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Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation

Toshiyuki Doi*

Department of Applied Mathematics and Physics, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
(Received 9 October 2010; revised manuscript received 8 December 2010; published 28 February 2011)

Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is
studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow
direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a
one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is
obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere
molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of
gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To
verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is
directly solved numerically, and the validity of the asymptotic solution is confirmed.
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I. INTRODUCTION

Poiseuille flow is a fundamental and important problem
in rarefied gas dynamics and has been studied very compre-
hensively based on the Boltzmann equation [1–14]. Although
this research extends over five decades and the accumulation
of the relevant studies is considerable, studies even on the
fundamental part are still under development [15]. Usually
the flow is considered in the absence of gravitation because
gravity of the earth is so weak that its effect on the flow may
be negligible. However, in an atmospheric gas flow at a very
high altitude, where the characteristic length and the mean-free
path of the gas can both be large, the effect of gravity can be
significant. Thus, understanding of the effect of gravitation on
the flow behavior based on the kinetic study is necessary.

Studies of channel flow subject to an external force may be
classified into two categories: flow that is parallel or perpendic-
ular to the force. The first case concerns a flow through a verti-
cal channel or pipe that is induced by gravitation [16–25]. This
problem interests many scientists because the temperature field
induced by the flow exhibits an interesting profile. In Ref. [24],
the systematic asymptotic analysis of the Boltzmann equation
for a small Knudsen number is conducted, the temperature
profile is explained analytically, and the ghost effect of an
infinitesimally weak gravity on the flow in the continuum limit
is clarified. The second case concerns the influence of gravity
on channel or pipe flows that flow horizontally. Santos and
coworkers have studied the influence of gravity on the heat
flow problem extensively based on the Boltzmann equation
using a perturbation method [26–28]. As an extension of their
analysis, they studied the influence of weak gravity on the
horizontal shear flow in Ref. [28]. However, studies on this
second case are not as extensive as those on the first case, and,
to the author’s knowledge, Refs. [28,29] are the only relevant
studies on this subject based on the Boltzmann equation.

In the present study, we consider a time-independent plane
Poiseuille flow of a rarefied gas that flows horizontally and is
subject to strong gravitation. Here strong means that the height
by which molecules ascend against gravity is comparable
to the channel width and the mean-free path of the gas. To
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be specific, this problem contains four characteristic lengths:
the channel width, the mean-free path of the gas molecules, the
ascent height of molecules, and the length scale in which the
pressure varies appreciably in the flow direction. In this study,
we consider the case in which the first three of the characteristic
lengths are comparable, whereas the last is much larger than
the others. In this situation, the asymptotic analysis [30–33] of
the Boltzmann equation for a small variation in the longitudinal
direction may be applicable. Thanks to the asymptotic analysis,
the structure of the solution is resolved, and the problem
is reduced to a one-dimensional problem. The reduced one-
dimensional problem is solved numerically for a hard sphere
molecular gas over a wide range of gas rarefaction degree
and gravitational strength. Based on the numerical solution,
we discuss the influence of gravity on the Poiseuille flow for
an arbitrary but finite gas rarefaction degree and gravitational
strength.

The present paper is organized as follows. In Sec. II the pro-
blem and the basic equation are stated. In Sec. III the
asymptotic analysis is conducted. In Sec. IV the results of the
numerical analysis of the reduced one-dimensional problem
are presented. In Sec. V, to verify the validity of the asymptotic
solution, a two-dimensional flow problem through a long
channel is directly solved numerically, and the validity of
the asymptotic solution is discussed. This paper ends with
a conclusion in Sec. VI.

II. PROBLEM AND BASIC EQUATION

A. Problem

Let us consider a rarefied gas between two plane parallel
walls placed at rest at X2 = 0 and X2 = L, where Xi is the
space rectangular coordinates. The temperature of the walls
is uniform and equal to T0. The gas is subject to uniform
gravitation (0, − g,0). There is a pressure gradient in the X1

direction, and a flow is induced owing to this pressure gradient.
We study the time-independent behavior of the gas under the
following assumptions: (i) the gas behavior is governed by
the Boltzmann equation, (ii) the gas molecules undergo dif-
fuse reflection on the walls, and (iii) the pressure gradient in
the horizontal direction X1 is so small that the quantities vary
slowly in this direction.
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B. Basic equation

Take L, T0, and ρ0 as the reference length, the reference
temperature, and the reference density of the system, where ρ0

is an arbitrary constant having the dimension of the density.
We introduce the dimensionless variables xi , ζi , and f̂ for
the space coordinates Xi , the molecular velocity ξi , and the
velocity distribution function f as

xi = Xi

L
, ζi = ξi

(2RT0)1/2
, f̂ = f

ρ0(2RT0)−3/2
, (1)

where R is the specific gas constant, i.e., the Boltzmann
constant divided by the mass m of a molecule. The time-
independent Boltzmann equation for the spatially two-
dimensional case is written in the dimensionless form as

ζ1
∂f̂

∂x1
+ ζ2

∂f̂

∂x2
− ĝ

∂f̂

∂ζ2
= 2√

πKn
Ĵ (f̂ ,f̂ ), (2)

Ĵ (f̂ ,f̂ ) =
∫ ∫

(f̂ ′
∗f̂

′ − f̂∗f̂ )B̂ d�̂(α) dζ ∗, (3)

where

f̂ = f (x, ζ ), f̂∗ = f (x,ζ ∗), f̂ ′ = f (x, ζ ′),
f̂ ′

∗ = f (x,ζ ′
∗),

(4)
ζ ′ = ζ + [α · (ζ ∗ − ζ )]α, ζ ′

∗ = ζ ∗ − [α · (ζ ∗ − ζ )]α,

α is a unit vector, d�̂(α) is the solid-angle element in the
direction of α, and dζ ∗ = dζ1∗ dζ2∗ dζ3∗. B̂ is a function of
|α · (ζ ∗ − ζ )|/|ζ ∗ − ζ | and |ζ ∗ − ζ |, and its functional form is
determined by the molecular model. The integration in Eq. (3)
is carried out over the entire direction of α and the entire
space of ζ . Kn = �0/L is the Knudsen number, in which
�0 = 1/(

√
2πd2

mm−1ρ0) is the mean-free path of the gas in
the equilibrium state at rest with the density ρ0, and dm is the
diameter of a molecule. ĝ = gL/(2RT0) is the dimensionless
gravity.

The diffuse reflection boundary condition is written in the
dimensionless form as

f̂ =
(
−2

√
π

∫
ζ2∗<0

ζ2∗f̂∗ dζ ∗

)
E(ζ ) (x2 = 0,ζ2 > 0), (5)

f̂ =
(

2
√

π

∫
ζ2∗>0

ζ2∗f̂∗ dζ ∗

)
E(ζ ) (x2 = 1,ζ2 < 0), (6)

where

E(ζ ) = π−3/2 exp(−ζ 2). (7)

The macroscopic variables of the gas, the density ρ, the
flow velocity vi , the temperature T , the pressure p, the stress
tensor pij , and the heat flow vector qi are defined by the
moments of the velocity distribution function. The correspond-
ing dimensionless variables ρ̂ = ρ/ρ0, v̂i = vi/(2RT0)1/2,
T̂ = T/T0, p̂ = p/p0, p̂ij = pij /p0, q̂i = qi/[p0(2RT0)1/2],
where p0 = Rρ0T0, are given as

ρ̂ =
∫

f̂ dζ , (8)

v̂i = 1

ρ̂

∫
ζi f̂ dζ , (9)

T̂ = 2

3ρ̂

∫
(ζi − v̂i)

2f̂ dζ , (10)

p̂ = ρ̂T̂ , (11)

p̂ij = 2
∫

(ζi − v̂i)(ζj − v̂j )f̂ dζ , (12)

q̂i =
∫

(ζi − v̂i)(ζj − v̂j )2f̂ dζ . (13)

The mass flow rate M and the heat flow rate H of the gas
through a cross section per unit time and per unit width in the
X3 direction are given as

M =
∫ L

0
ρv1 dX2, H =

∫ L

0
q1 dX2, (14)

and are expressed in terms of the dimensionless variables as

M

2p0(2RT0)−1/2L
=

∫ 1

0
ρ̂v̂1 dx2, (15)

H

p0(2RT0)1/2L
=

∫ 1

0
q̂1 dx2. (16)

The boundary value problem (2), (5), and (6) contains two
dimensionless parameters:

Kn = �0

L
and ĝ = gL

2RT0
. (17)

In addition, the pressure gradient in the longitudinal direction
is small:

1

p̂

∣∣∣∣ ∂p̂

∂x1

∣∣∣∣ � 1. (18)

We study the boundary value problem (2), (5), and (6)
for arbitrary but finite values of Kn and ĝ under the
condition (18).

Here we comment on the dimensionless gravity
parameter ĝ. In an ordinary room condition on the earth, this
parameter is usually very small, e.g., ĝ ∼ 10−4 when L =
1 m. Thus the condition of finite ĝ, for example, ĝ = 0.1, is
an extreme condition of very strong gravitation that would be
experienced on a planet whose gravity is a thousand times
stronger than that of the earth.

III. ASYMPTOTIC ANALYSIS

In this section, we conduct an asymptotic analysis [30]
of the boundary value problem (2), (5), and (6) for a small
variation in the flow direction x1. We assume that the variation
of the variables in the flow direction x1 is small and of the
order of ε, i.e., ∂f̂ /∂x1 ∼ εf̂ whereas ∂f̂ /∂x2 ∼ f̂ . To deal
with this behavior, we use the shrunk coordinate χ instead
of x1:

χ = εx1. (19)

With this new variable, the Boltzmann equation (2) becomes

εζ1
∂f̂

∂χ
+ ζ2

∂f̂

∂x2
− ĝ

∂f̂

∂ζ2
= 2√

πKn
Ĵ (f̂ ,f̂ ). (20)

We seek the solution f̂ in a power series in ε:

f̂ = f̂(0) + f̂(1)ε + · · · . (21)
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Substituting the expansion (21) into the Boltzmann equation
(20), we have

ζ2
∂f̂(0)

∂x2
− ĝ

∂f̂(0)

∂ζ2
− 2√

πKn
Ĵ (f̂(0),f̂(0)) = 0, (22)

ζ2
∂f̂(1)

∂x2
− ĝ

∂f̂(1)

∂ζ2
− 4√

πKn
Ĵ (f̂(0),f̂(1)) = −ζ1

∂f̂(0)

∂χ
, (23)

. . . . . . ,

and the boundary conditions are

f̂(0) =
(
−2

√
π

∫
ζ2∗<0

ζ2∗f̂(0)∗ dζ ∗

)
E(ζ ) (x2 = 0,ζ2 > 0),

(24)

f̂(0) =
(

2
√

π

∫
ζ2∗>0

ζ2∗f̂(0)∗ dζ ∗

)
E(ζ ) (x2 = 1,ζ2 < 0),

(25)

f̂(1) =
(
−2

√
π

∫
ζ2∗<0

ζ2∗f̂(1)∗ dζ ∗

)
E(ζ ) (x2 = 0,ζ2 > 0),

(26)

f̂(1) =
(

2
√

π

∫
ζ2∗>0

ζ2∗f̂(1)∗ dζ ∗

)
E(ζ ) (x2 = 1,ζ2 < 0),

(27)

· · · · · · .
Equations (22), (24), and (25) constitute the system for the

leading-order solution f̂(0). In contrast to the analysis in the
absence of an external force, Eq. (22) is a full Boltzmann
equation with derivative terms with respect to not only x2 but
also ζ2, and this problem must be solved first. Fortunately, a
solution of the system (22), (24), and (25) is well known, and
we immediately have

f̂(0) = C(χ )ω(x2)E(ζ ), (28)

where

ω(x2) = exp(−2ĝx2), (29)

and C(χ ) is an arbitrary function of χ . Solution (28)
expresses the density stratification of the gas. The C(χ )
appearing in (28) is undetermined at this stage and will
be determined in the next-order analysis. Because the
leading-order solution f̂(0) is a Maxwellian, we can pro-
ceed with the analysis consistently. Moreover, this is a
Maxwellian at rest with a uniform temperature, so that, as
we will see, the following analysis becomes considerably
simple.

Equations (23), (26), and (27) form the boundary value
problem for f̂(1). We seek the solution f̂(1) in the form
f̂(1) = f̂(0)φ. Because the collision integral Ĵ has the following
property [see Eq. (A.110a) in Ref. [30]]:

2Ĵ (E,Eφ) = EL(φ), (30)

where L(∗) is the linearized collision integral defined by

L(φ) =
∫ ∫

E∗(φ′
∗ + φ′ − φ∗ − φ)B̂ d�̂(α) dζ ∗, (31)

we have

2Ĵ (f̂(0),f̂(0)φ) = 2Ĵ [C(χ )ω(x2)E(ζ ),C(χ )ω(x2)E(ζ )φ]

= [C(χ )ω(x2)]2EL(φ), (32)

and thus Eq. (23) reduces to

ζ2
∂φ

∂x2
− ĝ

∂φ

∂ζ2
− 2√

π

�C(χ )

Kn

ω(x2)

�
L(φ)= − ζ1

C(χ )

dC(χ )

dχ
.

(33)

In Eq. (33), we introduced the constant �:

� =
∫ 1

0
ω(x2) dx2 = [1 − exp(−2ĝ)]/(2ĝ), (34)

which is not necessary at this stage but will be convenient in
the following arrangement. The boundary conditions are

φ = −2
√

π

∫
ζ2∗<0

ζ2∗φ∗E∗ dζ ∗ (x2 = 0,ζ2 > 0), (35)

φ = 2
√

π

∫
ζ2∗>0

ζ2∗φ∗E∗ dζ ∗ (x2 = 1,ζ2 < 0). (36)

The variable χ enters the problem (33), (35), and (36) only
through C(χ ). From the linearity, the solution is given as

φ(χ,x2,ζ ; Kn,ĝ) = 1

C(χ )

dC(χ )

dχ
ϕ(x2,ζ ; Kn/[�C(χ )],ĝ),

(37)

where ϕ(x2,ζ ; K,ĝ) is the solution of the following boundary
value problem

ζ2
∂ϕ

∂x2
− ĝ

∂ϕ

∂ζ2
− 2√

π

ω(x2)/�

K
L(ϕ) = −ζ1, (38)

ϕ = −2
√

π

∫
ζ2∗<0

ζ2∗ϕ∗E∗ dζ ∗ (x2 = 0,ζ2 > 0), (39)

ϕ = 2
√

π

∫
ζ2∗>0

ζ2∗ϕ∗E∗ dζ ∗ (x2 = 1,ζ2 < 0). (40)

Furthermore, we see that the following similarity solution is
applicable [30,34]:

ϕ(x2,ζ ; K,ĝ) = ζ1�(x2,ζ2,ζρ ; K,ĝ), (41)

where ζρ = (ζ 2
1 + ζ 2

3 )1/2. Owing to the similarity solution, the
boundary value problem (38) –(40) reduces to

ζ2
∂�

∂x2
− ĝ

∂�

∂ζ2
− 2√

π

ω(x2)/�

Kζ1
L(ζ1�) = −1, (42)

� = 0 (x2 = 0,ζ2 > 0) and (x2 = 1,ζ2 < 0). (43)

With the aid of the solution �, the solution φ is given as

φ(χ,x2,ζ ; Kn,ĝ)

= 1

C(χ )

dC(χ )

dχ
ζ1�(x2,ζ2,ζρ ; Kn/[�C(χ )],ĝ). (44)

Collecting the results Eqs. (28) and (44), the solution f̂ is
given as

f̂ = C(χ )ω(x2)E + dC(χ )

dχ
ω(x2)ζ1�Eε + · · · . (45)
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Substituting Eq. (45) into Eqs. (8)–(13), the macroscopic
variables are given as

ρ̂ = C(χ )ω(x2) + · · · , (46)

v̂1 = 1

C(χ )

dC(χ )

dχ
uPG(x2)ε + · · · , (47)

T̂ = 1 + · · · , (48)

p̂ = C(χ )ω(x2) + · · · , (49)

q̂1 = �
dC(χ )

dχ
QPG(x2)ε + · · · , (50)

where

uPG(x2; K,ĝ) = π−1/2
∫ ∞

−∞

∫ ∞

0
ζ 3
ρ exp

( − ζ 2
2 − ζ 2

ρ

)
×�(x2,ζ2,ζρ ; K,ĝ) dζρ dζ2, (51)

QPG(x2; K,ĝ)=π−1/2�−1ω(x2)
∫ ∞

−∞

∫ ∞

0
ζ 3
ρ

(
ζ 2

2 + ζ 2
ρ − 5

2

)

× exp
(− ζ 2

2 − ζ 2
ρ

)
�(x2,ζ2,ζρ ; K,ĝ) dζρ dζ2,

(52)

and · · · are the terms of O(ε2) and higher. v̂2,v̂3,q̂2, and q̂3 are
higher order in ε. Recalling χ = εx1, we have ε(dC/dχ )/C =
(dc/dx1)/c, where c(x1) is defined by c(x1) = C(εx1). In terms
of c(x1), Eqs. (46)–(49) are written as

p̂ = ρ̂ = c(x1)ω(x2), (53)

T̂ = 1, (54)

v̂1 = 1

c(x1)

dc(x1)

dx1
uPG

(
x2;

Kn

�c(x1)
,ĝ

)
, (55)

q̂1 = �
dc(x1)

dx1
QPG

(
x2;

Kn

�c(x1)
,ĝ

)
, (56)

and v̂2 = v̂3 = q̂2 = q̂3 = 0, where the terms of O(ε2) and the
higher are neglected. This result does not contain ε as it should
be. At this stage, we see that c(x1) is the dimensionless pressure
p̂(x1,0) at the bottom x2 = 0 and that the ratio (∂p̂/∂x1)/p̂ is
independent of x2. However, it is more convenient to introduce
the average pressure pa averaged over the cross section
X1 = X1:

pa(X1) = 1

L

∫ L

0
p dX2 (57)

and its dimensionless counterpart

p̂a(x1) = pa/p0 = �c(x1), (58)

where Eq. (53) is used. In terms of p̂a , Eqs. (53)–(56) reduce
to a more familiar form

p̂ = ρ̂ = p̂a(x1)ω(x2)/�, (59)

T̂ = 1, (60)

v̂1 = 1

p̂a

dp̂a

dx1
uPG

(
x2;

Kn

p̂a(x1)
,ĝ

)
, (61)

q̂1 = dp̂a

dx1
QPG

(
x2;

Kn

p̂a(x1)
,ĝ

)
. (62)

The mass flow rate M [Eq. (15)] and the heat flow rate H

[Eq. (16)] are given as

M

2p0(2RT0)−1/2L
= dp̂a

dx1
mPG

(
Kn

p̂a(x1)
,ĝ

)
, (63)

H

p0(2RT0)1/2L
= dp̂a

dx1
hPG

(
Kn

p̂a(x1)
,ĝ

)
, (64)

where

mPG(K,ĝ) = �−1
∫ 1

0
ω(x2)uPG(x2; K,ĝ) dx2, (65)

hPG(K,ĝ) =
∫ 1

0
QPG(x2; K,ĝ) dx2. (66)

Here mPG may be called the mass flow rate coefficient and hPG

the heat flow rate coefficient. The average density ρa of the
gas at a cross section is given as

ρa

ρ0
= 1

ρ0L

∫ L

0
ρ dX2 = p̂a, (67)

and thus the fraction Kn/p̂a in the arguments of uPG, mPG,
etc., is expressed as

Kn

p̂a

= �a

L
, (68)

where �a = 1/(
√

2πd2
mm−1ρa) is the mean-free path of the

gas in the equilibrium state at rest with the density ρa and
will be called the local mean-free path. It should be noted
that the gas is not in the equilibrium state at rest with the
density ρa at X1 = X1. Here �a is just a measure of the
gas rarefaction at each cross section through the averaged
quantity ρa . Correspondingly, �a/L = Kn/p̂a will be called
the local Knudsen number.

Integrating the Boltzmann equation (2) with respect to ζ

and subsequently to x2 from 0 to 1 and taking the boundary
conditions (5) and (6) into account, we obtain the conservation
of mass:

d

dx1

{
mPG

(
Kn

p̂a(x1)
,ĝ

)
dp̂a(x1)

dx1

}
= 0. (69)

This equation guarantees that the mass flow rate Eq. (63) is
independent of x1. Equation (69) is similar to the generalized
Reynolds equation [35].

The solution is constructed as follows. Suppose that the
boundary value problem (42) and (43) is solved for a wide
range of K and ĝ so that the database of the function
mPG(K,ĝ) is known. Then Eq. (69) becomes an equation that
determines the average pressure distribution p̂a(x1) along the
channel. This is an ordinary differential equation to be solved
together with Eq. (59) if the pressures p̂ at two points on
the cross sections with different x1’s are specified. Once the
average pressure p̂a(x1) is known, the macroscopic variables
are immediately given by Eqs. (59)–(64).

To summarize, in the Poiseuille flow problem in the
presence of a finite gravity field, where the gas pressure varies
not only in the flow direction but also in the vertical direction,
the solution is given in a semianalytical form [Eqs. (59)–(64)]
in terms of the average pressure p̂a . The average pressure p̂a

is determined by Eq. (69) once the database of mPG(K,ĝ) is
known. Thus, the problem is reduced to solving the boundary
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value problem (42) and (43) of the spatially one-dimensional
linearized Boltzmann equation and obtaining the coefficient
functions uPG,mPG, etc., as in the case of the conventional
Poiseuille flow problem in the absence of gravity. It may
be noted that the present solution [Eqs. (59)–(64)] together
with Eq. (69) has the same form as that of the conventional
Poiseuille flow (Refs. [30,32]) except for the additional factor
ω(x2)/� in Eq. (59); the average pressure in the former
plays the role of the pressure in the latter. The boundary
value problem (42) and (43) is an extension of that of the
conventional Poiseuille flow problem to the present problem.
The characteristics are that (i) it contains the gravity term
and that (ii) the variable coefficient ω(x2) appears in the
collision term. The latter means that the substantial Knudsen
number varies in the vertical direction. The boundary value
problem (42) and (43) is characterized by the two parameters
K and ĝ and will be solved numerically. In the next section, we
show the results of the numerical analysis for various values
of K and ĝ.

IV. RESULTS OF NUMERICAL ANALYSIS

A. Some comments on the numerical method

In the numerical analysis of the boundary value problem
(42) and (43), we assume that the gas is a hard sphere molecular
gas. The linearized collision integral (31) is then given as

L(φ) =
∫

all ζ ∗
κ(ζ ,ζ ∗)φ(ζ ∗) dζ ∗ − νL(ζ )φ(ζ ), (70)

where

κ(ζ ,ζ ∗)

= 1√
2π

[
1

|ζ ∗ − ζ | exp

(|ζ ∗ × ζ |2
|ζ ∗ − ζ |2

)
− |ζ ∗ − ζ |

2

]
exp(−ζ 2

∗),

(71)

νL(ζ )

= 1

2
√

2

[
exp(−ζ 2) +

(
2ζ + 1

ζ

)∫ ζ

0
exp(−ζ 2

∗ )dζ∗

]
,

(72)

and ζ = |ζ |.
The numerical method of a linearized Boltzmann equation

has been well established in the 1980s and 1990s. Thus, we
only briefly outline the numerical analysis. The boundary
value problem (42) and (43) is solved using a finite difference
method. The collision integral (70) is evaluated by means of the
numerical kernel method [36]. A characteristic of the boundary
value problem (42) and (43) is that the perturbed velocity
distribution function � is discontinuous across the curve

x2 + ζ 2
2

2ĝ
= 1 (ζ2 < 0). (73)

The numerical method of the Boltzmann equation having a
discontinuity has been studied in Refs. [37–39], and a hybrid
method of the finite difference and the characteristic coordinate
methods has been developed. The numerical kernel and the
hybrid methods are combined in Ref. [40]. We can apply the
method to the present analysis without any major modification.

The condition of the computation and the result of accuracy
tests are summarized in Appendix.

B. Results of numerical analysis

In this subsection, the numerical solution for a hard sphere
molecular gas are presented. As shown in Eqs. (61)–(64), the
flow velocity v̂1, the heat flow q̂1, the mass flow rate M ,
and the heat flow rate H are expressed in terms of uPG

[Eq. (51)], QPG [Eq. (52)], mPG [Eq. (65)], and hPG [Eq. (66)],
respectively. In what follows, we show the numerical results of
the profiles of uPG and QPG and the values of mPG and hPG for
various sets of values of K and ĝ. In the following discussion,
when we compare two uPG for the same K and different ĝ,
it may be interpreted, for example, as follows: We prepare
two flows subject to gravity of different strength, control
the flows to make the local density ρa and the normalized
gradient (L/pa)(dpa/dX1) of the average pressure the same
for the two flows at a cross section (say, X1 = 0), and compare
the velocity profiles of the two flows at the cross section.
Similarly, when we compare two mPG, we compare the mass
flows rates of the two Poiseuille flows that are subject to
gravity of different strength and are made to have the same
mean density and the same gradient dpa/dX1 of the average
pressure at a cross section. Similar comments apply to QPG

and hPG. Incidentally, for the Navier–Stokes equation under
the corresponding condition of spatial variation in Sec. III,
uPG and mPG for the leading order are given as

uPG = −1 − exp(−2ĝx2) − [1 − exp(−2ĝ)]x2

2
√

πγ1ĝ2�K
, (74)

mPG = − [1 − exp(−2ĝ)][(1 + ĝ) exp(−2ĝ) − (1 − ĝ)]

8
√

πγ1�ĝ4K
,

(75)

where the viscosity μ of the gas is connected with the
mean-free path � of the gas in the equilibrium state at
rest with the pressure p and the temperature T as μ =
(
√

π/2)γ1p(2RT )−1/2�, and γ1 is a constant determined by
the molecular model, e.g., γ1 = 1.270042 for a hard sphere
gas. Naturally, these expressions reduce to the well-known
results

uPG = −x2(1 − x2)/(
√

πγ1K) and mPG = −1/(6
√

πγ1K)

(76)

of the conventional Poiseuille flow as ĝ → 0.
We first show the velocity profile of the gas. We show uPG

[Eq. (51)] for three local Knudsen numbers K = 0.1,1, and
10 for various values of dimensionless gravity in Fig. 1. The
case ĝ = 0 is the conventional Poiseuille flow in the absence
of gravitation [10], where the velocity profile is symmetric
with respect to x2 = 1/2. When the Knudsen number K

is relatively small [K = 0.1, Fig. 1(a)], the velocity profile
forms a parabolic-like profile with slips on the boundaries.
As the strength of gravity ĝ increases, the velocity slip on
the upper wall x2 = 1 increases and that on the lower wall
x2 = 0 decreases as well. This trend is because the density of
the gas on the upper wall decreases owing to gravity, and the
substantial mean-free path increases to enhance the velocity
slip there. Similarly, corresponding argument applies to the
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FIG. 1. Velocity profile uPG [Eq. (51)]. (a) K = 0.1, (b) 1, and
(c) 10. The case ĝ = 0 is the conventional Poiseuille flow in the
absence of gravitation [10].

lower wall. The velocity profile ceases to be symmetric, and
the maximum speed point x2 shifts to a slightly upper side
(x2 > 1/2). The influence of gravity on the velocity profile is
relatively small. As the Knudsen number increases [K = 1,
Fig. 1(b)], the influence of gravity on the velocity profile
becomes larger. The tendency of the velocity slip on the
upper wall previously stated ceases to hold. Instead, the flow
velocity in the bulk of the gas decreases, especially in the
lower side (x2 < 1/2). When the Knudsen number is large
[K = 10, Fig. 1(c)], the decrease in the flow velocity owing
to gravity is significant. This may be understood as follows.
In a Poiseuille flow of a highly rarefied gas in the absence
of gravitation, the perturbed velocity distribution function is
composed of molecules that fly almost parallel to the walls.
These molecules can arrive from a great distance, and thus the
summation of the momentum amounts considerable, to results
in a large macroscopic velocity. When gravity is present, on
the other hand, these molecules decrease in numbers because
gravity causes the molecules to fall, so that the contribution
of the molecules arriving from a far distance diminishes.
Consequently, the macroscopic flow velocity decreases.

Similarly, the profile QPG of the heat flow is shown in
Fig. 2. As is well known, there is a heat flow in a rarefied
gas in general even though the temperature of the gas is
uniform [30]. The heat flow in the Poiseuille flow in the
absence of gravity is discussed in Ref. [10]; the profile QPG is
symmetric with respect to x2 = 1/2, and the heat flow is in the
same direction (QPG > 0) as that of the pressure gradient. [For
a sufficiently small Knudsen number, however, the heat flow is

0 0.5 1

0

0.2

0.4

0 0.5 1

0

0.2

0.4

0 0.5 1

0

0.2

0.4

FIG. 2. Heat flow profile QPG [Eq. (52)]. (a) K = 0.1, (b) 1, and
(c) 10. The case ĝ = 0 is the conventional Poiseuille flow in the
absence of gravitation [10].

in the opposite direction (QPG < 0) in the thin layers adjacent
to the walls. See the case ĝ = 0 in Fig. 2(a).] For a relatively
small Knudsen number [Fig. 2(a)], as the strength of gravity
increases, the profile ceases to be symmetric, and a peak of
QPG is formed at a higher position in x2. For intermediate and
large Knudsen numbers [Figs. 2(b) and 2(c)], QPG decreases
as the strength of gravity increases, especially in the lower half
part (x2 < 1/2) of the channel, and for a sufficiently large ĝ,
there appears a region adjacent to the lower wall (x2 = 0) in
which the direction of the heat flow changes (QPG < 0).

Next, we show the mass flow rate coefficient mPG as a
function of the local Knudsen number K and the dimensionless
gravity ĝ in Table I and Fig. 3. The presence of gravitation
reduces mPG or the mass flow rate in the sense stated at
the beginning of Sec. IV B. The effect of gravity on mPG

becomes significant as the local Knudsen number K increases.

FIG. 3. Mass flow rate coefficient mPG [Eq. (65)] as a function of
K for various ĝ. The case ĝ = 0 is the conventional Poiseuille flow
in the absence of gravitation [10].
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TABLE I. Mass flow rate coefficient mPG as a function of K and
ĝ (hard sphere gas).

−mPG

K ĝ = 0a 0.1 0.2 0.5 1

0.1 1.278 1.278 1.278 1.277 1.272
0.2 0.9370 0.9371 0.9371 0.9363 0.9137
0.3 0.8364 0.8364 0.8361 0.8302 0.7813
0.4 0.7932 0.7931 0.7920 0.7785 0.7075
0.5 0.7719 0.7715 0.7693 0.7470 0.6591
0.6 0.7610 0.7601 0.7564 0.7252 0.6246
0.8 0.7535 0.7514 0.7439 0.6957 0.5786
1 0.7548 0.7507 0.7388 0.6760 0.5492
2 0.7892 0.7686 0.7337 0.6279 0.4864
3 0.8267 0.7836 0.7320 0.6080 0.4644
4 0.8597 0.7932 0.7305 0.5971 0.4533
5 0.8886 0.7996 0.7292 0.5902 0.4466
6 0.9142 0.8040 0.7281 0.5855 0.4421
8 0.9582 0.8097 0.7263 0.5794 0.4365
10 0.9950 0.8131 0.7251 0.5757 0.4332

aReference [10].

This is well understood from the behavior of the velocity
profiles in Fig. 1. In the absence of gravitation, it is well
known that the mass flow rate of a Poiseuille flow exhibits the
minimum at a Knudsen number around 1 (Knudsen minimum,
K ∼ 0.88 for a hard sphere molecular gas). As the strength
of gravity increases, the minimum point shifts to a larger
Knudsen number, i.e., K ∼ 0.90 for ĝ = 0.1. For a larger ĝ

(ĝ � 0.2), we cannot find the minimum of mPG in the range
0.1 � K � 10.

Similarly, the heat flow rate coefficient hPG is shown in
Fig. 4. In the Poiseuille flow in the absence of gravity, the
heat flow rate hPG is a monotonically increasing function of
the Knudsen number K . As the strength of gravity increases,
hPG decreases except for very small Knudsen numbers K (For
K = 0.1, hPG increases slightly as ĝ increases from 0 to 1).
The decrease in hPG is significant for a large Knudsen number
as in the case of the mass flow rate mPG. For a sufficiently
large ĝ, hPG exhibits the maximum at an intermediate Knudsen
number K .

V. FLOW THROUGH A LONG CHANNEL

In this section, we recall the original problem of this paper,
i.e., the plane Poiseuille flow through a long channel, and
conduct a direct numerical analysis of this flow. The aim of

FIG. 4. Heat flow rate coefficient hPG [Eq. (66)] as a function of
K for various ĝ. The case ĝ = 0 is the conventional Poiseuille flow
in the absence of gravitation [10].

this section is to verify the validity of the asymptotic solution
in Sec. III by comparing the result of the asymptotic solution
with the numerical solution given in this section.

In this section, we consider the following slightly artificial
problem that simulates the long channel flow. Consider
a rarefied gas in the two-dimensional rectangular domain
−W/2 < X1 < W/2, 0 < X2 < L. A uniform gravitation
(0, − g,0) is present. The upper and lower boundaries are
solid boundaries. The left wall X1 = −W/2 and the right wall
X1 = W/2 are composed of the condensed phase of the gas,
on which gas evaporates or condenses. Let the saturated vapor
densities on the left and right walls be ρA exp(−2gX2/L) and
ρB exp(−2gX2/L), respectively, where ρA and ρB are some
constants. If we impose a difference between ρA and ρB ,
evaporation and condensation occur on the side boundaries,
and a flow is induced. We will investigate the flow for a large
aspect ratio W/L. In the numerical analysis, we employ the
Boltzmann-Krook-Welander (BKW or BGK) model equation
of the Boltzmann equation [41,42]. In a numerical analysis of
a rarefied gas flow in general, Bird’s direct simulation Monte
Carlo (DSMC) method [43] is widely used, and it is of course
applicable to the present problem. In this study, however, we
examine the quantities of the order of ε(∼ p̂−1|∂p̂/∂x1|) � 1,
and thus the numerical error should be much less than ε.
Here we choose ε ∼ 0.02, and such a delicate analysis will
be difficult using the DSMC method. The BKW model is
convenient for such purposes and has been applied to various
studies.

The time-independent BKW (BGK) model of the Boltz-
mann equation for the spatially two-dimensional case is written
in the dimensionless form (Sec. II) as

ζ1
∂f̂

∂x1
+ ζ2

∂f̂

∂x2
− ĝ

∂f̂

∂ζ2
= 2√

π Kn
ρ̂(f̂e − f̂ ), (77)

f̂e = ρ̂

(πT̂ )3/2
exp

[
− (ζi − v̂i)2

T̂

]
, (78)

where we choose the reference density ρ0 as ρ0 = ρA, and
thus the mean-free path �0 of the gas is given by �0 =
(8RT0/π )1/2/(AcρA), in which Ac is a constant (Acρ is the
collision frequency for the BKW model). The definition of ρ̂,
v̂i , T̂ is the same as Eqs. (8)–(10). The boundary conditions
on the lower and upper walls are the same as Eqs. (5) and (6).
The boundary conditions on the “inlet” and “outlet” are

f̂ = exp(−2ĝx2)E(ζ ) (x1 = −W/2L,ζ1 > 0), (79)

f̂ = (ρB/ρA) exp(−2ĝx2)E(ζ ) (x1 = W/2L,ζ1 < 0).

(80)

The boundary value problem, Eqs. (77), (5), (6), (79), and
(80), is characterized by the following four dimensionless
parameters

Kn = �0

L
, ĝ = gL

2RT0
,

ρB

ρA

, and
W

L
. (81)

Following the standard method in Ref. [44], we can elimi-
nate the molecular velocity component ζ3 from the boundary
value problem. This reduced problem, which is a problem
with four independent variables x1,x2,ζ1,ζ2, is solved using a
finite difference method. Like the boundary value problem (42)
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and (43), the velocity distribution function is discontinuous
across the following surface in the three-dimensional space of
x1,x2,ζ2:

x1 + ζ1ζ2

ĝ
= s, x2 + ζ 2

2

2ĝ
= 1 (ζ2 < 0), (82)

where −W/2L � s � W/2L and −∞ < ζ1 < ∞. The
numerical method of a two-dimensional model Boltzmann
equation with an external force has been developed in
Ref. [45]. We can apply the method with a small modification
at the side boundaries (79) and (80).

The two-dimensional problem considered in this section
contains artificial boundaries, and thus there are inevitable
end effects near the side boundaries x1 = −W/2L and x1 =
W/2L. We confirm from the numerical solution that the
end effects vanish if we are sufficiently apart from the side
boundaries. Whether the end effect vanishes is judged in the
following way. According to the asymptotic solution, the ratio
(∂p̂/∂x1)/p̂ is independent of x2 up to the order of ε [Eq. (59)].
From the numerical data, we judge that the end effect
vanishes at the cross section x1 if the variation of (∂p̂/∂x1)/p̂
with respect to x2 is of the order of ε2. To be specific,
we compute the ratio �(x1) = | maxx2 ψ − minx2 ψ |/ψ2 with
ψ = (∂p̂/∂x1)/p̂, where the denominator is a measure of ε2,
and judge that the previously stated condition is satisfied if
� � 0.1. We show an example of this test in Fig. 5. In Fig. 5,
the variation of � is shown as a function of x1 for three
computational conditions (W/L,ρB/ρA) = (10,0.8),(20,0.6),
and (40, 0.2) and Kn = 1 and ĝ = 1. As we see in Fig. 5,
the end effects vanish, and the numerical solution satisfy the
property of the asymptotic solution in a wide central region
if W/L is large. From this test, we choose W/L = 40 and
ρB/ρA = 0.2 in the following analysis.

We carry out the verification of the asymptotic solution in
the following way:

(i) Set the parameters Eq. (81) and obtain the solution.
(ii) Fix K and find the position x1 at which Kn/p̂a(x1) (local

Knudsen number) = K .
(iii) Obtain the density ρ̂, flow velocity v̂1, and the pressure

p̂ at this x1 using an interpolation and compute the ratios
(p̂−1

a dp̂a/dx1)−1v̂1 and (dp̂a/dx1)−1M/[2p0(2RT0)−1/2L].
Compare them with uPG(x2; K,ĝ) and mPG(K,ĝ) [cf. Eqs. (61)
and (63)].

-20 0 20
0

0.5

1

FIG. 5. Test of the end effects (Kn = 1 and ĝ = 1). � =
| maxx2 ψ − minx2 ψ |/ψ2 with ψ = (∂p̂/∂x1)/p̂ as a function
of x1 for three computational conditions (W/L,ρB/ρA) =
(10,0.8),(20,0.6), and (40, 0.2). Dotted line: � = 0.1. The end effects
are judged to vanish when the solid line is below the dotted line.

0 0.5 1
0

0.5

1

FIG. 6. Verification test of the asymptotic solution I: veloc-
ity profile (ĝ = 1). Markers show the normalized flow velocity
(p̂−1

a dp̂a/dx1)−1v̂1 at the local Knudsen number Kn/p̂a = K taken
from the two-dimensional solutions for the following cases: open
circle (©): Kn = 0.1; closed circle (�): Kn = 0.2; open triangle (
):
Kn = 0.5; open square(�): Kn = 2; and closed square (�): Kn = 5.
Solid line (——): asymptotic solution −uPG for the BKW model [see
Eq. (61)].

(iv) Repeat (ii) and (iii) for other values of K in the
range where � satisfies the condition stated in the previous
paragraph.

(v) Repeat the processes (i)–(iv) for other set of the
parameters (81).

Some examples of this test are shown as follows. The
computation is carried out for the 24 combinations of Kn =
0.1,0.2,0.5,1,2, and 5 and ĝ = 0.1,0.2,0.5, and 1. We show
the normalized flow velocity profiles (p̂−1

a dp̂a/dx1)−1v̂1 in
Fig. 6 for ĝ = 1 and three values of K . Markers show the
profile of the two-dimensional solutions that are taken from
five solutions with ĝ = 1 and Kn = 0.1,0.2,0.5,2, and 5,
and different markers represent solutions with different Kn.
The solid line represent the −uPG for the BKW model. We
see that the normalized velocity profiles (p̂−1

a dp̂a/dx1)−1v̂1

of the two-dimensional solution are determined by K and
ĝ irrespective of the parameters (81) and coincide with
uPG of the asymptotic solution [cf. Eq. (61)]. In Fig. 7
we show the relation between the normalized mass flow
rate (dp̂a/dx1)−1M/[2p0(2RT0)−1/2L] and the local Knudsen
number K at various x1. Again, markers show the two-
dimensional solution and different markers correspond to the

FIG. 7. Verification test of the asymptotic solution II: mass
flow rate. Markers show the normalized mass flow rate
(dp̂a/dx1)−1M/[2p0(2RT0)−1/2L] at the local Knudsen number
Kn/p̂a = K taken from the two-dimensional solutions for the
following cases: open circle (©): Kn = 0.1; closed circle (�):
Kn = 0.2; open triangle (
): Kn = 0.5; closed triangle (�): Kn = 1;
open square(�): Kn = 2; and closed square(�): Kn = 5. Solid line:
asymptotic solution −mPG for the BKW model [see Eq. (63)]. The
meaning of the markers is the same as that in Fig. 6.

026311-8



PLANE POISEUILLE FLOW OF A RAREFIED GAS IN . . . PHYSICAL REVIEW E 83, 026311 (2011)

solutions with different Kn. The solid line is the −mPG for
the BKW model. From Fig. 7, we see that the the normalized
mass flow rate (dp̂a/dx1)−1M/[2p0(2RT0)−1/2L] of the two-
dimensional solution is determined by K and ĝ irrespective
of the parameters (81) and coincide with mPG(K,ĝ) of the
asymptotic solution [cf. Eq. (63)]. From the test, we may
conclude that the solution in the central part of the channel
of the two-dimensional problem for a large aspect ratio W/L

is well expressed by the asymptotic solution.

VI. CONCLUSION

In this study, we considered a plane Poiseuille flow of a
rarefied gas that flows horizontally in the presence of strong
gravitation based on the Boltzmann equation. Applying the
asymptotic analysis of the Boltzmann equation for a small
variation in the flow direction, the two-dimensional problem
is reduced to a one-dimensional problem, as in the case
of a Poiseuille flow in the absence of gravitation, and the
solution is obtained in a semianalytical form. The reduced
one-dimensional problem is solved numerically for a hard
sphere molecular gas over a wide range of the local Knudsen
number and dimensionless gravity. The presence of gravitation
reduces the mass flow rate (see Sec. IV B), and the effect of
gravitation is significant for large Knudsen numbers. To verify
the asymptotic solution, we also conducted a direct numerical
analysis of a two-dimensional flow through a long channel. By
comparing the asymptotic solution with the direct numerical
solution, the validity of the asymptotic solution is confirmed.

In this study, we considered uniform gravitation g that
is independent of the vertical coordinate X2. To loosen this
condition such that the external force is an arbitrary function of
X2 is straightforward. The basic result in Sec. III is unchanged
except that the density function ω(x2) [Eq. (29)] as well as its
integral � [Eq. (34)] and the solution of the one-dimensional
problem (42) and (43) change.

APPENDIX: COMPUTATIONAL CONDITION AND
ACCURACY TESTS

The computational condition and the results of accuracy
tests are summarized here.

For the one-dimensional problem in Sec. IV, the compu-
tational condition is as follows. The computation is carried
out in the finite three-dimensional space 0 � x2 � 1, −ζD �
ζ2 � ζD , and 0 � ζρ � ζD , where ζD = 3.9. In the interval
0 � x2 � 1, 241 lattice points with a nonuniform lattice
size are put. The lattice size is minimum (0.0021) around
x2 = 0 and x2 = 1, maximum (0.005) and uniform in the
interval 0.16 � x2 � 0.84, and nonuniform otherwise. For the

molecular velocity, 385 lattice points with the uniform size are
put in −ζD � ζ2 � ζD and 33 lattice points with the uniform
size in 0 � ζρ � ζD .

The results of the accuracy tests are as follows:
(i) Choice of ζD . The magnitude of the substantial distri-

bution function |�|E on the planes ζ2 = ±ζD and ζρ = ζD is
less than 3.4 × 10−6.

(ii) Conservation law. Multiplying the Boltzmann equation
Eq. (42) by ζ 2

1 E, integrating with respect to ζ for its entire
space, and integrating with respect to x2 from 0 to x2, we have
the conservation of momentum:

1√
π

[
ω(x2)

∫ ∞

−∞

∫ ∞

0
ζ2ζ

3
ρ � exp(−ζ 2

2 − ζ 2
ρ ) dζρ dζ2

]∣∣∣∣
x2

0

+ 1

4ĝ
[1 − exp(−2ĝx2)] = 0.

The left-hand side, which should vanish theoretically, is
confirmed to be less than 5.3 × 10−4 except for the
cases (K,ĝ) = (0.1,0.1) and (0.2,0.1), for which less
than 1.5 × 10−3.

(iii) Recomputation on another lattice system. For a test
of accuracy, recomputation using a coarser lattice system is
carried out, i.e., about 1.5 times coarser in x2, ζ2, and ζρ , for
all the cases of Kn and ĝ shown in Table 1. From the test,
the numerical error in Table 1 is estimated to be less than
0.024%.

For the two-dimensional problem in Sec. V, the computa-
tional condition is as follows. The computation is carried out
in the finite four-dimensional space −W/2L � x1 � W/2L,
0 � x2 � 1, −ζD � ζ1 � ζD , and −ζD � ζ2 � ζD . The lattice
points are put uniformly for each axis. Forty-one lattice points
are put in −W/2L � x1 � W/2L, 81 points in 0 � x2 � 1,
61 points in −ζD � ζ1 � ζD , and 641 points in −ζD � ζ2 �
ζD .

The results of the accuracy tests are as follows:
(i) Choice of ζD . The distribution function f̂ on the planes

ζ1 = ±ζD and ζ2 = ±ζD is less than 1.6×10−6.
(ii) Recomputation on another lattice system. For a test

of accuracy, recomputation using a coarser lattice system is
carried out, where (a) lattices in x2 and ζ2 are both two times
coarser and (b) lattice in x1 is two times coarser, for the
typical three cases of Kn = 0.1,1, and 10 and ĝ = 1. The
normalized mass flow rate (dp̂a/dx1)−1M/[2p0(2RT0)−1/2L]
computed from the standard and the additional computa-
tions (a) and (b) are compared for various K [see the
process (iii) in Sec. V]. From this test, the numerical
error in the relation between the normalized mass flow
rate and the local Knudsen number is estimated to be less
than 0.08%.
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2007).
[31] K. Aoki and P. Degond, Multiscale Model. Simul. 1, 304

(2003).
[32] K. Aoki, P. Degond, S. Takata, and H. Yoshida, Phys. Fluids 19,

117103 (2007).
[33] S. Takata, H. Sugimoto, and S. Kosuge, Euro. J. Mech. B/Fluids

26, 155 (2007).
[34] Y. Sone and K. Aoki, J. Mec. Theor. Appl. 2, 3 (1983).
[35] S. Fukui and R. Kaneko, J. Tribol. 110, 253 (1988).
[36] Y. Sone, T. Ohwada, and K. Aoki, Phys. Fluids A 1, 363 (1989).
[37] Y. Sone and H. Sugimoto, Adiabatic Waves in Liquid-Vapor

Systems, edited by G. E. A. Meier and P. A. Thompson (Springer-
Verlag, Berlin, 1990), p. 293.

[38] K. Aoki, Y. Sone, K. Nishino, and H. Sugimoto, Rarefied Gas
Dynamics, edited by A. E. Beylich (VCH, Weinheim, 1991),
p. 222.

[39] H. Sugimoto and Y. Sone, Phys. Fluids A 4, 419 (1992).
[40] S. Takata, Y. Sone, and K. Aoki, Phys. Fluids A 5, 716 (1993).
[41] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511

(1954).
[42] P. Welander, Ark. Fys. 7, 507 (1954).
[43] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation

of Gas Flows (Oxford University Press, Oxford, 1994).
[44] C. K. Chu, Phys. Fluids 8, 12 (1965).
[45] Y. Sone, K. Aoki, and H. Sugimoto, Phys. Fluids 9, 3898 (1997).

026311-10

http://fd.kuaero.kyoto-u.ac.jp/members/sone/
http://fd.kuaero.kyoto-u.ac.jp/members/sone/
http://dx.doi.org/10.1063/1.556019
http://dx.doi.org/10.1063/1.556019
http://dx.doi.org/10.1116/1.582006
http://dx.doi.org/10.1063/1.3156011
http://dx.doi.org/10.1063/1.858245
http://dx.doi.org/10.1007/BF02187068
http://dx.doi.org/10.1016/S0378-4371(97)00149-0
http://dx.doi.org/10.1016/S0378-4371(97)00149-0
http://dx.doi.org/10.1063/1.869621
http://dx.doi.org/10.1103/PhysRevE.58.546
http://dx.doi.org/10.1016/S0378-4371(99)00254-X
http://dx.doi.org/10.1103/PhysRevE.60.4063
http://dx.doi.org/10.1016/S0378-4371(00)00405-2
http://dx.doi.org/10.1103/PhysRevE.65.026315
http://dx.doi.org/10.1103/PhysRevE.65.026315
http://dx.doi.org/10.1016/S0378-4371(03)00513-2
http://dx.doi.org/10.1016/S0378-4371(03)00513-2
http://dx.doi.org/10.1103/PhysRevE.56.6729
http://dx.doi.org/10.1063/1.869960
http://dx.doi.org/10.1016/S0378-4371(01)00234-5
http://dx.doi.org/10.1137/S1540345902409931
http://dx.doi.org/10.1137/S1540345902409931
http://dx.doi.org/10.1063/1.2798748
http://dx.doi.org/10.1063/1.2798748
http://dx.doi.org/10.1016/j.euromechflu.2006.05.002
http://dx.doi.org/10.1016/j.euromechflu.2006.05.002
http://dx.doi.org/10.1115/1.3261594
http://dx.doi.org/10.1063/1.857457
http://dx.doi.org/10.1063/1.858313
http://dx.doi.org/10.1063/1.858655
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1063/1.1761077
http://dx.doi.org/10.1063/1.869489

