,e2,m}, (3)

where F0 = f0(n0; T ,e2,m)/ni . We treat the �F1 contribution
according to the so-called Mermin-Kohn-Sham formalism (see
Refs. [34,35]),

�F1 ≡ �F 0
1 {n0,v(r); T ,m} + �F el

1 {n0,v(r); ni,Z,T ,e2,m}
+�F xc

1 {n0,v(r); T ,e2,m}. (4)

�F 0
1 is the kinetic-entropic contribution to the free-energy of

a system of noninteracting electrons, �F el
1 is the electrostatic

part of the free-energy, and �F xc
1 is the exchange-correlation

part.
We may also perform the cluster expansion of the total

number of electrons per ion taking into account only the first
two terms of this expansion (see again [22–25] and references
therein):

Z = Z∗ + 〈Z〉1 + · · · . (5)

The zeroth-order term Z∗ = n0/ni corresponds to the average
number of free electrons per ion, which has to be determined
from the model. The first-order term 〈Z〉1 corresponds to the
averaged contributions to bound electrons per ion coming from
all one-center ions and has the form

〈Z〉1 = ni

∫
d3r{n{n0,X; ni,Z,T ,e2,m; r} − n0}. (6)

B. DFT expression of the free-energy

We denote by H̃ the general one-body Hamiltonian
operator. In the nonrelativistic case, H̃ is the Schrödinger
Hamiltonian operator H̃S ,

H̃S ≡ P̃ 2

2m
− Ṽ , (7)

where P̃ is the momentum operator and Ṽ is the trial potential
operator such as, in the Dirac notation, Ṽ |r〉 = |r〉v(r). In the
relativistic case, H̃ is the Dirac Hamiltonian operator H̃D ,

H̃D ≡ T̃ + (β − I)mc2 − Ṽ ; T̃ ≡ α · P̃c, (8)

where α,β are the Dirac matrices. The relativistic extension
of the DFT formalism is addressed in Refs. [36,37]. We also
define the generic notation for the Hamiltonian operators of
the free electrons,

H̃ 0 ≡ H̃ + Ṽ . (9)

We denote by {{|ϕj 〉},{|ϕk,s〉}} the basis constituted by the
eigenstates of H̃ . This basis is composed of the discrete {|ϕj 〉}
and continuum {|ϕk,s〉} eigenstates. In the nonrelativistic case,
the |r〉 representations ϕk,s(r) of these eigenstates are wave
functions independent of the spin indices s, which can be
omitted. In the relativistic case, we disregard the negative
energy states (as in Refs. [36,37]), and the |r〉 representations
ϕk,s(r) of the eigenstates are Dirac bispinors. To denote the
Hermitian conjugate of ϕk,s(r), we use the generic notation
ϕc

k,s(r). In the nonrelativistic case ϕc
k,s(r) = ϕ∗

k(r), whereas in

the relativistic case ϕc
k,s(r) = ϕ

†
k,s(r). We denote by {|ϕ0

k,s〉}
the basis constituted by the eigenstates of H̃ 0.

The kinetic-entropic contribution to the free-energy can be
expressed as follows:

�F 0
1 = gs

∑
j

∫
d3r
{
f F

n0,T
(Ej )ϕc

j (r)H 0ϕj (r) − T Sn0,T (Ej )|ϕj (r)|2}+ gs

∑∫ d3k

(2π )3

∫
d3r
{
f F

n0,T
(Ek)ϕc

k,s(r)H 0ϕk,s(r)

− T Sn0,T (Ek)|ϕk,s(r)|2 − f F
n0,T

(Ek)ϕ0 c
k,s(r)H 0ϕ0

k,s(r) + T Sn0,T (Ek)
∣∣ϕ0

k,s(r)
∣∣2}, (10)
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where f F
n0,T

(E) = (e(E−μn0 )/(kBT ) + 1)−1 is the Fermi-Dirac
distribution related to the chemical potential μn0 such that∫ ∞

0
dE
{
f F

n0,T
(E)
} = n0 (11)

and

Sn0,T (E) ≡ −kB

(
f F

n0,T
(E) ln

(
f F

n0,T
(E)
)

+ (1 − f F
n0,T

(E)
)

ln
(
1 − f F

n0,T
(E)
))

. (12)

The sum-integral symbol in Eq. (10) denotes the sum on
the spin index s in the relativistic case, and gs is the
spin-degeneracy factor (1 in the relativistic case, 2 in the
nonrelativistic case).

The electrostatic part of the free-energy �F el
1 can be written

as

�F el
1 = e2

∫
d3r ′

{
(n(r ′) − n0G(r ′))

×
(

−Z

r ′ + 1

2

∫
d3r ′′

{
n(r ′′) − n0G(r ′′)

|r ′ − r ′′|
})}

,

(13)

where n0G(r) corresponds to the noncentral-ion charge
density. In this way, first-order contribution to the cluster
expansion then involves the second-order ion-ion correlation
function G(r). We approximate G(r) by the Heaviside function
θ (r − R), with a radius R. This constitutes a rather crude ap-
proximation of the ion-ion correlation function corresponding
to a coupling parameter � ∼ 5 (see, for example, Ref. [38]),
where � ≡ Z∗ 2/(kBT R

ni

WS). The noncentral ions are thus
supposed to form a homogeneous charge background of a
density n0, which does not enter into a sphere of a radius R.
The function G(r) in such simplified form corresponds to the
idea of a cavity first introduced by Liberman in the INFERNO

model, which, however, has been present in practically all
models of atoms in plasmas. The condition of overall charge
neutrality then reads

Z −
∫

d3r{n(r) − n0θ (r − R)} = 0. (14)

From the comparison of the neutrality condition Eq. (14) with
Eq. (5), it follows that R must be the WS radius,

R = R
ni

WS =
(

3

4πni

)1/3

. (15)

In the framework of the local-density-approximation
(LDA), the exchange-correlation part of the free-energy �F xc

1
can be written as

�F xc
1 =

∫
d3r{fxc(n(r),T ,e2,m) − fxc(n0,T ,e2,m)}, (16)

where fxc(n,T ,e2,m) is the exchange-correlation free-energy
density function (see, for instance, Ref. [39]). We denote by
vxc(n,T ,e2,m) the exchange-correlation potential, namely,

vxc(n,T ,e2,m) ≡ ∂fxc(n,T ,e2,m)

∂n
. (17)

C. Minimization of the free-energy

We minimize the functional F with respect to its depen-
dences on n0, v(r), with the additional constraint of overall
charge neutrality [Eqs. (14) and (15)].

We thus define the functional 	 as follows:

	{n0,v(r); ni,Z,T ,e2,m}
≡ F {n0,v(r); ni,Z,T ,e2,m}

− γ

(
Z −

∫
d3r
{
n(r) − n0θ

(
r − R

ni

WS

)})
, (18)

where γ is a Lagrange multiplier. To find the thermodynamic
equilibrium, we have to fulfill the equations

δ	{n0,v(r); ni,Z,T ,e2,m}
δv(r)

= 0, (19)

δ	{n0,v(r); ni,Z,T ,e2,m}
δn0

= 0. (20)

It can be shown (see Refs. [22,23,40]) that the calculation of
these functional derivatives leads, respectively, to

γ = μn0 + v(r) − vel(r) + vxc(n(r)), (21)∫
d3r
{
vel(r)θ

(
r − R

ni

WS

)} = 0, (22)

where we introduced the shorthand notation

vel (r) ≡ Z

r
−
∫

d3r ′
{

n(r ′) − n0θ
(
r ′ − R

ni

WS

)
|r ′ − r|

}
. (23)

We immediately note that since the trial potential is assumed
to be local and all the charges are screened, that is, n(r →
∞) = n0, it follows from Eq. (21) that

v(r) = vel(r) − vxc(n(r)) + vxc(n0) (24)

and

γ = μn0 + vxc(n0). (25)

Together with equations for the eigenstates and the expression
of the electron density, namely

H̃ |ϕj 〉 = Ej |ϕj 〉; H̃ |ϕk,s〉 = Ek|ϕk,s〉, (26)

n(r) = gs

∑
j

f F
n0,T

(Ej )|ϕj (r)|2

+ gs

∑∫ d3k

(2π )3

{
f F

n0,T
(Ek)|ϕk,s(r)|2}, (27)

Eq. (24) forms the usual self-consistent-field (SCF) set of
equations.

The additional condition Eq. (22) that stems from the
approach will be called the “variational condition.”

We denote by

n
eq
0 (ni,Z,T ,e2,m), veq(ni,Z,T ,e2,m; r) (28)

the solution of the system of Eqs. (22), (23), (24), (26),
and (27). We will use the index “eq” to denote values
of functionals taken at that equilibrium, that is, at n0 =
n

eq
0 (ni,Z,T ,e2,m) and v(r) = veq(ni,Z,T ,e2,m; r).
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In particular, we denote the equilibrium free-energy per ion
by

F eq (ni,Z,T ,e2,m) ≡ F {n0,v(r); ni,Z,T ,e2,m}|eq. (29)

D. Pressure formula

The thermodynamic definition of the electron pressure is

P ≡ n2
i

∂F eq (ni,Z,T ,e2,m)

∂ni

. (30)

Using the general relation of Eq. (A7) (see Appendix A), we
get

P = n2
i

δ	

δni

∣∣∣∣
eq

. (31)

It was shown in Refs. [22,23,40] that Eq. (30) leads to

P = −f 0
0 (n0,T ) + n0μn0 − fxc(n0,T ,e2,m)

+ n0vxc(n0) + n0vel
(
R

ni

WS

)∣∣
eq, (32)

where f 0
0 (n0,T ,m) is the kinetic-entropic part of the free-

energy density of a uniform electron gas having density n0,

f 0
0 (n0,T ,m) = gs

∑∫ d3k

(2π )3

{
f F

n0,T
(Ek)Ek − T Sn0,T (Ek)

}
,

(33)

f0(n0,T ,e2,m) = f 0
0 (n0,T ) + fxc (n0,T ,e2,m). (34)

III. NUMERICAL METHODS AND DESCRIPTION
OF THE VAAQP CODE

In the quantum cases, all wave functions needed to obtain
the electron density are calculated by direct numerical integra-
tion of the radial wave equations using the Numerov scheme.
Bound-state eigenvalues are found using a phase method
similar to the one described in Ref. [41]. This method leads
generally to a very fast convergence. Continuum-state contri-
butions to observables are computed using an adaptive mesh
refinement (AMR). In this way, even the contributions from
narrow resonances in the continuum can be precisely taken
into account, leading to observables that remain continuous in
the case of pressure ionization (see, for instance, Ref. [42]).

The main objective of the VAAQP code is numerical
calculations of plasma thermodynamics on the basis of the
variational model described in Sec. II. The program is built as
a C++ object-oriented code. In this way, a relative flexibility
is obtained in the use and in the adaptation of the code to
calculations based on different models. The calculations are
organized as follows. The code can find solutions of the SCF
equations with a fixed value of n0, that is, to the system
of Eqs. (23), (24), (26), and (27). The program looks for
the solution corresponding to such an n0 that the additional
condition [Eq. (22)] is fulfilled.

Three options are available concerning the calculation of the
electron density. The first one makes use of the nonrelativistic
quantum formalism. In this case, all wave functions are
computed by solving the Schrödinger equation. The second
option is based on the relativistic quantum formalism. All

bispinors are then computed by solving the Dirac equation.
A third option allows us to calculate the density in the TF
formalism. In each of these three cases, we apply the DFT in
the framework of the LDA for the exchange-correlation term.

Several exchange-correlation terms are available in the
literature. We have tried the Kohn-Sham exchange term
(cf. Ref. [34]) with or without the Hedin-Lundqvist correlation
term (cf. Ref. [43]), Perrot’s term of Ref. [44], as well as the
Iyetomi-Ichimaru term (cf. Refs. [39,45]). As concerns the
WDM region (with a typical compression ratio of 1/2 to 10,
and temperatures between a few electron volts and a few tens
of electron volts), we found that results obtained using those
different exchange-correlation terms were close to each other.

The Poisson equation (23) transformed into its differential
form is solved using the standard Poisson-Helmholtz method
(see, for instance, Refs. [46–48]).

To compare our variational approach to other models, the
VAAQP code was equipped with various additional options
allowing us to perform calculations based on approaches that
are different from the variational one. These are a neutral WS
sphere atom-in-jellium model (NWS option) and an INFERNO-
type model (INFERNO option).

Each of these options was developed for a specific purpose.
The INFERNO option allows us to apply the INFERNO model
in a numerical implementation that is strictly identical to the
one used in our variational option. Lets us recall that in the
INFERNO-type model, the Friedel oscillations of the density are
neglected, the potential is set to zero beyond the WS radius,
and the WS sphere is neutral.

The interest of the NWS option is of a theoretical nature.
Such a model does not exist in the literature: it is an atom-in-
jellium model with the neutrality of the WS sphere imposed.
When using this option, we solve Eqs. (23), (24), (26),
and (27) together with the condition

Z −
∫

d3r
{
n(r)(1 − θ

(
r − R

ni

WS

)} = 0 (35)

instead of the variational condition of Eq. (22). Comparisons
with this model appear useful from a theoretical point of view,
as an intermediate stage of comparison between the variational
model and the well-known INFERNO model. In particular, it
allows us to distinguish the respective effects of the two main
hypotheses of the INFERNO model: neutrality of the WS sphere
and zero potential outside the WS sphere.

Purely sequential calculation of a density-temperature point
of the EOS can be made with VAAQP in a few minutes using
a typical workstation (AMD Opteron 2384, Intel Xeon 5150).
To reduce the execution time, the code was also equipped with
a shared-memory parallel execution mode.

We paid particular attention to the precision of the calcula-
tions of the thermodynamic quantities. Indeed, the calculation
of the virial pressure (see Sec. VI for more details) involves
a subtraction between two energy values of the order of
10 hartree a−3

0 , whereas the obtained pressure values are of the
order of 10−2 hartree a−3

0 with, in the worst cases, a precision of
three digits. Typically, such a calculation requires a precision
in the energies of the order of six digits.

In the case of the variational model, a valuable test for
the code has been agreement between the results stem-
ming from the three expressions for the electron pressure
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(see Sec. VI). Such tests of thermodynamic consistency have
been performed systematically in our calculations of EOS’s
and became a valuable criterion that allowed us to detect
possible errors in numerical computation.

IV. EOS AND EXTENSIVE CHECK OF
THERMODYNAMIC CONSISTENCY

In the case of the variational model, Eq. (32) means that the
electron pressure is directly connected to the mean ionization
value Z∗ defined as follows:

Z∗ ≡ n0

ni

, (36)

where n0 is the asymptotic value of the electron density. Also
in the literature, the dependence of Z∗ on mass density ρ and
temperature T is often considered as practically equivalent to
the pressure values as a function of these parameters.

Although the study of the mean ionization appears to
be useful to understand the differences of behavior between
models, it raises problems of rigorous definition of Z∗. Indeed,
Eq. (36) is not the only one definition of Z∗ that can be used.
A common way of defining the mean ionization is to subtract
the number of bound electrons from the charge of the nucleus,

Z∗ ≡ Z −
∑




2(2
 + 1)f F
(
Enr ,


)
. (37)

This definition implies a distinction between bound and contin-
uum states, and obviously such defined Z∗ does not correspond
to any well-defined observable in the sense of quantum me-
chanics. Another definition that may be justified by an analogy
with the TF model makes use of the ratio of the electron density
at the boundary of the WS sphere to the ion density,

Z∗ ≡ n
(
R

ni

WS

)/
ni. (38)

Among the preceding definitions, none seems obvious to
connect to the densities of charge carriers as defined in
theories of conductivity or stemming from measurements.
This problem was addressed, for example, in Ref. [49].

The definition of Z∗ we use is Eq. (36), which corresponds
to the apparent charge of the spread-out ions. The value of Z∗
is then directly connected to the chemical potential μn0 [see
Eq. (11)]. In fact, it also depends on the energy definition,
or more precisely on the assumed value of the electrostatic
potential at infinity. This is due to the fact that the invariant
quantity in the problem is the electrochemical potential. Let
us notice that the definition of Eq. (36), which is natural in
all kinds of atom-in-jellium models, differs from Eq. (38).
The latter appears as natural in INFERNO-type models where
the potential is set to zero outside the WS sphere. In the
case of the TF approximation to the electron density, the
INFERNO model becomes identical to the usual TF ion-in-cell
model. It was shown in Refs. [23,40] that this is also the
case for the variational model. In the case of the TF electron
density, Eqs. (36) and (38) thus lead to identical values of Z∗.
Within the framework of the quantum INFERNO model, n0 does
not correspond, strictly speaking, to an asymptotic electron
density value. Therefore, comparing nonobservable quantities
obtained within such an atom-in-cell model to quantities
obtained using “infinite” (that is, screened but considered in
the whole space) models is a difficult task.

0

10

20

30

40

1 2 4 6 8 10

Δ
P
/P

(%
)

ρ/ρ0

Al at 2 eV
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Z
∗
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FIG. 1. Thermodynamic consistency of the different models
along the aluminum 2-eV isotherm. Relative difference between
thermodynamic and virial electron pressures is plotted vs the
compression ratio (we use ρ0 = 2.7 g cm−3).

In the upper part of Fig. 1 are displayed the mean
ionizations [in the sense of Eq. (36)] stemming from the
three options of the VAAQP code, that is, variational, NWS,
and INFERNO in the case of the aluminum 2-eV isotherm.
As concerns the INFERNO model, we define n0 (and thus
Z∗) as the density associated with the electron chemical
potential μn0 via Eq. (11). In the case of this isotherm, the
variational model leads to results that differ significantly from
the two others models. We recall that, in principle, it is not
fully rigorous to compare the mean ionizations stemming
from the INFERNO model to those stemming from the two
atom-in-jellium models. However, as can be seen in the
figure, the behaviors of the mean ionizations stemming from
the NWS and INFERNO options appear qualitatively similar.
This suggests that the consequences of the INFERNO model
hypotheses rely mainly on the WS sphere neutrality and not on
the change of boundary condition. For that reason, comparing
mean ionizations stemming from the INFERNO model to the
ones stemming from atom-in-jellium models can be relevant,
if done with care. Indeed, this intermediate stage of comparison
was one of the main purposes of considering the NWS option.

Among the main results we obtained using the VAAQP
code is the direct check of consistency of the thermodynamic
quantities obtained in the framework of our variational model.
In this model, the electron pressure can be calculated in three
ways. First, this pressure can be calculated by application
of the formula presented in Eq. (32). Second, it can be
calculated by numerical differentiation of the free-energy
along an isotherm, using a simple finite-difference scheme.
Third, we can calculate the electron pressure by applying
the virial theorem. This theorem allows one to calculate the
electron pressure from a simple combination of the kinetic and
interaction energy densities. The proof and detailed study of
this theorem in both the nonrelativistic and relativistic versions
of the model are developed in Sec. VI. The virial definitions of
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FIG. 2. Aluminum 2.7 g cm−3 (a) and 10.8 g cm−3 (b) isochoric
curves (one time and four times solid density, respectively) for the
three options of VAAQP.

the pressure are, respectively, those of Eqs. (55) and (81). In
the case of the INFERNO model, no analytical pressure formula
analogous to our Eq. (32) can be obtained, so in the case of that
model, the use of such a formula is, in principle, unjustified.

In Fig. 1, a comparative illustration is presented of the
thermodynamic consistency obtained with VAAQP on the
2-eV isotherm of aluminum. In the lower part of the figure,
the relative difference between the thermodynamic and the
virial pressures is displayed as a function of the compression
ratio for the three options: variational (denoted by VAAQP),
NWS, and INFERNO. As can be seen in the figure in the case
of the variational calculations, all definitions of the pressure
yield identical results all along the isotherm. As concerns the
two other models, there is a disagreement of the order of
tens of percent. In this case of relatively low temperature, the
requirement of the WS sphere neutrality, with or without taking
into account the Friedel oscillations, leads to a significant
violation of the thermodynamic consistency.

As can be seen in the upper part of the figure, differences
between the variational model and the two models using a
neutral WS sphere remain in the high-density regime.

Figures 2(a) and 2(b) present a comparative picture of
the thermodynamic consistency obtained with VAAQP on
the 2.7 and 10.8 g cm−3 isochoric curves of aluminum,
respectively, which correspond to solid density and four times
solid density, respectively. It can be seen in these figures that, as
temperature increases, both the INFERNO model and the NWS
atom-in-jellium model become thermodynamically consistent
in practice (see the relative electron pressure differences) and
close to the variational model (see the mean ionization). When
temperature increases, the electron density becomes uniform
outside the WS sphere, and this way, the INFERNO model
and the NWS atom-in-jellium model both appear to be good
approximations to the variational model.

As may be seen by comparing Figs. 2(a) and 2(b), the higher
the matter density is, the broader is the temperature region
in which these models encounter thermodynamic consistency
problems. There are two reasons for that: (a) increased matter
density also means increased jellium density n0 and increased
Friedel oscillations decay length; (b) at high matter density,
bound states or resonances may make a significant contribution
to the electron density at the WS radius.

The linear-response theory of dense plasmas near zero
temperature (see, for instance, [50]) can give a rough idea of
the Friedel oscillations decay. Namely, the following behavior
stems from the theory:

n (r) ∼ r−3e−2b0r sin (2a0r), (39)

where a0, b0 are the real and imaginary parts of the zeroth-order
pole of the Fermi-Dirac distribution, namely, in atomic units,

b0 =
√

−μn0 +
√

μ2
n0

+ π2T 2, (40)

a0 =
√

+μn0 +
√

μ2
n0

+ π2T 2, (41)

where we recall that μn0 is the chemical potential. For
illustration, the 2b0RWS parameter, which is related to the
magnitude of the Friedel oscillations at the WS radius,
was calculated from VAAQP results on the aluminum EOS.
Values of 2b0RWS as a function of compression ratio and
temperature are displayed in Fig. 3. This picture should give
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FIG. 3. Value of 2b0RWS found with VAAQP for aluminum as
a function of compression ratio and temperature (we use ρ0 =
2.7 g cm−3). The 2b0RWS = 4 isoline is displayed in black on the
figure as well as some � isolines.
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FIG. 4. Thermodynamic consistency of the INFERNO option.
The relative difference between thermodynamic and virial electron
pressures is displayed as a function of compression ratio and
temperature in the case of aluminum (we use ρ0 = 2.7 g cm−3).
The black line is the contour of the >1% region. The two dashed
curves correspond to the Hugoniot shock adiabats obtained using,
respectively, the thermodynamic (for the lower curve) and the virial
(for the upper curve) definition of the pressure with the INFERNO

option.

some indications of the region in which nonvariational models
will not constitute a good approximation to the variational
model, that is, the region in which they may lead to a
significant violation of thermodynamic consistency. Some
lines of constant � values are also displayed in this figure to
give some idea of the validity domain of all models considered
in this paper.

As was shown in the above paragraphs, the INFERNO model
may be a good approximation to the variational model when
the temperature is sufficiently high. A criterion we can propose
with regard to thermodynamic consistency is the agreement
between the virial pressure and the pressure stemming from
Eq. (32), which becomes equivalent to the TF pressure formula
when applied to the INFERNO model [vel (Rni

WS) = 0]. Figure 4
presents the relative difference between these two quantities
as a function of compression ratio and temperature. The 1%
contour plotted in the figure may give a rough idea of the
domain of validity of the INFERNO approach with regard to
thermodynamic consistency.

Let us notice that the region in which thermodynamic
inconsistencies exceed 1% shows some qualitative similarity
with the region of Fig. 3 in which 2b0RWS < 4.

The temperature versus compression projections of the
INFERNO option Hugoniot shock adiabats are also plotted in
this figure. The two curves correspond, respectively, to the
thermodynamic and to the virial definition of the electron
pressure. As can be seen in this figure, these two curves
depart significantly from one other outside the domain of
thermodynamic consistency of the model.

Figure 5 presents the mean ionizations obtained in the case
of aluminum using (a) the variational model (main option of
VAAQP) [Fig. 5(a)], (b) the INFERNO option [Fig. 5(b)], and
(c) the TFD model (TF option of VAAQP) [Fig. 5(c)]. In a
similar way, Figs. 6, 7, and 8 present the mean ionizations
obtained with these various models in the respective cases of
iron, copper, and lead. The quantum calculations were made
using the nonrelativistic option for the electron density. In all
cases, the Kohn-Sham exchange term was used. As concerns
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FIG. 5. Aluminum mean ionization obtained with VAAQP,
INFERNO option, and TFD.

the temperature regime of interest in this study, the relativistic
effects remain negligible even for heavy elements. The effects
of a relativistic treatment on the 30-eV isotherm of ytterbium
is shown in Appendix G, in Fig. 14. As can be viewed in this
figure, the relative differences in the electron pressures and
mean ionizations are less than 1% in the region of interest.

First, it can be seen that both thermal and pressure ionization
phenomena are qualitatively reproduced by each of the three
models. In general, using the quantum models we obtain lower
mean ionizations than those stemming from the TFD model.
This seems to be mainly due to the absence of shell structure
in this latter model. As was mentioned earlier, the differences
between the electron pressures obtained with the INFERNO

model and those stemming from the TFD model strongly
depend on the chosen pressure definition (thermodynamic or
virial pressure). Indeed, even the sign of this difference can
change.
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FIG. 6. Iron mean ionization obtained with VAAQP, INFERNO

option, and TFD.

In the high-temperatures region, considering moderate
densities, results stemming from the variational model tend to
those stemming from the INFERNO model. For example, in the
case of iron at 3.9 g cm−3 matter density, 40-eV temperature,
differences in the mean ionization as well as in the electron
pressure between these models are of the order of 0.1%.
This agreement results from the strong decay of the Friedel
oscillations in this regime.

In the high-densities region, at moderate temperatures,
Friedel oscillations are weakly damped and results obtained
using the variational model depart strongly from those
obtained using the INFERNO model or the TF model.

As concerns the ultrahigh densities (high-coupling regime),
the validity of all those models might be questionable.
First, we recall that in all these models, one makes the
hypothesis of an ion-ion correlation function in the form
of a Heaviside function, which is only relevant in the case
of moderate coupling. In addition, for coupling parameter of
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FIG. 7. Copper mean ionization obtained with VAAQP, INFERNO

option, and TFD.

about � � 150, a crystallization of the plasma is likely to
occur (see, for example, Ref. [51]). Atom-in-jellium models
are based on the calculation of a local potential around a
single center. Periodic potentials typical of solid-state physics
are intrinsically outside the possibility of such models. Thus,
despite their improved thermodynamic consistency, the results
stemming from the variational model in the region of high
coupling, and in particular with regard to the cold compression
path, are to be taken with care. However, in the variational
model, the thermodynamic consistency is preserved even in
the high-coupling region. This may constitute a strong point
for the extension of the model to a wider validity domain,
which may still exclude the solid-state regime.

Close to normal conditions, we obtain a finite ionization
using either INFERNO or the TFD model [cf. Figs. 5–8(c)]. Such
a behavior is related to the neutrality of the WS sphere, which
appears naturally in the TF model and as a hypothesis in the
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FIG. 8. Lead mean ionization obtained with VAAQP, INFERNO

option, and TFD.

INFERNO model. In the case of the atom-in-jellium model with
a neutral WS sphere, a similar behavior is observed. However,
it is worth stressing that neither the INFERNO model nor the
neutral WS sphere atom-in-jellium model are consistent in the
sense of thermodynamics in this region.

As can be seen in Figs. 5–8(a), the solution of the variational
model tends to the case of a quasineutral atom (mean ionization
close to zero) in the vicinity of the normal conditions. In fact,
the variational condition allows the electrostatic potential to
extend beyond the WS sphere. In the TF case, the quasiclassical
aspect of the model does not allow the existence of bound
states and also results in the neutrality of the WS sphere. As
mentioned in the previous paragraph, this leads to a finite
mean ionization. However, with regard to the quantum cases,
the extension of the potential beyond the WS sphere allows the
existence of bound states that a neutral WS sphere condition
would have forbidden (see, for example, Figs. 1 and 4 of
Ref. [25]). At low temperatures, we can have a quasineutral

atom solution of the SCF equations, that is, a solution with
a number of bound electrons close to Z and a negligible
contribution of the continuum, due to the low-temperature
behavior of the Fermi-Dirac distribution. An upper bound of
the matter density then exists, such that the corresponding WS
radius is large enough to have vel(r > R

ni

WS) ≈ 0. For matter
densities below this bound, the quasineutral atom nearly fulfills
the variational condition and may appear as an approximate
solution of the variational model. These densities are usually
of the order of ρ0/100 and below.

However, it seems that a region of higher density exists
(often extending slightly beyond ρ0), where the mean ion-
ization stemming from the variational calculations remains
very low and where the quasineutral atom still constitutes an
acceptable approximation to the variational solution. More-
over, as long as the mean ionization remains close to zero,
the electronic pressure remains negligible and the free-energy
remains almost constant with matter density.

This transition to the quasineutral atom in the vicinity of
the normal conditions could indicate that the single-center
model (in the sense of the cluster expansion) seems not to
be valid in this region. This would mean that finite ionization
at normal conditions may only be described by taking into
account multicenter (molecular) effects that are disregarded in
average-atom models.

V. HUGONIOT SHOCK ADIABATS OF ALUMINUM,
IRON, COPPER, AND LEAD

To perform comparisons of our model with experimental
data, the best quantities to choose are those that can be directly
computed using the model and measured in experiments.
Moreover, it would be appreciable that the experiments
reach some regimes in which those quantities allow a clear
discrimination among theories.

Average-atom models in themselves only give direct access
to the thermodynamic quantities. For that reason, it is relevant
to study the EOS measurements. As concerns the EOS of dense
plasmas, only some particular thermodynamic paths can be
reached in experiments. Among these, we can cite (a) the 0 K
isothermal compression, as studied, for example, in diamond-
anvil-cell experiments (see Ref. [52]); (b) isochoric heating,
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FIG. 9. (Color online) Aluminum principal Hugoniot shock
adiabat obtained using VAAQP, INFERNO option, TFD, and the
SESAME3713 table. We use ρ0 = 2.7 g cm−3.
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FIG. 10. (Color online) Iron principal Hugoniot shock adiabat
obtained using VAAQP, INFERNO option, TFD, and the SESAME2140
table. We use ρ0 = 7.874 g cm−3.

as studied, for example, in Refs. [53–56]; and (c) Hugoniot
adiabatic compression, as studied in shock wave compression
experiments (see the “rusbank” database [57]).

In this section, we are interested in the Hugoniot adiabatic
compression. It allows one to probe relatively high densities
(typically between one and six times solid density) at relatively
low temperatures (starting from the normal conditions, five
times solid density is usually achieved at a temperature of the
order of 100 eV). Among the main problems raised by the
comparison to the Hugoniot shock adiabats are (a) the need
to calculate EOS data at normal conditions, which usually lie
outside the validity domain of the models hypotheses; and
(b) the lack of temperature measurements that are needed
to fully characterize the EOS point. Usually, measures made
in shock wave compression experiments only lead to some
bidimensional projection of the curve, which is intended to
give the (ρ,P ) projection after some calculations.

We present in Figs. 9, 10, 11, and 12 the principal Hugoniot
shock adiabats for aluminum, iron, copper, and lead. These
were obtained using, respectively, VAAQP, its INFERNO option
with the two definitions of the pressure, its TFD option, and the
SESAME 301-type EOS tables (see, for example, Ref. [58]).
The experimental data are taken from the “rusbank” database
[57].
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FIG. 11. (Color online) Copper principal Hugoniot shock adiabat
obtained using VAAQP, INFERNO option, TFD, and the SESAME3336
table. We use ρ0 = 8.92 g cm−3.

10−1

100

1 2 3

P
(T

P
a
)

ρ/ρ0

Exp
VAAQP
TFD
Inferno option - virial
Inferno option - thermo
SESAME3200-301

FIG. 12. (Color online) Lead principal Hugoniot shock adiabat
obtained using VAAQP, INFERNO option, TFD, and the SESAME3200
table. We use ρ0 = 11.34 g cm−3.

Like many others, the SESAME 301-type EOS tables are
made by the addition of three terms: an electron contribution
(304-type table), an ion contribution (305-type table), and a
cold-curve contribution (306-type table). It is worth stressing
that the theoretical framework of such a subdivision is
not clearly defined. Moreover, depending on the cold-curve
contribution that is added, the process of shifting the total
pressure to fit this cold curve may lead to severe consequences
on the EOS. Nonetheless, the use of augmented-plane-
wave (see Ref. [59]) or semiempirical (see, for example,
Ref. [60]) cold-curve contributions ensures that the values
along the cold region of the Hugoniot shock adiabat are very
realistic.

The VAAQP code and all its options are designed to com-
pute electron contributions to the thermodynamic quantities.
To obtain total quantities and calculate the Hugoniot shock
adiabats, we need to add an ion contribution to the pressure
and internal energy. With regard to this ion contribution, we
have chosen Hansen’s formula of Ref. [61], which was used,
for example, in Refs. [62,63]. Namely, we use Eqs. (6.90)
and (6.91) of Ref. [41]. Figures 9, 10, 11, and 12 give an
idea of the quality of the results stemming directly from the
models. For that reason, we do not shift the results to fit a
cold curve. Models of dense plasmas are generally intended
to describe the matter at finite temperature. Disagreement in

10−1

100

101

102

1 2 3 4 5

P
(T

P
a
)

ρ/ρ0

Exp
SESAME3713-301
VAAQP+SESAME3713-306

FIG. 13. (Color online) Aluminum principal Hugoniot shock
adiabat obtained using VAAQP with the SESAME3713-306 cold-
curve contribution. We use ρ0 = 2.7 g cm−3.
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the low-pressure region is then to be expected, especially
in the case of single-center models such as VAAQP or
INFERNO. Nevertheless, we give as an example in Fig. 13
the aluminum shock adiabat obtained using VAAQP with
Hansen’s ion contribution and the SESAME 3713-306 cold-
curve contribution. As can be seen, good agreement with
the experiment is then achieved even in the low-pressures
region.

VI. OTHER THERMODYNAMIC QUANTITIES AND
VIRIAL THEOREM IN THE CASE OF VAAQP

As is well known, the virial theorem is fulfilled in the
cases of classical (see Ref. [64]) and quantum (see Ref. [65])
exact many-body problems. The model we consider here is
an approximation based on the mean-field idea, as are all
average-atom models in general. For that reason, such models
may not fulfill the virial theorem. Among the main advantages
of the variational approach of the present paper is that it fulfills
the virial theorem. This was not the case for all quantum
models of the atom in plasma that have been proposed hitherto
(see Sec. I).

In the case of the nonrelativistic TF model, Feynman
et al. gave in Ref. [14] a proof of the virial theorem
based on similarity considerations. In the case of our vari-
ational model, a formal generalization of this proof in the
framework of the nonrelativistic quantum case is sketched
in Ref. [22].

We give here a direct proof of the virial theorems in the cases
of the nonrelativistic and relativistic versions of the variational
model. This proof holds for any LDA exchange-correlation
term. We think that the direct proof of these theorems offers
a new point of view on the model and a better understanding
of the thermodynamic inconsistencies of the other quantum
models.

A. Internal energy

We can calculate the internal energy per ion from its usual
thermodynamic definition:

U eq(ni,Z,T ,e2,m) ≡ F eq − T
∂F eq

∂T
. (42)

To calculate the derivative of the equilibrium free-energy
per ion, we apply here the same general relation Eq. (A7)
(see Appendix A) as for the pressure formula,

∂F eq

∂T
= δ	

δT

∣∣∣∣
eq

. (43)

As is shown in Appendix A 2 [see Eqs. (A7)–(A17)], we
obtain for the internal energy per ion the following quantum-
mechanical expression:

U eq(ni,Z,T ,e2) = U{n0,v(r); ni,Z,T ,e2,m}|eq, (44)

where the functional on the right-hand side is defined as

U = 1

ni

(
u0

0(n0,T ,m) + uxc(n0,T ,e2,m)
)

+�U 0
1 {n0,v(r); T ,m}

+�F el
1 {n0,v(r); ni,Z,T ,e2,m}

+�U xc
1 {n0,v(r); T ,e2,m} (45)

with

u0
0(n,T ,m) ≡ gs

∑∫ d3k

(2π )3

{
f F

n0,T
(Ek)Ek

}
, (46)

uxc(n,T ,e2,m) ≡ fxc(n,T ,e2,m) − T
∂fxc(n,T ,e2,m)

∂T
, (47)

�U 0
1 = gs

∑
j

f F
n0,T

(Ej )〈ϕj |H̃ 0|ϕj 〉

+ gs

∑∫ d3k

(2π )3

{
f F

n0,T
(Ek)

(〈ϕk,s |H̃ 0|ϕk,s〉

− 〈ϕ0
k,s

∣∣H̃ 0
∣∣ϕ0

k,s

〉)}
, (48)

�U xc
1 =

∫
d3r{uxc(n(r)) − uxc(n0)}. (49)

B. Interaction energy

The thermodynamic definition of the interaction energy
per ion can be obtained taking the derivative with respect to
the squared electron charge e2 (see Ref. [14]) (this was the
reason for indicating explicitly this dependence in nearly all
our formulas),

U int,eq(ni,Z,T ,e2,m) ≡ e2 ∂F eq

∂(e2)
. (50)

Again, we use Eq. (A7) to calculate the derivative of the
equilibrium free-energy per ion with respect to e2,

∂F eq

∂(e2)
= δ	

δ(e2)

∣∣∣∣
eq

. (51)

As shown in Appendix A 3 [see steps leading to Eq. (A23)],
we get

U int,eq(ni,Z,T ,e2,m)

= (uint
xc (n0,T ,e2,m) + �F el

1 + �U
xc,int
1

)∣∣
eq, (52)

where we have defined

uint
xc (n,T ,e2,m) ≡ e2 ∂fxc(n,T ,e2,m)

∂(e2)
, (53)

�U
xc,int
1 =

∫
d3r
{
uint

xc (n(r)) − uint
xc (n0)

}
. (54)
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C. Nonrelativistic virial theorem

Using the nonrelativistic virial theorem, we define the
nonrelativistic virial electron pressure Pvir as follows:

Pvir ≡ ni

3
(2U eq − U int,eq). (55)

The virial theorem is fulfilled if P = Pvir, where P is the
electron pressure as defined by the thermodynamics [see
Eq. (30)]. In terms of scaling laws, Eq. (55) is simply
equivalent to

F eq = T
∂F eq

∂T
+ 1

2
e2 ∂F eq

∂(e2)
− 3

2
ni

∂F eq

∂ni

. (56)

Using the expressions of U , U int [see Eqs. (45) and (52)]
in Eq. (55), we can write

Pvir = 1

3

(
2u0

0(n0) + 2uxc(n0) − uint
xc (n0)

)
+ ni

3

(
2�U 0

1 + �F el
1 + 2�U xc

1 − �U
xc,int
1

)
. (57)

Let us first consider the exchange-correlation part of
Eq. (57). As is shown in Appendix F, if we assume that the
whole dependence of fxc on e2 and m comes from the atomic
units system, we have

2uxc(n,T ,e2,m) − uint
xc (n,T ,e2,m)

= −3fxc(n,T ,e2,m) + 3n
∂fxc(n,T ,e2,m)

∂n
. (58)

The above relation can be applied directly to the zero-order
contribution of Eq. (57), and also leads to the following relation
for the first-order terms:

2�U xc
1 − �U

xc,int
1 = −3�F xc

1 + 3
∫

d3r

{(
n
∂fxc(n)

∂n

)∣∣∣∣
n=n(r)

−
(

n
∂fxc(n)

∂n

)∣∣∣∣
n=n0

}
. (59)

Using Eq. (D8) for the bound states and Eqs. (D8) and
(D9) of Appendix D 1, integrating over the whole space and
applying the Green theorem, we get

∫
d3r{(r · ∇v(r))|ϕj (r)|2}

= −2

(
− h̄2

2m

)∫
d3r{ϕ∗

j (r)∇2ϕj (r)}

− h̄2

2m

∫
�∞

d S · {ϕ∗
j (r)∇(r · ∇ϕj (r))

− (∇ϕ∗
j (r))(r · ∇ϕj (r))}, (60)

where the surface term is zero due to the exponential decay of
the bound wave functions.

For the part involving the continuum and plane-wave states,
we can use Eqs. (D8) and (D9) in the same fashion as before

in order to write∫
d3r{(r · ∇v(r))|ϕE,
,m(r)|2}

= IS − 2

(
− h̄2

2m

)∫
d3r
{
ϕ∗

E,
,m(r)∇2ϕE,
,m(r)

−ϕ0 ∗
E,
,m(r)∇2ϕ0

E,
,m(r)
}
, (61)

where the surface term IS is

IS = − h̄2

2m

∫
�∞

d S · {ϕ∗
E,
,m(r)∇(r · ∇ϕE,
,m(r))

− (∇ϕ∗
E,
,m(r))(r · ∇ϕE,
,m(r))

−ϕ0 ∗
E,
,m(r)∇(r · ∇ϕ0

E,
,m(r)
)

+ (∇ϕ0 ∗
E,
,m(r)

)(
r · ∇ϕ0

E,
,m(r)
)}

. (62)

As is shown in Appendix E 1, this surface term vanishes if it
is integrated over energy in the case of the system of an atom
in the infinite jellium. This is closely related to the Friedel
sum rule. Thus, summing Eq. (60) over the bound states and
integrating Eq. (61) over the continuum, we get the relation

2�U 0
1 = −

∫
d3r{n(r)r · ∇v(r)} ≡ −I nr

vir. (63)

Let us define the following two quantities:

Iel ≡ −
∫

d3r{n(r)r · ∇vel(r)}, (64)

Ixc ≡
∫

d3r{n(r)r · ∇(vxc(n(r)) − vxc(n0))}. (65)

It is shown in Appendix B that

Iel = −�F el
1 + 3

n0

ni

vel
(
R

ni

WS

)+ 3
∫ ∞

R
ni
WS

dr{4πr2vel(r)}, (66)

and in Appendix C that

Ixc = 3�F xc
1 − 3

∫
d3r

{(
n
∂fxc(n)

∂n

)∣∣∣∣
n=n(r)

−
(

n
∂fxc(n)

∂n

)∣∣∣∣
n=n0

}
(67)

= 2�U xc
1 − �U

xc,int
1 . (68)

Finally, we recall the well-known relation between the internal
and free-energy densities of the nonrelativistic ideal electron
gas,

2
3u0

0(n0) = −f 0
0 (n0) + n0μn0 . (69)

As a consequence of Eqs. (63), (66), (68), and (69), we can
write from Eq. (57)

Pvir = −f 0
0 (n0) + n0μn0 − fxc(n0) + n0vxc(n0) + n0vel

(
R

ni

WS

)
− 1

3

(
I nr

vir + Iel + Ixc
)+

∫ ∞

R
ni
WS

dr{4πr2vel(r)}. (70)

We have obtained the following:

Pvir = P ⇔ 1

3

(
I nr

vir + Iel + Ixc
)=∫ ∞

R
ni
WS

dr{4πr2vel(r)}. (71)
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Thus, a sufficient condition to fulfill the virial theorem is

v(r) = vel(r) − vxc(n(r)) + vxc(n0),
(72)∫ ∞

R
ni
WS

dr{4πr2vel(r)} = 0.

This sufficient condition is identical to the variational
equations [Eqs. (22), (23), (24), (26), and (27)]. The previous
derivation allows us to have a slightly different point of view
on the model. Provided that we construct an atom-in-jellium
model from heuristic consideration, building the internal and
interaction energies from their quantum-mechanical expres-
sions, then it is possible to get the variational condition as a
consequence of the virial theorem in this model. Let us stress
that the virial theorem is respected for any form of the local
exchange-correlation free-energy density provided it does not
depend on the squared electron charge other than via the atomic
energy units present in the temperature and the electron density
dependences.

D. α · P̃ energy (kinetic energy in the relativistic case)

A thermodynamic definition of the α · P̃ energy can be
obtained by a variation of the electron mass m and of the
squared electron charge e2,

T eq(ni,Z,T ,e2,m) ≡ F eq − T
∂F eq

∂T
− e2 ∂F eq

∂(e2)
− m

∂F eq

∂m
.

(73)

As is shown in Appendix A 2, applications of Eq. (A7) to
the derivative with respect to the temperature T and to the
electron mass m, respectively, lead to Eqs. (A17) and (A21).
We recall that

T̃ = α · P̃ = H̃ − m
∂H̃

∂m
. (74)

Thus, we obtain the following quantum-mechanical expression
for the α · P̃ energy:

T eq(ni,Z,T ,e2) = T {n0,v(r); ni,Z,T ,e2,m}|eq, (75)

where we defined the functional

T = 1

ni

(
t0
0 (n0,T ,m) + txc(n0,T ,e2,m)

)
+�T1{n0,v(r); T ,m} + �T xc

1 {n0,v(r); T ,e2,m} (76)

with

t0
0 (n,T ,m)

≡ u0
0 + mc2 gs

∑∫ d3k

(2π )3

{
f F

n0,T
(Ek)

Ek

Ek + mc2

}
, (77)

txc(n,T ,e2,m)

≡ fxc(n) − T
∂fxc(n)

∂T
− e2 ∂fxc(n)

∂(e2)
− m

∂fxc(n)

∂m
, (78)

�T1 = gs

∑
j

f F
n0,T

(Ej )〈ϕj |T̃ |ϕj 〉

+ gs

∑∫ d3k

(2π )3

{
f F

n0,T
(Ek)

(〈ϕk,s |T̃ |ϕk,s〉
− 〈ϕ0

k,s

∣∣T̃ ∣∣ϕ0
k,s

〉)}
, (79)

�T xc
1 =

∫
d3r{txc(n(r)) − txc(n0)}. (80)

E. Relativistic (general) virial theorem

We define the relativistic (or general) virial electron
pressure Pvir as

Pvir ≡ ni

3
(T eq + U int,eq). (81)

Again, the virial theorem will be fulfilled if P = Pvir, where
P is given in Eq. (30). This is equivalent to

F eq = T
∂F eq

∂T
+ m

∂F eq

∂m
− 3ni

∂F eq

∂ni

. (82)

This relation could seem qualitatively different from the
nonrelativistic one. In fact, what enters here is the α · P̃ energy
density, which is equivalent to the difference between internal
and interaction energy densities in the particular nonrelativistic
case (and also in the ultrarelativistic case), whereas in the
general case, it can only be obtained from the variation of the
mass (or of the momentum).

Using the expressions of T , U int in Eq. (82), we can write

Pvir = 1

3

(
t0
0 (n0) + txc(n0) + uint

xc (n0)
)

+ ni

3

(
�T1 + �F el

1 + �T xc
1 + �U

xc,int
1

)
. (83)

We first consider the exchange-correlation part of Eq. (83).
It is shown in Appendix F that using the same procedure as in
the nonrelativistic case, we get

txc(n,T ,e2,m) + uint
xc (n,T ,e2,m)

= −3fxc(n,T ,e2,m) + 3n
∂fxc(n,T ,e2,m)

∂n
. (84)

The above relation can be applied directly to the zero-order
contribution of Eq. (83), and also leads to the following relation
for the first-order terms:

�T xc
1 + �U

xc,int
1 = −3�F xc

1 + 3
∫

d3r

{(
n
∂fxc(n)

∂n

)∣∣∣∣
n=n(r)

−
(

n
∂fxc(n)

∂n

)∣∣∣∣
n=n0

}
. (85)

We start now from Eqs. (D17) and (D18) (see
Appendix D 2). Using Eq. (D17) for the bound states, integrat-
ing over the whole space, and applying the Green theorem, we
get ∫

d3r{(r · ∇v(r))|ϕj (r)|2}

= −(−ih̄c)
∫

d3r{ϕ†
j (r)α · ∇ϕj (r)}

− ih̄c

∫
�∞

d S · {(ϕ†
j (r)α(r · ∇ϕj (r)))}, (86)
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where the surface term is zero due to the exponential decay of
the bound bispinors.

Now considering the continuum and plane-wave contribu-
tion, we can use Eqs. (D17) and (D18) in the same manner as
above to write∫

d3r{(r · ∇v(r))|ϕE,κ,m(r)|2}

= IS − (−ih̄c)
∫

d3r
{
ϕ
†
E,κ,m(r)α · ∇ϕE,κ,m(r)

− ϕ
0 †
E,κ,m(r)α · ∇ϕ0

E,κ,m(r)
}
, (87)

where the surface term IS is

IS = −ih̄c

∫
�∞

d S · {ϕ†
E,κ,m(r)α(r · ∇ϕE,κ,m(r))

− ϕ
0 †
E,κ,m(r)α(r · ∇ϕ0

E,κ,m(r))
}
. (88)

As is shown in Appendix E 2, this surface term disappears after
integration over energy in the case of an atom surrounded by
an infinite jellium. Again, this is related to the Friedel sum rule.
Thus, summing Eq. (86) over the bound states and integrating
Eq. (87) over the continuum, we get the relation

�T1 = −
∫

d3r{n(r)r · ∇v(r)} ≡ −IR
vir. (89)

We recall the well-known relation in the relativistic case
between α · P̃ and free-energy densities of the ideal electron
gas,

1
3 t0

0 (n0) = −f 0
0 (n0) + n0μn0 . (90)

Considering Eqs. (89), (66), (68), and (90), we can write from
Eq. (83)

Pvir = −f 0
0 (n0) + n0μn0 − fxc(n0) + n0vxc(n0) + n0vel

(
R

ni

WS

)
− 1

3

(
IR

vir + Iel + Ixc
)+

∫ ∞

R
ni
WS

dr{4πr2vel(r)}. (91)

Again, we obtain that the sufficient condition in order to fulfill
the virial theorem is Eq. (72) and that it corresponds exactly
to the variational equations of the model.

This virial theorem obviously includes the nonrelativistic1

result as a particular case implying T eq = 2U kin,eq, where
U kin,eq ≡ U eq − U int,eq is the kinetic energy of the system.

Remark. In fact, as we disregard the positon states of the
Dirac equation in the calculation of the first-order contribution,
it is not relevant to treat the zero-order contribution within
the relativistic theory framework. If relativistic effects were
to be relevant for the ideal electron gas, then disregarding
positon states will not be fully justified. Indeed, in the
VAAQP code, we always treat the zero-order contribu-
tion in the nonrelativistic approximation. For that reason,
when performing relativistic calculations, we obviously ap-
ply the following modified definition of the virial electron

1Formally, it includes the ultrarelativistic result as well. However,
as we disregard the negative energy states while using the Dirac
equation, we choose not to mention the ultrarelativistic limit.

pressure:

Pvir = 1

3

(
2u0

0(n0) + 2uxc(n0) − uint
xc (n0)

)
+ ni

3

(
�T1 + �F el

1 + �T xc
1 + �U

xc,int
1

)
. (92)

VII. CONCLUSION

In this paper, the theory and results of the numerical code
VAAQP are presented. The initial formalism of the variational
model is extended to the relativistic case. Formulas for the main
thermodynamic quantities, such as internal, interaction, and α ·
P̃ energies, are derived in their nonrelativistic and relativistic
versions. Using these quantities, the respective virial theorems
are proven. It is shown that this proof holds in both cases
for all local-density-approximations (LDA’s) to the exchange-
correlation potential.

The numerical methods that are applied in the VAAQP
code are described. These methods include an efficient solver
of the Schrödinger and Dirac equations with an adaptive mesh
refinement (AMR) for the continuum energy integrations. The
self-consistent-field (SCF) equations in the framework of the
atom-in-jellium model are solved using the Poisson-Helmholtz
iterative method initially described in Refs. [46–48]. This code
is designed to solve the equations of the variational model and
is also equipped with options applying other approaches such
as INFERNO within the same numerical implementation.

Equation-of-state (EOS) calculations are performed using
VAAQP for aluminum, iron, copper, and lead in the warm-
dense-matter (WDM) regime. Comparisons with the Thomas-
Fermi-Dirac (TFD) and INFERNO models as well as with
a neutral Wigner-Seitz (WS) sphere atom-in-jellium model
are presented. Starting from the example of aluminum, a
comparative study of the thermodynamic consistency of these
different models is performed. This study relies on the relative
difference between values stemming from the thermodynamic
and the virial formulas for the electron pressure. In particular,
a preliminary analysis of the validity domain of the INFERNO

model is reported.
Comparisons of the results obtained using VAAQP and

its various options on Hugoniot shock adiabats are compared
with each other and to available experimental data gathered in
Ref. [57]. Although this kind of comparison does not provide
a clear way to discriminate among the models, it indicates
that the variational model may be a promising theoretical
tool for the description of dense plasmas in a part of the
WDM regime.

The VAAQP model and code constitute a solution to the old
problem of how to describe quantum plasmas within the single-
center approach preserving thermodynamic consistency. The
code is able to calculate thermodynamic properties of dense
plasmas in a wide range of matter densities and temperatures.
Results obtained in the framework of the present study raise
once again the problem of the description of matter outside
the moderate coupling region using a simplified single-center
model. In particular, further improvement of the variational
approach is probably possible and needed to access the normal
condition domain. Among the possible improvements is the
extension of the model toward more realistic approximations
to the ion-ion correlations.
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APPENDIX A: THERMODYNAMIC QUANTITIES AND
FUNCTIONAL DERIVATIVES

The functional derivatives of the free-energy density
with respect to n0, v(r), ni of the model were studied in
Refs. [22,23,40]. We present here results for the functional
derivatives of the free-energy density with respect to T ,
m, and e2. These are useful in the derivation of all other
thermodynamic quantities and of the virial theorems.

1. General relation

Let F {X,Y } be a functional of X = {Xα} and Y = {Yβ}. We
call its dependences on the Xα “internal,” and its dependences
on the Yβ “external.” We minimize F with respect to its internal
(or X) dependences with a number of additional constraints
{Cj {X,Y } = 0}. We then define the functional 	{X,Y } as
follows:

	{X,Y } ≡ F {X,Y } −
∑

j

γjCj {X,Y }, (A1)

the {γj } being Lagrange multipliers associated with the
constraints. We have to fulfill

δ	{X,Y }
δXα

= δF {X,Y }
δXα

−
∑

j

γj

δCj {X,Y }
δXα

= 0. (A2)

We denote by X
eq{Y } the solution of this system and define

the functional

F eq{Y } ≡ F {X eq{Y },Y }. (A3)

As concerns derivatives of F eq with respect to any of the
external dependences, we have the relation

δF eq{Y }
δYβ

= δF {X,Y }
δYβ

+
∑

α

δF {X,Y }
δXα

∣∣∣∣
X=X

eq{Y }

δX
eq
α {Y }
δYβ

.

(A4)

As X
eq{Y } fulfills Eq. (A2),

δF eq{Y }
δYβ

= δF {X,Y }
δYβ

+
∑
α,j

γj

δCj {X,Y }
δXα

∣∣∣∣
X=X

eq{Y }

δX
eq
α {Y }
δYβ

(A5)

= δF {X,Y }
δYβ

+
∑

j

γj

(
δCj {X eq{Y },Y }

δYβ

− δCj {X,Y }
δYβ

∣∣∣∣
X=X

eq{Y }

)
. (A6)

Recalling that X
eq

is such that the constraints are fulfilled, that
is, Cj {X eq{Y },Y } = 0, we get

δF eq

δYβ

= δF

δYβ

−
∑

j

γj

δCj

δYβ

∣∣∣∣
X=X

eq
= δ	

δYβ

∣∣∣∣
eq

. (A7)

In particular, if the external dependences of F are local, then
F eq is a function and Eq. (A7) can be written with ∂ instead of
δ on the left-hand side. In the case of our free-energy density,
the internal dependences are on n0, v(r), whereas dependences
on ni , Z, T , e2, and m are to be considered as external.

2. Case of m,T

In the case of a variable ξ ∈ {T ,m}, that is, of an external
dependence of the electron density functional [denoted by
n(r)], we can write

∂F eq

∂ξ
= δ	

δξ

∣∣∣∣
eq

= δF

δξ

∣∣∣∣
eq

+
(

γ

∫
d3r

{
δn(r)

δξ

})∣∣∣∣
eq

. (A8)

The kinetic-entropic term can be rewritten as

�F 0
1 = gs

∑
j

(
f F

n0,T
(Ej )Ej − T Sn0,T (Ej )

)

+ gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)Ek − T Sn0,T (Ek)

)
Ck,s

}
+
∫

d3r{v(r)n(r)}, (A9)

where

Ck,s ≡
∫

d3r
{|ϕk,s(r)|2 − ∣∣ϕ0

k,s(r)
∣∣2}. (A10)

Thus its derivative is

δ�F 0
1

δξ
= ∂

∂ξ
gs

∑
j

(
f F

n0,T
(Ej )Ej − T Sn0,T (Ej )

)

+ δ

δξ
gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)Ek − T Sn0,T (Ek)

)
×Ck,s

}+
∫

d3r

{
v(r)

δn(r)

δξ

}
. (A11)

Using the relation for the entropy expression,

∂Sn0,T (E)

∂ξ
= E − μn0

T

∂f F
n0,T

(E)

∂ξ
, (A12)
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we find

δ�F 0
1

δξ
= gs

∑
j

(
f F

n0,T
(Ej )

∂Ej

∂ξ
− ∂T

∂ξ
Sn0,T (Ej )

)

+ gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)

∂Ek

∂ξ

− ∂T

∂ξ
Sn0,T (Ek)

)
Ck,s

}

+ gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)Ek

−T Sn0,T (Ek)
)δCk,s

δξ

}

+
∫

d3r

{(
μn0 + v(r)

)δn(r)

δξ

}
. (A13)

For the electrostatic and exchange-correlation, we get

δ�F el
1

δξ
=
∫

d3r

{
vel(r)

δn(r)

δξ

}
, (A14)

δ�F xc
1

δξ
=
∫

d3r

{
∂fxc(n)

∂ξ

∣∣∣∣
n=n(r)

− ∂fxc(n)

∂ξ

∣∣∣∣
n=n0

}

+
∫

d3r

{
vxc(n(r))

δn(r)

δξ

}
, (A15)

where fxc(n) is a shorthand notation for fxc(n,T ,e2,m).
Finally, using the equilibrium relation of Eq. (21), we obtain

∂F eq

∂ξ
= gs

∑
j

(
f F

n0,T
(Ej )

∂Ej

∂ξ
− ∂T

∂ξ
Sn0,T (Ej )

)

+ gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)

∂Ek

∂ξ

− ∂T

∂ξ
Sn0,T (Ek)

)
Ck,s

}

+ gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)Ek

− T Sn0,T (Ek)
)δCk,s

δξ

}
. (A16)

The derivative with respect to the temperature T can be
rewritten as

∂F eq

∂T
= 1

ni

(
∂f 0

0 (n,T ,m)

∂T
+ ∂fxc(n,T ,e2,m)

∂T

)∣∣∣∣
n=n

eq
0

+
⎛
⎝gs

∑
j

(−Sn0,T (Ej )
)

+ gs

∑∫ d3k

(2π )3

{
(−Sn0,T (Ek))Ck,s

}⎞⎠
∣∣∣∣∣∣
eq

+
∫

d3r

{
∂fxc(n)

∂T

∣∣∣∣
n=n(r)

− ∂fxc(n)

∂T

∣∣∣∣
n=n0

}∣∣∣∣∣
eq

(A17)

and the derivative with respect to the electron mass m gives

∂F eq

∂m
= 1

ni

(
∂f 0

0 (n,T ,m)

∂m
+ ∂fxc(n,T ,e2,m)

∂m

)∣∣∣∣
n=n

eq
0

+ gs

∑
j

(
f F

n0,T
(Ej )

∂Ej

∂m

)

+ gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)

∂Ek

∂m

)
Ck,s

}

+ gs

∑∫ d3k

(2π )3

{(
f F

n0,T
(Ek)Ek

− T Sn0,T (Ek)
)δCk,s

δm

}

+
∫

d3r

{
∂fxc(n)

∂m

∣∣∣∣
n=n(r)

− ∂fxc(n)

∂m

∣∣∣∣
n=n0

}∣∣∣∣∣
eq

.

(A18)

We have

∂H̃

∂m
= ∂H̃ 0

∂m
(A19)

from which one obtains
δ

δm
Ck,s = 0. (A20)

We finally obtain:

∂F eq

∂m
= 1

ni

(
∂f 0

0 (n,T ,m)

∂m
+ ∂fxc(n,T ,e2,m)

∂m

)∣∣∣∣
n=n

eq
0

+ gs

∑
j

(
f F

n0,T
(Ej )〈ϕj |∂H̃ 0

∂m
|ϕj 〉

)

+ gs

∑∫ d3k

(2π )3

{
f F

n0,T
(Ek)

(
〈ϕk,s |∂H̃ 0

∂m
|ϕk,s〉

− 〈ϕ0
k,s

∣∣∂H̃ 0

∂m

∣∣ϕ0
k,s

〉)}

+
∫

d3r

{
∂fxc(n)

∂m

∣∣∣∣
n=n(r)

− ∂fxc(n)

∂m

∣∣∣∣
n=n0

}∣∣∣∣∣
eq

.

(A21)

3. Case of e2

The derivative with respect to the squared electron charge
e2 is much simpler as the electron density and kinetic-entropic
contribution functionals do not depend on it,

∂F eq

∂(e2)
= δ	

δ(e2)

∣∣∣∣
eq

= δF

δ(e2)

∣∣∣∣
eq

. (A22)

We immediately get

∂F eq

∂(e2)
= 1

ni

∂fxc(n,T ,e2,m)

∂(e2)

∣∣∣∣
n=n

eq
0

+ 1

e2
�F el

1

∣∣
eq

+
∫

d3r

{
∂fxc(n)

∂(e2)

∣∣∣∣
n=n(r)

− ∂fxc(n)

∂(e2)

∣∣∣∣
n=n0

}∣∣∣∣∣
eq

.

(A23)
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APPENDIX B: TRANSFORMATION OF THE
ELECTROSTATIC TERM OF THE VIRIAL RELATION

Due to the spherical symmetry of our system, the electron
density n(r) and electrostatic potential vel(r) are functions of
the radius modulus r ,

Iel ≡ −
∫ ∞

0
dr

{
4πr3n(r)

d

dr
vel(r)

}
. (B1)

We define the reduced electrostatic potential χel(r) such that
vel(r) = Zχel(r)/r ,

Iel =
∫ ∞

0
dr

{
4πr2(n(r) − n0θ

(
r − R

ni

WS

))Zχel(r)

r

}

−
∫ ∞

0
dr

{
4πr2

(
n(r) − n0θ

(
r − R

ni

WS

))
Z

dχel(r)

dr

}

−
∫ ∞

0
dr

{
4πr3n0θ

(
r − R

ni

WS

) d

dr
vel(r)

}
. (B2)

Integrating by parts the third term of the above equation
and using the definition of R

ni

WS, we obtain

−
∫ ∞

0
dr

{
4πr3n0θ

(
r − R

ni

WS

) d

dr
vel(r)

}

= 3
n0

ni

vel
(
R

ni

WS

)+ 3n0

∫ ∞

R
ni
WS

dr{4πr2vel(r)}. (B3)

As concerns the second term of Eq. (B2), it can be shown
that if vel(r) and n(r) − n0θ (r − R

ni

WS) fulfill the Poisson
equation and boundary conditions,

d2χel(r)

dr2
= 4π

Z
r
(
n(r) − n0θ

(
r − R

ni

WS

))
, (B4)

χel(0) = 1, (B5)

χel(r → ∞) = 0, (B6)

dχel(r)

dr

∣∣∣∣
r→∞

= 0, (B7)

then we get∫ ∞

0
dr

{
4πr2

(
n(r) − n0θ

(
r − R

ni

WS

))
Z

dχel(r)

dr

}

= Z2

2

dχel(r)

dr

∣∣∣∣
r=0

+ 1

2

∫ ∞

0
dr

{
4πr2

(
n(r) − n0θ

(
r − R

ni

WS

))Zχel(r)

r

}
.

(B8)

This results from splitting the integral in two terms and
integrating one of them by parts. Adding the right-hand side of
the preceding equation to the first term of Eq. (B2), we obtain
the opposite of the electrostatic part of the energy: −�F el

1 .
Finally, we get the relation

Iel = −�F el
1 + 3

n0

ni

vel
(
R

ni

WS

)+ 3n0

∫ ∞

R
ni
WS

dr{4πr2vel(r)}.

(B9)

APPENDIX C: TRANSFORMATION OF THE LDA
EXCHANGE-CORRELATION TERM OF THE

VIRIAL RELATION

Ixc ≡
∫

d3r{n(r)r · ∇(vxc(n(r)) − vxc(n0))}. (C1)

Using the definition of the exchange-correlation potential and
integrating by parts, one obtains

Ixc = −3
∫

d3r

{(
n
∂fxc(n)

∂n

)∣∣∣∣
n(r)

− n(r)vxc(n0)

}

−
∫

d3r {r · ∇(fxc(n(r)) − n(r)vxc(n0))} (C2)

= 3vxc(n0)
∫

d3r{n(r) − n0}

+ vxc(n0)
∫

d3r{r · ∇(n(r) − n0)}

− 3
∫

d3r

{(
n
∂fxc(n)

∂n

)∣∣∣∣
n(r)

−
(

n
∂fxc(n)

∂n

)∣∣∣∣
n0

}

+
∫

d3r {r · ∇ (fxc(n(r)) − fxc(n0))} . (C3)

Finally, integrating the second and fourth terms by parts, and
taking into account Eq. (16), one gets

Ixc = 3�F xc
1 − 3

∫
d3r

{(
n
∂fxc(n)

∂n

) ∣∣∣∣
n(r)

−
(

n
∂fxc(n)

∂n

) ∣∣∣∣
n0

}
. (C4)

APPENDIX D: VIRIAL RELATIONS FROM THE
SCHRÖDINGER AND DIRAC EQUATIONS

1. Schrödinger equation case

We follow here Ref. [66]. Starting from the Schrödinger
equation and its complex conjugate, we extract the Clausius
virial term (r∇v(r))ϕ∗(r)ϕ(r). We obtain

ϕ∗(r)r · ∇
(

− h̄2

2m
∇2ϕ(r)

)
= ϕ∗(r) (E + v(r)) r · ∇ϕ(r) + (r · ∇v(r)) ϕ∗(r)ϕ(r),

(D1)

=
(

− h̄2

2m
∇2ϕ∗(r)

)
r · ∇ϕ(r) + (r · ∇v(r)) ϕ∗(r)ϕ(r),

(D2)

− h̄2

2m

(
ϕ∗(r)r · ∇ (∇2ϕ(r)

)+ (∇2ϕ∗(r)
)

r · ∇ϕ(r)
)

= (r · ∇v(r)) ϕ∗(r)ϕ(r). (D3)

The following useful relation appears (we use here the
Einstein summation convention):

∂i(ϕ
∗(r)∂i(xj∂jϕ(r)) − (∂iϕ

∗(r))(xj∂jϕ(r)))

= (∂iϕ
∗(r))∂i(xj∂jϕ(r)) + ϕ∗(r)∂i∂i(xj∂jϕ(r))

− (∂i∂iϕ
∗(r))(xj∂jϕ(r)) − (∂iϕ

∗(r))∂i(xj∂jϕ(r)), (D4)
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= ϕ∗(r)∂i∂i(xj∂jϕ(r)) − (∂i∂iϕ
∗(r))(xj∂jϕ(r)), (D5)

= ϕ∗(r)(∂i∂iϕ(r) + ∂i(xj∂i∂jϕ(r)))

− (∂i∂iϕ
∗(r))(xj∂jϕ(r)), (D6)

= 2ϕ∗(r)∂i∂iϕ(r) + ϕ∗(r)xj∂j ∂i∂iϕ(r)

− (∂i∂iϕ
∗(r))(xj∂jϕ(r)). (D7)

Using Eq. (D7) in Eq. (D3), we obtain

− h̄2

2m
(∇ · (ϕ∗(r)∇ (r · ∇ϕ(r)) − (∇ϕ∗(r)) (r · ∇ϕ(r)))

− 2ϕ∗(r)∇2ϕ(r)) = (r · ∇v(r)) ϕ∗(r)ϕ(r). (D8)

In the case of plane waves, we get

− h̄2

2m

(∇ · (ϕ0 ∗(r)∇ (r · ∇ϕ0(r)
)

− (∇ϕ0 ∗(r)
) (

r · ∇ϕ0(r)
) )− 2ϕ0 ∗(r)∇2ϕ0(r)

) = 0.
(D9)

2. Dirac equation case

In the case of the Dirac equation, we follow Ref. [67].
Starting from the Dirac equation and its Hermitian conjugate,
we extract the Clausius virial term (r · ∇v(r)) ϕ†(r)ϕ(r). We
get

ϕ†(r)r · ∇(−ih̄cα · ∇ϕ(r) + mc2βϕ(r))

= ϕ†(r) (E + v(r)) r · ∇ϕ(r) + (r · ∇v(r)) ϕ†(r)ϕ(r)

(D10)

= (ih̄c(∇ϕ†(r)) · α + mc2ϕ†(r)β)r · ∇ϕ(r)

+ (r · ∇v(r)) ϕ†(r)ϕ(r). (D11)

The above can be simplified and rewritten as

−ih̄c(ϕ†(r)r · ∇ (α · ∇ϕ(r)) + (∇ϕ†(r)
) · α r · ∇ϕ(r))

= (r · ∇v(r)) ϕ†(r)ϕ(r). (D12)

The following transformation is then useful (we use again the
Einstein summation convention):

∂j (ϕ†(r)αj (xi∂iϕ(r)))

= (∂jϕ
†(r))αj (xi∂iϕ(r)) + ϕ†(r)αj∂j (xi∂iϕ(r)) (D13)

= (∂jϕ
†(r))αj (xi∂iϕ(r)) + ϕ†(r)αj (∂jxi) (∂iϕ(r))

+ϕ†(r)αjxi(∂j ∂iϕ(r)) (D14)

= xi(ϕ
†(r)αj∂i∂jϕ(r) + (∂jϕ

†(r))αj (∂iϕ(r)))

+ϕ†(r)αjδij ∂iϕ(r). (D15)

Thus we obtain

xi(ϕ
†(r)αj∂i∂jϕ(r) + (∂jϕ

†(r))αj (∂iϕ(r)))

= ∂j (ϕ†(r)αj (xi∂iϕ(r))) − ϕ†(r)αj∂jϕ(r). (D16)

Using Eq. (D16) in Eq. (D12), we have

−ih̄c(∇ · (ϕ†(r)α(r · ∇ϕ(r))) − ϕ†(r)α · ∇ϕ(r))

= (r · ∇v(r)) ϕ†(r)ϕ(r). (D17)

In the case of plane waves, we get

−ih̄c(∇ · (ϕ0 †(r)α(r · ∇ϕ0(r))) − ϕ0 †(r)α · ∇ϕ0(r)) = 0.

(D18)

APPENDIX E: TREATMENT OF THE SURFACE TERM IN
THE FRAMEWORK OF ATOM-IN-JELLIUM

CALCULATIONS

1. Schrödinger equation case

IS = − h̄2

2m

∫
�∞

d S · {ϕ∗
E,
,m(r)∇(r · ∇ϕE,
,m(r))

− (∇ϕ∗
E,
,m(r))(r · ∇ϕE,
,m(r))

−ϕ0 ∗
E,
,m(r)∇(r · ∇ϕ0

E,
,m(r)
)

+(∇ϕ0 ∗
E,
,m(r)

)(
r · ∇ϕ0

E,
,m(r)
)}

. (E1)

We integrate over �∞, which is a sphere of radius r → ∞.
The elementary surface is d S = r sin θdθdφ r . We have

IS = − h̄2

2m
lim

r→∞

∫ π

0

∫ 2π

0
dθdφr sin θ

× {ϕ∗
E,
,m(r)r · ∇(r · ∇ϕE,
,m(r))

− (r · ∇ϕ∗
E,
,m(r))(r · ∇ϕE,
,m(r))

−ϕ0 ∗
E,
,m(r)r · ∇(r · ∇ϕ0

E,
,m(r)
)

+ (r · ∇ϕ0 ∗
E,
,m(r)

)(
r · ∇ϕ0

E,
,m(r)
)}

. (E2)

The continuum and plane-wave wave functions can be
expressed, respectively, as ϕE,
,m(r) = RE,
(r)Y
,m(θ,φ)/r

and ϕ0
E,
,m(r) = R0

E,
(r)Y
,m(θ,φ)/r with the Y
,m(θ,φ) being
the spherical harmonics,

IS = − h̄2

2m

∫ π

0

∫ 2π

0
dθdφ sin θ{|Y
,m(θ,φ)|2}

× lim
r→∞ r

{
RE,
(r)

r
r

∂

∂r

(
r

∂

∂r

(
RE,
(r)

r

))

−
(
r

∂

∂r

(
RE,
(r)

r

))2

− R0
E,
(r)

r
r

∂

∂r

(
r

∂

∂r

(
R0

E,
(r)

r

))

+
(

r
∂

∂r

(
R0

E,
(r)

r

))2
}

. (E3)

We have RE,
(r → ∞) = AE sin(pEr − 
π/2 + �E,
) and
R0

E,
(r → ∞) = AE sin(pEr − 
π/2),

IS = − h̄2

2m

∫ π

0

∫ 2π

0
dθdφ sin θ{|Y
,m(θ,φ)|2}

× lim
r→∞ A2

EpE(sin(2pEr − 
π + 2�E,
)

− sin(2pEr − 
π )) (E4)

= − h̄2

2m

∫ π

0

∫ 2π

0
dθdφ sin θ{|Y
,m(θ,φ)|2}

× lim
r→∞ 2A2

EpE sin �E,
 cos(2pEr − 
π + �E,
). (E5)
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In the preceding equation for IS we find the same rapidly
oscillating term as that encountered in the Friedel sum
rule. Integrated over the energy E, it leads to a zero
contribution.

2. Dirac equation case

IS = −ih̄c

∫
�∞

d S · {ϕ†
E,κ,m(r)α(r · ∇ϕE,κ,m(r))

−ϕ
0 †
E,κ,m(r)α

(
r · ∇ϕ0

E,κ,m(r)
)}

. (E6)

Here again we consider a sphere of radius r → ∞. The
elementary surface is d S = r2 sin θdθdφer , where er ≡ r/r .

We have

IS = −ih̄c lim
r→∞

∫ π

0

∫ 2π

0
dθdφr2 sin θ

×{ϕ†
E,κ,m(r)er · α(r · ∇ϕE,κ,m(r))

−ϕ
0 †
E,κ,m(r)er · α(r · ∇ϕ0

E,κ,m(r))
}
. (E7)

The continuum and plane-wave bispinors can be expressed,
respectively, as

ϕE,κ,m(r) =
(

i
PE,κ (r)

r
	κ,m(θ,φ)

QE,κ (r)

r
	−κ,m(θ,φ)

)

and

ϕ0
E,κ,m(r) =

(
i
P 0

E,κ (r)

r
	κ,m(θ,φ)

Q0
E,κ (r)

r
	−κ,m(θ,φ)

)

with the 	κ,m(θ,φ) being the spherical spinors.

IS = −ih̄c lim
r→∞

∫ π

0

∫ 2π

0
dθdφr2 sin θ

⎧⎨
⎩
(

−i
PE,κ (r)

r
	

†
κ,m

QE,κ (r)
r

	
†
−κ,m

)( 0 er · σ

er · σ 0

)⎛⎝ i	κ,mr ∂
∂r

(
PE,κ (r)

r

)
	−κ,mr ∂

∂r

(
QE,κ (r)

r

)
⎞
⎠

−
(

−i
P 0

E,κ (r)
r

	
†
κ,m

Q0
E,κ (r)
r

	
†
−κ,m

)( 0 er · σ

er · σ 0

)⎛⎝ i	κ,mr ∂
∂r

(
P 0

E,κ (r)
r

)
	−κ,mr ∂

∂r

(
Q0

E,κ (r)
r

)
⎞
⎠
⎫⎬
⎭ (E8)

IS = h̄c

∫ π

0

∫ 2π

0
dθdφ sin θ{|	κ,m(θ,φ)|2} lim

r→∞ r2

(
PE,κ (r)

∂

∂r

(
QE,κ (r)

r

)
− P 0

E,κ (r)
∂

∂r

(
Q0

E,κ (r)

r

))

−h̄c

∫ π

0

∫ 2π

0
dθdφ sin θ{|	−κ,m(θ,φ)|2} lim

r→∞ r2

(
QE,κ (r)

∂

∂r

(
PE,κ (r)

r

)
− Q0

E,κ (r)
∂

∂r

(
P 0

E,κ (r)

r

))
, (E9)

where we have used the well-known relation
(er · σ )	κ,m(θ,φ) = −	−κ,m(θ,φ).

We have PE,κ (r → ∞) = AE sin(pEr − 
κπ/2 + �E,κ )
and QE,κ (r → ∞) = −sgn(κ)AE

pE

E + 2mc2 sin(pEr − 
−κπ/2 +
�E,κ ), so we get

IS = h̄c

∫ π

0

∫ 2π

0
dθdφ sin θ{|	κ,m(θ,φ)|2}

× lim
r→∞ κA2

E

pE

E + 2mc2
(sin(2pE − 
κπ + 2�E,κ )

− sin(2pE − 
κπ )) (E10)

= h̄c

∫ π

0

∫ 2π

0
dθdφ sin θ{|	κ,m(θ,φ)|2}

× lim
r→∞ 2κA2

E

pE

E + 2mc2
sin �E,κ

× cos(2pE − 
κπ + �E,κ ). (E11)

APPENDIX F: VARIATION ON e2 AND m OF THE LDA
EXCHANGE-CORRELATION TERM

We define the dimensionless function ḟ as

fxc(n,T ,e2,m)

≡ EH (e2,m)

a0(e2,m)3
ḟ

(
na0(e2,m)3,

kBT

EH (e2,m)
,e2,m

)
, (F1)

where EH (e2,m) is the Hartree energy and a0(e2,m) is the Bohr
radius viewed as functions of the squared electron charge e2

and of the electron mass m,

EH (e2,m) ≡
(

e2

h̄c

)2

mc2; a0(e2,m) ≡ h̄c(
e2

h̄c

)
mc2

. (F2)

We assume that the exchange-correlation term depends on
e2 and on m only through the atomic units system, and we
suppress any explicit dependence of the function ḟ on e2

and m,

∂ḟ

∂(e2)
= ∂ḟ

∂m
= 0. (F3)
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In this case, we immediately find that

e2 ∂fxc

∂(e2)
= 5fxc − 3n

∂fxc

∂n
− 2T

∂fxc

∂T
, (F4)

m
∂fxc

∂m
= 4fxc − 3n

∂fxc

∂n
− T

∂fxc

∂T
. (F5)

We then obtain the following two useful relations to ob-
tain, respectively, the nonrelativistic and relativistic virial
theorems:

2uxc(n,T ,e2,m) − uint
xc (n,T ,e2,m)

= −3fxc(n,T ,e2,m) + 3n
∂fxc(n,T ,e2,m)

∂n
, (F6)

txc(n,T ,e2,m) + uint
xc (n,T ,e2,m)

= −3fxc(n,T ,e2,m) + 3n
∂fxc(n,T ,e2,m)

∂n
. (F7)

It is worth stressing that the terms containing the derivative
with respect to temperature cancel on the right-hand side in
the two preceding relations.

APPENDIX G: EFFECT OF A RELATIVISTIC TREATMENT
IN THE CASE OF YTTERBIUM AT 30-EV TEMPERATURE

Figure 14 is provided in order to show the effect of a
relativistic treatment on a heavy element (ytterbium) in the
warm-dense-matter regime. As can be seen on this figure, this
effect appears to be negligible both on the electron pressure
and on the mean ionization.
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FIG. 14. Effect of a relativistic treatment along the ytterbium
30-eV isotherm. Relatives differences between electron pressures and
mean ionizations stemming from a nonrelativistic calculation and
from a relativistic calculation are plotted vs the compression ratio
(we use ρ0 = 7.019 g cm−3).
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[40] R. Piron, Ph.D. thesis, École Polytechnique, 2009 (in French,

available at [http://tel.archives-ouvertes.fr/tel-00446558/fr/]).
[41] A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-

Statistical Models of Hot Dense Matter (Birkhauser, Basel,
Switzerland, 2005).

[42] T. Blenski and K. Ishikawa, Phys. Rev. E 51, 4869 (1995).
[43] L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
[44] F. Perrot, Phys. Rev. A 20, 586 (1979).
[45] S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, 91

(1987).
[46] J. Arponen, P. Hautojärvi, R. Nieminen, and E. Pajanne, J. Phys.

F 3, 2092 (1973).
[47] M. Manninen, R. Nieminen, P. Hautojärvi, and J. Arponen, Phys.

Rev. B 12, 4012 (1975).
[48] R. M. Nieminen, J. Phys. F 7, 375 (1977).
[49] P. A. Sterne, S. B. Hansen, B. Wilson, and W. A. Isaacs, High

Energy Density Phys. 3, 278 (2007).
[50] C. Gouedard and C. Deutsch, J. Math. Phys. 19, 32 (1978).
[51] E. L. Pollock and J. P. Hansen, Phys. Rev. A 8, 3110 (1973).

[52] R. G. Greene, H. Luo, and A. L. Ruoff, Phys. Rev. Lett. 73, 2075
(1994).

[53] P. Renaudin, C. Blancard, J. Clérouin, G. Faussurier, P. Noiret,
and V. Recoules, Phys. Rev. Lett. 91, 075002 (2003).

[54] P. Renaudin, V. Recoules, P. Noiret, and J. Clérouin,
Phys. Rev. E 73, 056403 (2006).

[55] V. N. Korobenko, A. D. Rakhel, A. I. Savvatimski, and V. E.
Fortov, Phys. Rev. B 71, 014208 (2005).

[56] V. N. Korobenko and A. D. Rakhel, Phys. Rev. B 75, 064208
(2007).

[57] A. V. Bushman, I. V. Lomonosov, K. V. Khishchenko, V. P.
Kopyshev, E. A. Kuzmenkov, V. E. Kogan, P. R. Levashov,
and I. N. Lomov, Ihed shock wave database [http://www.
ihed.ras.ru/rusbank/].

[58] S. P. Lyon, J. D. Johnson, and Group T-1, Sesame, The
Los Alamos National Laboratory Equation-of-State Database,
Technical Report LA-UR-92-3407, Los Alamos National Labo-
ratory, 1995.

[59] T. L. Loucks, Augmented Plane Wave Method (Benjamin,
New York, 1967).

[60] H. Szichman and A. D. Krumbein, Phys. Rev. A 33, 706
(1986).

[61] J. P. Hansen, Phys. Rev. A 8, 3096 (1973).
[62] A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov,

High Temp. 25, 10 (1987); Teplofiz. Vys. Temp. 25, 12
(1987).

[63] J.-C. Pain, Contrib. Plasma Phys. 47, 421 (2007).
[64] R. Clausius, Ann. Phys. (Berlin) 141, 124 (1870).
[65] V. Fock, Z. Phys. 63, 855 (1930).
[66] J. C. Slater, J. Chem. Phys. 1, 687 (1933).
[67] N. H. March, Phys. Rev. 92, 481 (1953).

026403-22

http://dx.doi.org/10.1016/j.hedp.2007.01.003
http://dx.doi.org/10.1016/j.hedp.2007.01.003
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.137.A1441
http://dx.doi.org/10.1088/0022-3719/11/24/002
http://dx.doi.org/10.1088/0022-3719/12/15/007
http://dx.doi.org/10.1088/0022-3719/12/15/007
http://dx.doi.org/10.1051/jphys:01986004703043700
http://dx.doi.org/10.1103/PhysRevA.34.433
http://tel.archives-ouvertes.fr/tel-00446558/fr/
http://dx.doi.org/10.1103/PhysRevE.51.4869
http://dx.doi.org/10.1088/0022-3719/4/14/022
http://dx.doi.org/10.1103/PhysRevA.20.586
http://dx.doi.org/10.1016/0370-1573(87)90125-6
http://dx.doi.org/10.1016/0370-1573(87)90125-6
http://dx.doi.org/10.1088/0305-4608/3/12/011
http://dx.doi.org/10.1088/0305-4608/3/12/011
http://dx.doi.org/10.1103/PhysRevB.12.4012
http://dx.doi.org/10.1103/PhysRevB.12.4012
http://dx.doi.org/10.1088/0305-4608/7/3/008
http://dx.doi.org/10.1016/j.hedp.2007.02.037
http://dx.doi.org/10.1016/j.hedp.2007.02.037
http://dx.doi.org/10.1063/1.523508
http://dx.doi.org/10.1103/PhysRevA.8.3110
http://dx.doi.org/10.1103/PhysRevLett.73.2075
http://dx.doi.org/10.1103/PhysRevLett.73.2075
http://dx.doi.org/10.1103/PhysRevLett.91.075002
http://dx.doi.org/10.1103/PhysRevE.73.056403
http://dx.doi.org/10.1103/PhysRevB.71.014208
http://dx.doi.org/10.1103/PhysRevB.75.064208
http://dx.doi.org/10.1103/PhysRevB.75.064208
http://www.ihed.ras.ru/rusbank/
http://www.ihed.ras.ru/rusbank/
http://dx.doi.org/10.1103/PhysRevA.33.706
http://dx.doi.org/10.1103/PhysRevA.33.706
http://dx.doi.org/10.1103/PhysRevA.8.3096
http://dx.doi.org/10.1002/ctpp.200710055
http://dx.doi.org/10.1007/BF01339281
http://dx.doi.org/10.1063/1.1749227
http://dx.doi.org/10.1103/PhysRev.92.481

