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Macroscopic properties of granular materials are important in modeling a variety of flow and transport
phenomena in many fields of science. Determination of these parameters has always been an issue among both
researchers and engineers, mainly in view of tortuosity and permeability. This paper presents analytical functions
for the tortuosity and permeability of monosized sphere arrays based on a volume averaging approach and
eliminates some ambiguities by modification of the original representative elementary volume model. Veracity
of the proposed formulations has been illustrated through comparisons with the latest available results on the
subject. Good agreement is found.
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I. INTRODUCTION

Since the pioneering work of Kozeny [1], a vast number
of researchers and engineers have dealt with establishing
relations for permeability K of porous media. Carman [2–4]
modified the original equation of Kozeny to the following
form:

K = n3

k(1 − n)2S2
, (1)

where n is the porosity, S is the specific surface of the solid
volume, and k = Cf τ 2 is the Kozeny-Carman (KC) constant,
in which τ is the tortuosity, described as the ratio of the
actual tortuous length of flow path to the shortest straight
distance along the macroscopic pressure gradient and Cf

is a constant depending on capillary pore shape. Assuming
spherical particles, substituting for S in Eq. (1) leads to

K = n3

36Cf τ 2(1 − n)2
d2

p, (2)

where dp is the particle diameter. A value of Cf = 2.5 is given
for beds of spherical particles [5]. Carman proposed a constant
tortuosity of τ = √

2 in Eq. (2) based on his experimental
measurements of permeability [2]. As a result, the most widely
used form of the KC correlation for a monodisperse sphere
packing is obtained [5–8]:

K = d2
p

180

n3

(1 − n)2
, (3)

which is considered as a simple, yet practical, correlation
for expressing the permeability of granular media in terms
of particle size and porosity.

Despite its extensive application, the KC constant has been
realized not to be a constant for different porous media; for
example, Mathavan and Viraraghavan [9] proposed a value
of 3.4 for peat beds, contrary to 4.8 ± 0.3 by Carman [4]
for uniform spheres. Rahli et al. [10] determined different
KC constants for the randomly packed monodispersed fibers
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at different porosities and aspect ratios. A brief review of some
permeability equations with variable KC constants is provided
for some porous media, e.g., textile assemblages, fiber mats,
particle arrays, rocks, and unconsolidated porous media [11].
The review showed the vast scatter of permeability equations
in the literature pertaining to different types of porous media.
This clarifies the effect of structure of the porous media on
permeability, which will not be discussed in this paper.

Not only does the KC constant depend on the porous
structure, but also it varies with porosity, tortuosity and pore
area for the same medium. The variation is extensive in a way
that many existing permeability equations are only valid at
certain porosity ranges [11]. Rumpf and Gupte [12], following
experiments on beds of spherical particles, presented a
permeability relation for porosities between 0.35 and 0.70.
Howells [13] and Hinch [14] expanded the Brinkman [15]
correlation and suggested another permeability equation valid
for porosities above 0.75 for equal-sized sphere suspensions.
Sriboonlue and Davies [16] proposed a KC constant for coarse
gravels with a porosity range of 0.336 and 0.400 based on
experiments. Bryant and Blunt [17] simulated dense packing of
monosized spheres using a pore-network model for n = 0.362.
Maier et al. [18] and Guodong et al. [19] utilized the
lattice-Boltzmann method to obtain permeability of identical
spheres at n = 0.37. All these results were comparable to
the KC equation. Garcia et al. [20] achieved similar, though
slightly higher, permeabilities for the mentioned porosities.
Experimental evidences illustrated that the KC equation
provides reasonable permeability estimates for random
packing of spheres, periodic arrays of spheres, and fractal
porous media [21]. On a comprehensive study on the subject
using direct three-dimensional (3D) computational fluid
dynamics (CFD) model of monosized spheres, Zaman and
Jalali [22] quoted that the KC equation has an extended range
of agreement with simulations up to a porosity of 0.9 when
1000 or higher numbers of particles were utilized. The higher
the number of spheres, the more homogenous the medium
became from a microstructural point of view (especially at
higher porosities).

Despite the universal consensus on the validity of the
KC equation for monosized spheres, as indicated above, there
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TABLE I. Some reference tortuosity functions for particulate media.

Reference Tortuosity correlation Porosity range Applicability Derivation method

Comiti and Renaud [23] 1 − p ln(n) – Bed of particles Experimental (conductivity
measurements)

Koponen et al. [24] 1 + p(1 − n) 0.5 < n < 1 – Numerical (2D lattice-
Boltzmann method)

Weissberg [25], 1 − 0.49 ln(n) 0.36 < n < 1 Bed of spheres Experimental (conductivity
Mauret and Renaud [26], measurements)
and Barrande et al. [27]

Iversen and Jørgensen [28]
√

1 + 2(1 − n) 0.4 < n < 0.9 Sandy marine Experimental (diffusion
sediments measurements)

Bear [6], Dullien [7], Experimental (conductivity
Mota et al. [29],

1

np
– Granular beds measurements)

and Dias et al. [30,31]

is a large scatter in existing tortuosity correlations, especially
in their form and porosity range of applicability. Some of the
most cited tortuosity functions available in the literature for
particulate media are as follows:

Comiti and Renaud [23]:

τ = 1 − p ln(n); (4)

Koponen et al. [24]:

τ = 1 + p(1 − n); (5)

Weissberg [25], Mauret and Renaud [26], and Barrande
et al. [27]:

τ = 1 − 0.49 ln(n); (6)

Iversen and Jørgensen [28]:

τ =
√

1 + 2(1 − n); (7)

Bear [6], Dullien [7], Mota et al. [29], and Dias et al.
[30,31]:

τ = 1

np
. (8)

These functions, together with their porosity range, appli-
cability, and derivation method, are summarized in Table I.
Most of the functions are derived from physical or numerical
experiments and do not possess a strong analytical basis.
Table I shows that for identical methods of derivation, the
correlations have different forms. For example, although
Eqs. (6) and (8) are both validated in conductivity experiments
and are highly accredited by several researchers, they have
different mathematical forms. The same inconsistency is
observed for correlations derived from numerical simulations.
Ghassemi and Pak [32] have suggested a correlation of the
form given by Eq. (5) from two-dimensional (2D) simulations
using the lattice-Boltzmann method, which agrees [24], while
similar numerical simulations by Matyka et al. [33] have
shown a correlation of the form 1 + ln(n), which is different
from Eq. (5). However, the latter may be attributed to
overlapping of the rectangles, which was allowed in Matyka
et al. [33] simulations.

As a result, 2D numerical models cannot account for
tortuosity variations. Because of the 3D nature of tortuosity, it
may not be limited to in-plane flow paths. The 3D numerical
flow simulations are usually computationally cumbersome.

It is apparent from the above that tortuosity has many defi-
nitions that were derived from different methods and it is not
clear if they are equivalent. For instance, computer simulations
(e.g., Ref. [24]) calculate tortuosity from flow streamlines,
and it is not obvious that a quantity thus defined should have
much in common with the various tortuosities calculated from
experiments (e.g., diffusion or electric tortuosity), as the only
link between them is a very simple theory that views a porous
medium as composed of separate tubes of constant cross
section. A thorough discussion in this regard can be found
in Ref. [34].

The role of analytical methods is, therefore, to shed light
on the subject and to build up a mathematical framework
for the problem at hand. In spite of the possible simplicity
of such solutions, they supply the required framework for
the researchers to adapt the inherent coefficients to suit
experiments.

To the best of the authors’ knowledge, a reliable
analytical framework for tortuosity has not been suggested
so far. Weissberg [25] presented a diffusivity model for freely
overlapping spheres. Their proposed function was similar to
Eq. (6), which was later validated empirically [26,27], even
though the assumption of overlapping spheres is unrealistic.
Du Plessis and Masliyah [35] provided the following analytical
function for isotropic granular media based on the concept of
a representative unit cell (RUC) [36]:

τ = n

1 − (1 − n)2/3
. (9)

RUC is a concept in which pores and the representative
elementary volume (REV) are represented by a cubic volume
of minimum dimensions.

Figure 1 compares Eq. (9) to the reference tortuosity
functions of Table I. Deviation, both qualitatively and quan-
titatively, is obvious. However, it satisfies the limit case of
τ → 1 when n → 1.
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FIG. 1. (Color online) Comparison of some existing analytical
tortuosity functions to those from experiments.

On a recent attempt, Lanfrey et al. [37] proposed the
following analytical function for sphere beds:

τ = 1.23
(1 − n)4/3

n2
. (10)

This tortuosity function not only generates quantitatively
invalid values, but also does not fulfill the limit case of unit
tortuosity when porosity approaches one (it tends to zero
instead). In order to avoid scale disturbances to diagrams of
Fig. 1 (owing to its out-of-range values), it is not plotted in
Fig. 1. As pointed out by the authors themselves, this error is
on account of assuming a constant value of 1.23 in Eq. (10) ,
which restricts the possible macroscopic packing data.

The present paper aims at providing analytical tortuosity
and permeability functions for sphere arrays based on the
concept of REV, and to compare them with the existing
correlations.

II. REPRESENTATIVE ELEMENTARY
VOLUME (REV) MODEL

Since the early Biot’s coupled formulation of Darcy flow in
porous media [38], many improvements have been proposed
and employed successfully over the years in geomechanical
software packages. The formulation was based on only two
macroscopic parameters: porosity and permeability [39–41].
An extensive review of the methods can be found in Ref. [42].

Subsequent models used an approach of local
volume averaging for deriving balance equations of the
porous medium. Among them is the model presented by
Bear and Bachmat [43–45], which provides a mathematical
continuum framework for addressing macroscopic parameters
of the porous medium. The model handles a macroscopic
configuration of granules through tensorial parameters. Some
basic definitions of the model are reproduced in Fig. 2, in
which β = s denotes solid particles and α = f specifies fluid
saturating the voids. In the following, a two-phase porous
medium is assumed, as depicted in Fig. 2, where s and
f subscripts represent solid and fluid phases, respectively. In

FIG. 2. REV defined in Ref. [43]; α ≡ f ; β ≡ s; S0 = Sff +
Sss ; S0f = Sf s + Sff .

the figure, S0 indicates the whole area encompassing the REV,
Sss denotes part of the area around the REV that passes through
the granules, Sff represents part of the area around the REV
that does not cross the granules, and Sf s describes the area
in which the granules and the fluid interact with each other.
S0f stands for the area enclosing the fluid volume, which is
equal to the sum of Sff and Sf s . Also,

(W )
χ = 1

U0χ

∫
U0χ

W dU (11)

is the volumetric intrinsic phase average of a quantity W over
phase χ (s or f ), where U0χ is the volume occupied by phase
χ . The ( )

χ
denotes the volumetric intrinsic phase average over

phase χ . Also,

(W ) = 1

U0

∫
U0χ

W dU (12)

is the volumetric phase average of a quantity W over phase χ

(s or f ), where U0 is the total volume occupied by the solid
and fluid phases, i.e., U0 = U0s + U0f . The ( ) denotes the
volumetric phase average over phase χ . Terms without the
overbar (-) denote microscopic (nonaveraged) quantities.

Bear and Bachmat [45] presented macroscopic balance
equations of a porous medium. In order to express permeability
of the fluid, they used the concept of Darcy flow, in which drag
forces in the interface of fluid and solid were assumed to be
dominant over inertia and viscous forces of the fluid in the
macroscopic fluid momentum balance equation. This can be
written for the case of an isotropic porous medium as [45]

μf
f αijCf n

(
Vfj

f − Vsj

s)
�2

f

= −nT ∗
fji

(
∂pf

f

∂xj

+ ρf
f g

∂z

∂xj

)
,

(13)

where i and j are free and dummy indexes, respectively; μf

is the dynamic viscosity of the fluid; Cf is a shape factor
related to pore size [same as Eq. (2)]; Vi , ρ, and p denote
velocity, density, and pressure, respectively; g is the gravity
acceleration; and z is the vertical coordinate (assumed positive
upward). All four macroscopic parameters of the model, which
appear in Eq. (13), are defined as follows [45]:
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(1) Porosity n denotes the fraction of fluid in a REV, i.e.,

n = U0f

U0
. (14)

(2) Hydraulic radius �f is defined as the ratio of fluid
volume to the fluid-solid interface area:

�f = U0f

Sf s

. (15)

where Sf s is the interface area of the fluid and solid phases
(Fig. 2).

(3) The tortuosity tensor is defined as

T ∗
f ij = 1

U0f

∫
Sff

◦
xiνfj dS, (16)

where Sff is the area of part of circumference of the REV
intercepted by the fluid, νf i is the unit normal to the surface

(see Fig. 2), and
◦
xi = xi − x0i , in which x0 is the coordinate

of center of the REV.
It was shown in Ref. [45] that the tortuosity tensor for an

isotropic medium can be written in the following form:

T ∗
f ij = T ∗

f δij = θS

n
δij , (17)

where δij is the Kronecker delta function, and θS = Sff

S0
.

(4) αij is another second-rank tensor that depends on the
granules configuration in the Bear and Bachmat model [45]:

αij = δij − ν̃iνj
f s = δij − 1

Sf s

∫
Sf s

νf iνfj dS. (18)

The ( ∼ )f s defined above is the average over Sf s . For an
isotropic medium,

αij = aδij . (19)

Combining with (13), and after some algebraic manipula-
tions,

Vfi
− Vsi

= −n�2
f

Cf

T ∗
f a−1 γf

μf
f

(
∂
(pf

f

γf

)
∂xi

+ ∂z

∂xi

)
. (20)

Equation (20) is the Darcy equation, from which fluid
conductivity is found:

kf = n�2
f

Cf

T ∗
f a−1 γf

μf
f
. (21)

By analogy with kf = K
γw

μf
, the (intrinsic) permeability

becomes

K = n�2
f

Cf

T ∗
f a−1, (22)

which is a macroscopic parameter that, in addition to being
independent of fluid properties, encompasses all four principle
macroscopic parameters of the model.

Bear and Bachmat [45] then presented that the following
simplifications are relevant in the case of isotropy,

αii = 3a = 3 − νiνi = 3 − (
ν1ν1 + ν2ν2 + ν3ν3︸ ︷︷ ︸

1

)
(23)

= 2 ⇒ a = 2

3

and

K = 3

2

n�2
f

Cf

T ∗
f . (24)

The present study shows that the assumption of independent
constant a parameter in Eq. (23) is not necessary for isotropic
media. In other words, it can be related to the tortuosity, as
described subsequently.

We begin with∫
Sf s

◦
xiνfj dS +

∫
Sff

◦
xiνfj dS =

∫
S0f

◦
xiνfj dS. (25)

Because S0f is a closed surface with no internal singularity,
the Gauss theorem can be applied to the right-hand side of
Eq. (25), which yields∫

Sf s

◦
xiνfj dS +

∫
Sff

◦
xiνfj dS =

∫
U0f

δij dUf = U0f δij . (26)

Dividing Eq. (26) by U0f and using Eq. (16), it transforms to

1

U0f

∫
Sf s

◦
xiνfj dS = δij − T ∗

fij
. (27)

The integral on the left-hand side of the Eq. (27) expresses
the total static moment of the oriented elementary surfaces
comprising the Sf s surface with respect to planes passing
through the centroid of the REV. To calculate this integral,
a hypothetical spherical REV of radius R is assumed. In this
way, using �f = R/3, the integral becomes∫

Sf s

◦
xiνfj dS =

∫
Sf s

Rνf iνfj dS = 3�f

∫
Sf s

νf iνfj dS. (28)

Substituting in (27) leads to∫
Sf s

νf iνfj dS = U0f

3�f

(δij − T ∗
fij

). (29)

Also from Eq. (18),∫
Sf s

νf iνfj dS = Sf s(δij − αij ). (30)

The left-hand sides of the Eqs. (29) and (30) are equal, thus

δij − αij = U0f

3Sf s�f

(δij − T ∗
fij

). (31)

By the definition of hydraulic radius in Eq. (15), Eq. (31)
can be simplified:

αij = 2

3
δij +

T ∗
fij

3
. (32)

For an isotropic medium, Eqs. (19) and (17) remain valid.
Therefore, Eq. (32) becomes

αij =
(

2

3
+ T ∗

f

3

)
δij , (33)

and using Eq. (19), a new expression for an isotropic medium
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is obtained:

a = 2

3
+ T ∗

f

3
. (34)

Thus, Eq. (34) indicates that αij is not constant and
depends on tortuosity. Therefore, variation of tortuosity has
a direct influence on αij . In other words, the assumption of
Eq. (23) leads to T ∗

f = 0, according to Eq. (34), which is not
accurate.

In order to investigate the effect of the newly developed
equation on permeability, Eq. (34) is substituted in Eq. (22) to
derive an improved permeability equation:

K = 3n�2
f

Cf

T ∗
f

2 + T ∗
f

. (35)

Comparing Eq. (35) to that of Ref. [45] in Eq. (24) reveals
a double effect of tortuosity in the permeability equation. In
contrast to the previous assumption that permeability is a linear
function of tortuosity, it is now found to be a hyperbolic type.

A simple REV model for granular medium is now assumed
in order to provide a quantitative measure of the proposed
equation.

III. SIMPLE REV MODEL

A simple REV model of regular cubic array of monosized
spheres of diameter dp is illustrated in Fig. 3. The sphere
configuration in the cubic array of Fig. 3 is not fixed, and
porosity of the model is assumed to vary according to the
center-to-center distance of the spheres, denoted by S, in
an isotropic manner. In fact, the minimum porosity of the
array is obtained for S = dp, that is, n = 1 − π

6 	 0.48, in
which the spheres are in contact. As the porosity increases,
the spheres lose contact and S becomes large. Therefore, the
simple cubic REV of Fig. 3 can be used for monosized spheres
with porosities between 0.48 and 1.

Dimensions of the medium are considered infinite with
respect to sphere diameters, so that finite-size effects are
negligible. From the definitions in the previous section, the
following can be written for the REV model:

U0 = S3, (36)

U0f = S3 − 8

(
πd3

p

6

1

8

)
= S3 − πd3

p/6, (37)

S0 = 8S2, (38)

FIG. 3. (Color online) Cubic array of monosized spheres.

Sf s = 8
(
πd2

p/8
) = πd2

p, (39)

Sff = 8
(
S2 − 4πd2

p

/
16

) = 8S2 − 2πd2
p. (40)

Subsequently, the macroscopic parameters of the REV model
are calculated based on Eqs. (36)–(40).

Following the definition of porosity by Eq. (14),

n = 1 − π

6

(
dp

S

)3

, (41)

from which

S = dp

3

√
6
π

(1 − n)
. (42)

The hydraulic radius is derived from Eqs. (15) and (42) and
some manipulations:

�f = dp

6

(
n

1 − n

)
. (43)

T ∗
f is calculated by Eqs. (17) and (42) as

T ∗
f = 1 − B(1 − n)2/3

n
, (44)

where for the regular array of spheres,

B = π

4

(
6

π

)2/3

= 1.209. (45)

Replacing Eqs. (43) and (44) in Eq. (35) yields the
conventional form of the permeability equation:

K = [1 − 1.209(1 − n)2/3]

12Cf [1 − 1.209(1 − n)2/3 + 2n]

n3

(1 − n)2
d2

p. (46)

By analogy with Eq. (2), the tortuosity function is expressed
by

τ =
√

2n

3[1 − 1.209(1 − n)2/3]
+ 1

3
. (47)

Adopting Cf = 2.5, as recommended by Kaviany [5]
for beds of spherical particles, the final form of the newly
developed permeability equation is written as

K = [1 − 1.209(1 − n)2/3]

30[1 − 1.209(1 − n)2/3 + 2n]

n3

(1 − n)2
d2

p. (48)

For comparison purposes, the permeability equation (24)
by Bear and Bachmat [45] after substituting in Eqs. (43) and
(44) becomes

K = 1 − 1.209(1 − n)2/3

24Cf n

n3

(1 − n)2
d2

p

= 1 − 1.209(1 − n)2/3

60n

n3

(1 − n)2
d2

p, (49)

from which a ‘hypothetical’ tortuosity function by Bear and
Bachmat [45] is calculated:

τ =
√

2n

3[1 − 1.209(1 − n)2/3]
. (50)
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It should be emphasized that Eqs. (49) and (50) really have
not been suggested by Bear and Bachmat [45]; they only have
been computed and mentioned here to provide quantitative
measure over the improvements made by the present study.
The term “hypothetical” denotes this. This will be further
described in the next section.

IV. VERIFICATION

To illustrate the performance of the model and the proposed
equation, the present tortuosity function of Eq. (47) is
compared with some accredited functions in Fig. 4. The
hypothetical equation of Bear and Bachmat [45] in Eq. (50)
also has been incorporated in the comparison to show the
effect of the improvements made by the present study. Figure 4
clearly shows very good agreement of the present tortuosity
function with the literature data. The graph is nearly linear in
the range of porosities between 0.48 and 0.64, which matches
Refs. [6,7,29–31]. However, as the porosity increases, it differs
slightly from Eq. (8), and the slope of the diagram decreases
until porosities of ∼0.95, where it approaches Eqs. (5)
and (7) by Refs. [24] and [28].

The apparent discrepancy in Fig. 4 for porosities lower
than 0.48 is owing to limitation of the cubic sphere model, in
which the minimum porosity applicable is 1 − π/6 = 0.4764
for S = dp.

The hypothetical equation of Bear and Bachmat [45] is also
shown in Fig. 4. The difference between Eqs. (47) and (50)
becomes more protrudent as porosity increases. Also, Eq. (50)
does not meet the requirement of τ = 1 at n = 1. This is
the result of assuming a constant value for the αij tensor, as
described in Sec. II. It is seen that the modification of this
tensor improves the tortuosity prediction.

A similar comparison for the proposed permeability
equation (48) is plotted in Fig. 5. Again, good coherence
with the KC correlation is observed. Although the present
model predicts a more consistent permeability than Bear
and Bachmat [45], the difference remains limited. Therefore,
it is inferred that considering a variation of the αij tensor
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FIG. 4. (Color online) Graphical comparison of the tortuosity
functions.
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FIG. 5. (Color online) Graphical comparison of the permeability
functions.

does not substantially contribute to enhance the permeability
prediction.

V. DISCUSSION

The REV model introduced in Sec. III to demonstrate the
influence of the theoretical developments on tortuosity and
permeability is an ideal packing in which the spheres do not
lose their cubic configuration even when porosity increases.
Even though this assumption is not generally true, it was
utilized to provide a quantitative measure for comparison
purposes. However, a question may arise here concerning
the effect of the packing configuration in the tortuosity and
permeability predictions of the present theory.

In this regard, the tetrahedral REV illustrated in Fig. 6 is
considered. Again, dimensions of the medium are considered
infinite with respect to sphere diameters, so that finite-size
effects are negligible. The REV allows for the minimum
porosity obtainable for a packing consisting of monosized
spheres for S = dp. Porosity of the REV increases as the
spheres become distant and S grows.

Applying a similar procedure to the one adopted in Sec. III
for the REV of Fig. 6 yields

B =
(

3

16

)1/6

π1/3 	 1.108, (51)

FIG. 6. (Color online) Tetrahedral array of monosized spheres.
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TABLE II. Summary of B values for the cubic and tetrahedral
packings of monosized spheres.

Packing B

Cubic 1.209
Tetrahedral 1.108

τ =
√

2n

3[1 − 1.108(1 − n)2/3]
+ 1

3
, (52)

K = [1 − 1.108(1 − n)2/3]

30[1 − 1.108(1 − n)2/3 + 2n]

n3

(1 − n)2
d2

p. (53)

The calculations performed for the two different REVs
based on the mathematical framework developed in this study
reveal that tortuosity and permeability functions for a granular
medium composed of identical spheres may be presented in
the form

τ =
√

2n

3[1 − B(1 − n)2/3]
+ 1

3
, (54)

K = [1 − B(1 − n)2/3]

30[1 − B(1 − n)2/3 + 2n]

n3

(1 − n)2
d2

p, (55)

in which B values for the two ideal cubic and tetrahedral
packings of spheres are summarized in Table II.

It may be inferred that the geometric arrangement of the
spheres shows its influence in the equations through the

variable B. Despite being assumed to be constant in the two
REVs considered, this parameter is not actually a constant;
however, the analytical framework presented in this paper
allows for a different variable to be employed in experimental
correlations for tortuosity and permeability to account for
macroscopic packing of the spheres.

VI. CONCLUSION

After modification of a macroscopic tensor in the Bear and
Bachmat [45] model, analytical expressions for tortuosity and
permeability have been proposed for a simple REV of cubic
array of spheres. The developed analytical expressions were
verified by comparing them with well-recognized functions,
for which very good agreement was evident.

The effect of the adjustment made to αij was also investi-
gated. It is found that taking into account the variations of the
tensor has considerable effect on the tortuosity; however, the
effect on the permeability was not remarkable, though slightly
advantageous.

In conclusion, a notable achievement of the present study
is the development of tortuosity and permeability functions
that are not only completely analytical but also cohere well
with the empirical data. Besides, it provides an analytical
framework for experimental correlations to describe tortuosity
and permeability of the granular media considering the packing
structure of the particles. To the best of authors’ knowledge,
no such successful attempt has been made so far.
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