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Second sum rule for the hot plasma permittivity
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Based on linear response theory, Kramers-Kronig relations, and diagram techniques of perturbation theory, it
is shown that the second sum rule is satisfied for hot plasma permittivity. An explicit analytical expression for
the second sum rule in the limit of weak nonideality is derived.
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Particular attention is paid to theoretical and experimental
study of the frequency dependence of the plasma permittivity
ε(ω) (see [1–5] and references therein). In this situation, of
significant importance are exact relations for the permittivity
ε(ω), which would make it possible to estimate the accuracy
of the models used for describing the frequency dependence
of the function ε(ω). Among such exact relations are the
Kramers-Kronig relations (KKRs) and sum rules (see, e.g.,
[6,7]). As applied to the permittivity ε(ω) of homogeneous
and isotropic plasma, which is defined as the long-wavelength
limit of the longitudinal εl(q, ω) and transverse εtr (q, ω)
permittivities [6],

ε(ω) = lim
q→0

εl(q,ω) = lim
q→0

εtr (q,ω), ε(ω) = 1 + 4πi

ω
σ (ω),

(1)

the known sum rule is written as [6, 7]∫ ∞

0
Im ε(ξ )ξdξ = πω2

p

2
, (2)

where ωp is the plasma frequency. In turn, KKRs for the
permittivity ε(ω) of homogeneous and isotropic plasmas are
written as [7] (see also [8])

Re ε(ω) = 1 + 1

π
P

∫ +∞

−∞

{
Im ε(ξ ) − 4πσst

ξ

}
dξ

ξ − ω
, (3)

Im ε(ω) − 4πσst

ω
= −P

∫ +∞

−∞

{Re ε(ξ ) − 1}
π

dξ

ξ − ω
, (4)

where the symbol P before the integral signs in (3) and (4)
means that the corresponding integral is understood as the
principal-value integral, σst is the static conductivity of the
plasma, defined as the static limit of the dynamic conductivity
σ (ω) [Eq. (1)], σst = limω→0 σ (ω). In this case, for the
function ε(ω), at real frequencies ω, the following equations
[6, 7] are valid,

Re ε(ω) = Re ε(−ω), Im ε(ω) = −Im ε(−ω), Im ε(ω) > 0

for ω > 0. (5)

At the same time, according to (1), as shown in [9] based on
linear response theory and diagram techniques of perturbation
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theory, the permittivity ε(ω) has the form

ε(ω) = 1 − ω2
p

ω2
− ϕ(ω)

ω2
, ϕ(ω) = 4π

3V
〈〈Iβ |Iβ〉〉ω, (6)

Iβ =
∑

a

zaeI
β
a , I β

a =
∑
ps

h̄pβ

ma

a†
psaps,

(7)

ωp =
(∑

a

4πz2
ae

2na

ma

)1/2

.

〈〈A|B〉〉ω ≡ − i

h̄

∫ +∞

0
exp(iωt)〈[A(t),B(0)]〉dt. (8)

Here Iβ is the total current operator, A(t) is the operator A

in the Heisenberg representation, the angular brackets 〈· · ·〉
mean averaging in the grand canonical ensemble with the
exact Hamiltonian of the plasma, and a

†
ps and aps are the

creation and annihilation operators for charged particles of
type a with momentum h̄p and spin number s, which are
characterized by the charge zae, mass ma , chemical potential
μa , and average density of the number of particles na , so
that the quasineutrality condition

∑
a zaena = 0 is satisfied.

Relations (6)–(8) represent the permittivity in thermodynamic
limit: V → ∞, Na → ∞, na = Na/V = const, where V is
the plasma volume and Na the total number of particles of a

type. We note that relations (6)–(8) correspond to the known
Kubo formula [10]. Integrating by parts in (6)–(8), it is easy
to verify that [11]

ε(ω) = 1 − ω2
p

ω2
− m2

ω4
− ψ(ω)

ω4
,

(9)

ψ(ω) = 4π

3V

〈〈
dIβ

dt
| dIβ

dt

〉〉
ω

,

where m2 is the so-called second moment of the high-
frequency expansion for the function Re ε(ω) [12],

m2 = 4π

3

∑
a �=b

(nanb)1/2

{
zazbe

2

mamb

− z2
ae

2

m2
a

}

×
∫

d3q

(2π )3
q2uab(q)Sab(q). (10)

Here uab(q) = 4πzazbe
2

q2 is the Fourier component of the
Coulomb interparticle interaction potential, and Sab(q) is
the static structure factor for particles of types a and b,
which is directly related to the corresponding pair correlation
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function gab(r),

Sab(q) = δa,b + (nanb)1/2
∫

exp(iqr){gab(r) − 1}dr. (11)

In turn, according to (3)–(5), we find [13]

Re ε(ω) = 1 − 2

πω2

∫ ∞

0
Im ε(ξ )ξdξ − 2

πω4

×
∫ ∞

0
Im ε(ξ )ξ 3dξ − γ (0)(ω)

ω4
, (12)

γ (0)(ω) = 2

π
P

∫ ∞

0

Im ε(ξ )ξ 5dξ

ω2 − ξ 2
. (13)

Thus, if it could be proved that

lim
ω→∞ Re ψ(ω) = 0, lim

ω→∞ γ (0)(ω) = 0, (14)

not only would the validity of equality (2) immediately follow
from the comparison of relations (9), (10) and (12), (13), but
also the second sum rule for the permittivity ε(ω),∫ ∞

0
Im ε(ξ )ξ 3dξ = πm2

2
� 0. (15)

Let us perform a further consideration for a high-temperature
two-component gas plasma consisting of electrons (subscript
e) and ions (subscript i) in the parameter range

naλ
3
a � 1, T 	 Ry, λa =

(
h̄2

T ma

)1/2

, Ry = mee
4

2h̄2 , (16)

where λa is the thermal de Broglie wavelength for particles
of type a. The first condition in (16) corresponds to the
transition to the quasiclassical description of an ideal plasma.
The second condition in (16) corresponds to consideration of a
fully ionized plasma in which one can neglect the bound states
of electrons and ions (atoms and molecules; see, e.g., [14,16]).
At the same time, the second inequality in (16) is equivalent to
applicability of the Born approximation in quantum mechanics
to the collisions of particles (see [16]). Consideration of the
quantum effects is necessary, since the classical Coulomb
system is unstable [16]. Therefore, if the conditions (16)
are satisfied, the quasiclassical approximation and the weak
nonideality approximation (or the integral smallness of the
Coulomb interparticle interaction) can be used for description
of the plasma [17].

Then, based on diagram techniques of perturbation theory
[18], it can be shown that in the high frequency limit ω 	
ν̃ei , where ν̃ei is the characteristic frequency of electron-ion
collisions, the function ψ(ω) is written as [11,17]

ψ(ω)=−4πe2T

3m2
e

∫
d3q

(2π )3
q3|uei(q)|2χ (0)

ee (q,ω)χ (0)
ii (q,0), (17)

χ (0)
ee (q,ω) = �RPA

ee (q,ω)

εRPA
ee (q,ω)

,

(18)
εRPA
ee (q,ω) = 1 − uee(q)�RPA

ee (q,ω),

χ
(0)
ii (q,0) = �RPA

ii (q,0)

1 − u
eff

ii (q)�RPA
ii (q,0)

,

(19)
u

eff

ii (q) = uii(q) + |uei(q)|2χ (0)
ee (q,0).

Here χ (0)
ee (q,ω) and εRPA

ee (q,ω) are, respectively, the “density-
density” response function and dielectric function of the
electron gas in the neutralized background of positive charge
(collisionless approximation for plasma [15]), and χ

(0)
ii (q,0) is

the static “density-density” response function for ions which
interact with one another via the effective short-range potential
u

eff

ii (q) (19). This is easy to see in the case of Coulomb
interaction u

eff

ii (q) = uii(q)/εRPA
ee (q,0), i.e., when the ion-ion

effective interaction is the Coulomb one, screened by electrons.
Note that, in the classical limit (h̄ → 0), the response function
χ

(0)
ii (q,0) is determined in the appropriate approximation by

the ion-ion static factor Sii(q) [Eq. (11)]: T limh̄→0 χ
(0)
ii (q,0) =

−ni limh̄→0 Sii(q). In (18) and (19) �RPA
aa (q,ω) is the polariza-

tion operator in the random phase approximation (RPA) which
in the quasiclassical case, when conditions (16) are satisfied,
is given by [14]

Re �RPA
aa (q,ω) = − na

h̄qT

{(
maω

q
+ h̄q

2

)

×F1,1

(
1,

3

2
, − 1

2maT

(
maω

q
+ h̄q

2

)2)

−
(

maω

q
− h̄q

2

)

×F1,1

(
1,

3

2
,− 1

2maT

(
maω

q
− h̄q

2

)2)}
, (20)

Im �RPA
aa (q,ω) = −na

2h̄

(
2πma

T q2

)1/2

×
{

exp

[
− 1

2maT

(
maω

q
− h̄q

2

)2]

− exp

[
− 1

2maT

(
maω

q
+ h̄q

2

)2]}
. (21)

F1,1(α,β,x) is the degenerate hypergeometric function, and
T is the system temperature. Relations (17)–(19) are valid
within the adiabatic approximation for the ion subsystem
(mi 	 zime).

As is easy to show from (20),(21) the transition to the
classical limit (h̄ → 0) is equivalent to the conditions

h̄2q2

2ma

� h̄ω � T ,
h̄2q2

2ma

� T (for ω = 0). (22)

This means that consideration of a high frequency ω (ω → ∞),
and a high value of the wave vector q (q → ∞), which
corresponds to small distances, the classical expressions for the
frequency- and wave-vector-dependent correlation functions
cannot be applied, although the conditions of the quasiclassical
approximation are fulfilled [the first inequality in (16)]. Thus,
the known Coulomb divergence in the kinetic theory of a
classical plasma at small distances is conditioned by this
circumstance (see, e.g., [15]). At the same time, according
to (9), (10), and (17)

m2 = −ψ(0) = 4πe2T

3m2
e

∫
d3q

(2π )3
q2|uei(q)|2χ (0)

ee (q,0)χ (0)
ii (q,0).

(23)

026402-2



SECOND SUM RULE FOR THE HOT PLASMA PERMITTIVITY PHYSICAL REVIEW E 83, 026402 (2011)

Substituting (21) into (17)–(19), we can show [17] that

Im ε(ω → ∞) → C

ω4
√

ω
, Im ψ(ω → ∞) → − C√

ω
,

(24)

C = 2

3
ziω

4
p

(
Ry

h̄

)1/2

.

Let us pay attention to the fundamental necessity to consider
quantum effects. Then, according to definition (9), the function
ψ(z) is an analytical function in the upper half plane of
complex z (Im z > 0) and thereby [19] satisfies the KKRs.
In this case, in contrast to the permittivity ε(ω) [see (3) and
(4)], the function ψ(ω) has no singularity at ω = 0 [see (23)].
Thus, according to (3), (5), and (9) for the function Reψ(ω),
in the limit ω → ∞ [see (14)] which is interesting, one can
write

Re ψ(ω) = − 2

π
P

∫ ∞

0

Im ψ(ξ )ξdξ

ω2 − ξ 2
. (25)

Taking into account (24), the passage to the limit ω → ∞ in
(25) cannot be performed under the integral sign. In this case,

P
∫ ∞

0

Im ψ(ξ )ξdξ

ω2 − ξ 2
= P

∫ ∞

0

{
Im ψ(ξ ) + C√

ξ

}
ξdξ

ω2 − ξ 2

−CP
∫ ∞

0

√
ξdξ

ω2 − ξ 2
. (26)

According to [20], for α > 0, β > 0, and 0 < μ < 2, we have∫ ∞

0

xμ−1dx

(β + x)(α − x)
= π

α + β
[βμ−1 csc(μπ ) + αμ−1cot(μπ )].

(27)

For calculation of the last integral in the right-hand side of
(26), let us use (27) for α = β = ω, μ = 3/2 and take into
account that in the first integral in the right-hand side of (26)
transition to the limit ω → ∞ can be performed under the
integral sign. As a result, from (26) and (27) we obtain

Re ψ(ω → ∞) → πC

2
√

ω
. (28)

A similar consideration can also be performed for the function
γ (0)(ω) [Eq. (13)] (see [13]). Thus, the validity of equalities
(14) is proved. Hence, the hot plasma permittivity ε(ω) satisfies
the second sum rule∫ ∞

0
Im ε(ξ )ξ 3dξ = 2π2e2T

3m2
e

∫
d3q

(2π )3
q2|uei(q)|2

×χ (0)
ee (q,0)χ (0)

ii (q,0) � 0. (29)

To calculate the integral on the right-hand side of (29), we
will take into account that limω→0 Im �RPA

aa (q,ω) = 0, and
the static polarization operator �RPA

aa (q,0), according to (20),
is given by [21]

�RPA
aa (q,0) = −na

T
ϕ(qλa), ϕ(x) = F1,1

(
1,

3

2
, − x2

8

)
,

(30)
lim
x→0

ϕ(x) = 1, lim
x→∞ x2ϕ(x) = 4, 0 < ϕ(x) < 1,

(31)
dϕ(x)

dx
< 0.

We note that the first equality in (31) corresponds to the
classical limit for �RPA

aa (q,0). Using (18), (19), and (29)–(31),
it is easy to verify that

∫ ∞

0
Im ε(ξ )ξ 3dξ =

√
2

3
ziω

4
p

(
Ry

T

)1/2

M(αp,zi,θ ),

(32)

αp = h̄ωp

T
, θ =

(
me

mi

)1/2

,

M(αp,zi,θ ) =
∫ ∞

0

x2ϕ(x)ϕ(θx)dx

x2 + α2
p{ϕ(x) + ziϕ(θx)} . (33)

Taking into account that θ � 1, the dependence of the
quantity M(αp,zi,θ ) on the parameter θ , according to (31),
can be neglected,

M(αp,zi,θ ) ∼= M(αp,zi,0)=
∫ ∞

0

x2ϕ(x)dx

x2 + α2
p{ϕ(x) + zi} , (34)

lim
αp→0

M(αp,zi,0) = M0 =
∫ ∞

0
ϕ(x)dx = const. (35)

Thus, the second sum rule for the permittivity ε(ω) of hot
plasma whose thermodynamic parameters satisfy conditions
(16) and h̄ωp � T is written as

∫ ∞

0
Im ε(ξ )ξ 3dξ =

√
2

3
ziω

4
p

(
Ry

T

)1/2

M0. (36)

To estimate M0 taking into account (31), we can use the
approximation for the function ϕ(x) = 4(4 + x2)−1 [21]. In
this case, M0 = π .

The results are essential for construction of self-consistent
models of the frequency dispersion of the plasma permittivity
ε(ω). In this case, a certain advantage of the second sum
rule is associated with the dependence on the thermodynamic
parameters of the plasma. Furthermore, by virtue of the
asymptotic behavior of (24), the higher moments mn (n > 2)
of the permittivity ε(ω) diverge (see, e.g., [22]):

mn =
∫ ∞

0
Im ε(ξ )ξ 2n−1dξ, m1 = πω2

p

2
,

(37)

m2 =
√

2

3
ziω

4
p

(
Ry

T

)1/2

M0, mn>2 = ∞.

Thus, the sum rules for the hot nonrelativistic plasma
permittivity ε(ω) are completely satisfied by the above results.
In addition, when the quasiclassical conditions [see (16)] are
fulfilled the quantum effects should be taken into account,
since in this case the Coulomb divergence for small distances
(large wave vectors) is absent. The divergence for small
wave vectors (large distances) is canceled by the screening
effect.
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