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Simple model for vibration-translation exchange at high temperatures: Effects of multiquantum
transitions on the relaxation of a N2 gas flow behind a shock
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In this paper a simple model is proposed for computation of rate coefficients related to vibration-translation
transitions based on the forced harmonic oscillator theory. This model, which is developed by considering a
quadrature method, provides rate coefficients that are in very good agreement with those found in the literature for
the high temperature regime (�10 000 K). This model is implemented to study a one-dimensional nonequilibrium
inviscid N2 flow behind a plane shock by considering a state-to-state approach. While the effects of ionization
and chemical reactions are neglected in our study, our results show that multiquantum transitions have a great
influence on the relaxation of the macroscopic parameters of the gas flow behind the shock, especially on
vibrational distributions of high levels. All vibrational states are influenced by multiquantum processes, but
the effective number of transitions decreases inversely according to the vibrational quantum number. For the
initial conditions considered in this study, excited electronic states are found to be weakly populated and can be
neglected in modeling. Moreover, the computing time is considerably reduced with the model described in this
paper compared to others found in the literature.
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I. INTRODUCTION

Nonequilibrium vibrational kinetics at high temperature
is a topic of interest in hypersonic aerodynamics studies
[1]. One-temperature and multitemperature models that are
widely used in the literature to simulate hypersonic gas flows
are based on the assumption of quasistationary distributions
(Boltzmann or Treanor) over vibrational energies [2–5]. These
quasistationary distributions are valid if characteristic mean
times related to vibration-translation (VT), vibration-vibration
(VV), and chemical reactions differ by many orders of
magnitude. In particular, the one-temperature models assume
significantly faster vibrational energy exchanges compared to
chemical reactions, while multitemperature models assume
rapid VV and slow VT processes. However, more accurate rate
coefficients calculated for VT, VV [6–10], and dissociation
processes [10,11] show that their respective characteristic
times are not very different from each other for a wide range
of temperatures. Due to this observation, one-temperature and
multitemperature models can be deemed to be inadequate and
hence more detailed state-to-state kinetic models are needed.

The main advantage of the state-to-state kinetic approach
is that the population densities of vibrational quantum states
are directly predicted, without the use of assumptions of
any quasistationary distributions. Recently, many studies have
been carried out with the state-to-state approach such as in
high temperature N2, O2, and CO gas flows behind shock
waves [12–17], expanding flows in nozzles [18–22], and flows
in boundary layers [23,24] and near blunt bodies [25–27].
Transport coefficients based on state-to-state kinetics were
developed in Ref. [28] and results show a significant influence
of nonequilibrium vibrational distributions on the heat transfer.
Radiative processes are also taken into account in Ref. [29]
and numerical applications [16,17] have shown evidence of
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the strong coupling between the physicochemical and radiative
processes. This strong coupling leads to the conclusion that the
common local thermal equilibrium (LTE) assumption often
used to treat radiative mechanisms [30–32], can result in
significant errors in the evaluation of the radiation and the
radiative heat issued by gas flows. Also, it was shown that
excited electronic states can strongly influence the evolution
of the macroscopic parameters of the gas flow behind a shock
[16,17].

Densities of vibrational levels are initially governed by
source terms related to VV and VT collisions in master
equations. However, it was shown that VV mechanisms can
be neglected at high temperatures (over ∼10 000 K) for N2

and CO molecules [16,33] and hence VT transitions are
dominant in vibrational energy exchanges. In this study we
focus on the effects of pure VT multiquantum transitions, while
neglecting the effects of radiation, ionization, dissociation,
recombination, and other chemical reactions which will
be systematically included in future studies. Although the
latter effects are important at high temperatures, the strong
dependence of their rates on the nonequilibrium vibrational
population levels necessitates accurate modeling of vibrational
energy exchanges. For instance, dissociation of diatomic
molecules, which is significant at high temperatures, proceeds
preferentially from vibrational levels close to the dissociation
energy, so that the vibrational nonequilibrium affects the
dissociation rate. Dissociation and the vibrational relaxation
are thus strongly coupled, and hence accurate modeling of
diatomic gases requires a careful description of vibrational
nonequilibrium to determine the degree of dissociation in the
flow field.

Modeling of state-specific rate coefficients for vibrational
energy exchanges is widely discussed in the literature.
Although semiclassical calculations for three-dimensional
collisions [6–8] and the exact quantum approach [9,10] provide
good accuracy, they remain nevertheless computationally very
expensive. However, the above accurate calculations are often
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used to fit the parameters in approximate approaches [34–36]
which are commonly used because of their simplicity and low
computing time. The rate coefficients utilized in computational
fluid dynamics (CFD) codes are often dependent of the
translational temperature alone. The most popular model of
vibrational energy exchanges is that of Schwartz, Slawsky, and
Herzfeld (SSH) [37], which is based on a semiclassical first-
order perturbation theory (FOPT). This model is developed for
a collinear binary collision characterized by an exponential
repulsive potential interaction; its generalization for anhar-
monic oscillators is given in Refs. [38,39]. However, it is
known that the SSH model works rather well for low quantum
vibrational levels but fails at high collision velocities and high
quantum numbers and cannot be applied for multiquantum
jumps. To avoid these limits of application, a more rigorous
theoretical approach is proposed on the basis of a nonperturba-
tive forced harmonic oscillator (FHO) [40–42] also assuming
a collinear binary collision. The FHO approach takes into
account the coupling of many vibrational states during a col-
lision, which can be valid in high temperature conditions and
for multiquantum transitions. Adamovich et al. [43] extended
the FHO model by including the anharmonicity of molecules
and a steric factor to take into account the noncollinear nature
of collisions. The steric factor is obtained from interpolations
of experimental measurements or more accurate calculations.
However, the direct use of FHO analytical expressions leads to
numerical singularities and VT transition probabilities greater
than unity at high vibrational quantum numbers [44,45].
Nevertheless under such conditions, the analytical expressions
for the VT rate coefficients can be obtained using the model
proposed by Nikitin and Osipov [46]. This asymptotic model
uses properties of Bessel functions and appears to be valid
for all vibrational quantum numbers and a large range of
temperature [16,17,43].

However, it should be noted that VT rate coefficients are
obtained by averaging transition probabilities over relative
collision velocities via a distribution function. This average
calculation is required for each transition and each temper-
ature, which can lead to a great computing time to obtain
rate coefficients in master equations. For this reason, the
assumption of monoquantum collisions is commonly used and
molecules remain in their ground electronic states to limit
the number of VT transitions. An analytical model which
can provide satisfactory FHO rate coefficients with a similar
computing time as the SSH model could greatly facilitate and
extend numerical applications of the state-to-state approach
for modeling gas flows at high temperatures.

In this paper, we propose a model which approximates
that of Nikitin and Osipov [46] by considering properties
of Bessel functions. Then, a quadrature method is utilized
to calculate FHO rate coefficients related to VT transitions
with a shorter computing time. To bring out the advantages
of the proposed approach, the rate coefficients of both
multiquantum and monoquantum transitions calculated on the
basis of the approximate model and that of Nikitin and Osipov
are implemented to study a one-dimensional nonequilibrium
inviscid N2 gas flow behind a plane shock. Numerical results
obtained from these two models in the context of relaxation
of the gas flow macroscopic parameters are discussed. The
significance of multiquantum transitions in the vibrational

nonequilibrium description is evaluated and the underlying
effects are compared to those obtained based on the restricted
assumption of monoquantum transitions, which is widely
used in the literature. Finally, computing times consumed by
considering various VT models are estimated and compared.

II. FHO MODELS

A VT transition can be described by the following process:

Aα,i + M ↔ Aα,i ′ + M, (1)

where the terms α and i correspond to the electronic and
vibrational states of a diatomic molecule A, respectively. As
the result of VT collisional interaction with its partner M (atom
or molecule), the molecule A is found on a different vibrational
level i ′ ( �= i).The gap of vibrational energy �ε involved during
this vibrational jump is shared with the translational mode
of the molecule and its collisional partner, which is why the
above process is called a vibration-translation transition. In
this study, both monoquantum (|i − i ′| = 1) and multiquantum
(|i − i ′| > 1) transitions are considered.

The FHO transition probability related to the mechanism
Eq. (1) is derived by Adamovich et al. [43] and given by

P V T
ii ′ (v0) = i!i ′!εi+i ′ exp(−ε)

∣∣∣∣∣
n∑

r=0

(−1)r

r!(i − r)!(i ′ − r)!

1

εr

∣∣∣∣∣
2

,

(2)

where n = min(i,i ′), and ε is the average number of quanta
transmitted to the initially nonvibrating oscillator, such as

ε(v0) = 4π3ω

α2μh

(
m̃γ

α

)2

sinh−2

(
πω

αv̄

)
. (3)

Terms ω(= 2π�ε/h) and h are the angular frequency and
the Planck’s constant, respectively. The symmetrized relative
collision velocity v̄[= (v0 + v′

0)/2] takes into account the
detailed balance and the total energy conservation during
the VT interaction. The final relative collision velocity v′

0

is connected to the initial velocity v0 (v′
0 =

√
v2

0 + 2�ε/m̃).
The expression Eq. (3) is obtained on the basis of the
repulsive exponential interaction potential V (r) ∼ exp(−αr)
and its mass parameters (m̃, γ,and μ) are given in Ref. [43].
Moreover, the expression Eq. (3) is multiplied by a steric
factor SV T to take into account the noncollinear nature of
collisions and is considered to be an adjustable parameter. In
this study, we adopt the value of 4/9 proposed by Adamovich
et al. [43] for N2-N2 collisional interactions. This value is
obtained from matching the above FHO transition probabilities
at relatively low velocities with more accurate probabilities of
Billing and Fisher [6]. Indeed, the latter authors performed
calculations for three-dimensional collisions with a more
realistic intermolecular potential.

However, the transition probability Eq. (2) cannot be used
for vibrational energy exchange at high vibrational levels.
Indeed, factorial calculations cannot be done accurately since
numerical singularities (overflows and underflows) appear for
high vibrational levels and unphysical transition probabilities
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are obtained [44,45]. For the high states, the following
asymptotic model of Nikitin and Osipov [46] is suggested:

P V T
ii ′ (v0) = J 2

s (xs), (4)

where xs(v0) = 2
√

nsε is introduced to facilitate the notation
in the next section of the paper. The term Js represents the
Bessel function of the first kind at the sth order, while s =
|i − i ′| and ns = [max(i,i ′)!/min(i,i ′)!]1/s .

The rate coefficients kV T
ii ′ are obtained by averaging transi-

tion probabilities P V T
ii ′ given by Eqs. (2) and (4) over initial

relative velocities as follows:

kV T
ii ′ (T ) = Zcoll

M (T )
∫ ∞

0
f dist

M (v0,T )P V T
ii ′ (v0) dv0, (5)

where the one-dimensional Maxwellian speed distribution
function and the gas-kinetic frequency are given by [47]

f distr
M (v0,T ) =

(
m̃

kT

)
v0 exp

(
− m̃v2

0

2kT

)
(6)

and

Zcoll
M (T ) = σ

√
8πkT

m̃
, (7)

respectively. Note that the above two expressions depend on
the translational temperature T and are related to the collision
partner M. The term σ is the collision diameter where chemical
species are considered as hard spheres.

It is obvious that the direct calculation of the integral in
Eq. (5) over initial relative collision velocities can involve
significant computational costs (i.e., time) in fluid dynamics
simulations. Indeed, the integral is computed at each varia-
tion of temperature for each VT transition. The number of
VT transitions is proportional to the number of vibrational
levels and can be very high. In the next section an approximate
model is proposed to obtain via the FHO model the rate
coefficients and reduce greatly the computing time. This model
is based on a quadrature method and uses properties of Bessel
functions.

III. APPROXIMATE FHO MODEL

The Bessel function Js(xs) in Eq. (4) is an oscillatory
function and can be evaluated by its asymptotic functions J1,s

and J2,s [48]. The use of these two functions allows us to
approximate arbitrarily the VT transition probability Eq. (4)
of Nikitin and Osipov [46] in three ranges of application as
follows:

P V T
ii ′ (v0)

∼

⎧⎪⎪⎨
⎪⎪⎩

J 2
1,s(xs) = [

1
s!

(
xs

2

)s]2
, xs ∈ [0,x1,s],

J 2
1,s(x1,s) = J 2

2,s(x2,s), xs ∈ [x1,s ,x2,s],

J 2
2,s(xs) = 2

πxs
cos2

[
xs − (2s + 1)π

4

]
, xs ∈ [

x2,s ,∞
)
,

(8)

The main advantage of the above formulation is that we can
evaluate the characteristics of peaks described by the square
of the Bessel’s function in the Nikitin and Osipov expression
Eq. (4). Indeed, by considering the kth peak, it is easy to see
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FIG. 1. Monoquantum VT transition probability related to
N2(X 1	,i = 5) + N2 → N2(X 1	,i ′ = 4) + N2 process and the
collisional distribution function (for 10 000 and 50 000 K), both as
functions of the initial relative velocity v0. Various VT models are
considered.

in [x2,s ,∞) that its central position x2,s,k and its height h2,s,k

are given by

x2,s,k = (2s + 1)π/4 + (k − 1)π (9)

and

h2,s,k = 2/(πx2,s,k), (10)

respectively. The component x1,s in Eq. (8) describes the
position of J1,s when it reaches a magnitude equal to the
height of the first peak located at its central position x2,s,k=1,
i.e., J 2

1,s(x1,s) = J 2
2,s(x2,s,k=1). Under this condition, the com-

ponent x1,s is given by

x1,s = 2

(
2s!

π (s + 1/2)1/2

)
, (11)

while asymptotic functions J1,s and J2,s are directly linked in
the [x1,s ,x2,s] range.

Figure 1 shows the transition probability related
to the monoquantum process N2(X 1	,i = 5) + N2 →
N2(X 1	,i ′ = 4) + N2. Note that X 1	 corresponds to the
ground electronic state of N2 molecules and monoquantum
transitions involve the Bessel function at the first order
(s = 1). In this figure, we can see that higher peaks (k > 1)
of the Nikitin and Osipov model Eq. (4) are well described
by the approximate form Eq. (8) in [x2,s=1,∞). We approxi-
mate the first peak (k = 1) of the Nikitin and Osipov model
using the asymptotic functions J1,s=1 and J2,s=1 (illustrated
by dashed lines) on the left and right slopes (respectively) of
the first peak, which are bridged using a constant (plateau)
value in the central region [x1,s ,x2,s] of the peak. The constant
value is chosen to correspond to the extremum of J2,s=1 located
at x2,s=1.
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The presence of the peaks allows us to split the integral in
Eq. (5) and obtain the following expression:

kV T
ii ′ (T ) = Zcoll

M (T )
∑

k

Ik (12)

with

Ik =
∫

�vk

f distr
AM (v0,T )P V T

ii ′ (v0)dv0, (13)

and where the term �vk corresponds to the velocity range at
the end points of the kth peak. Moreover, we can observe in
Fig. 1 that the collisional distribution function covers more
peaks (k > 1) at higher temperatures (as at 50 000 K). Note
that since the peaks are rather sharp, we can assume that the
magnitude of the distribution function varies slowly within
them. So, in the first approximation we can assume that this
magnitude is constant and equal to that on the central velocity
v2,s,k within each peak k; the central velocity along the v0

axis corresponds to the above central position x2,s,k along the
xs axis. The assumption of slow variation committed by the
distribution function allows us to rewrite Eq. (13) as follows:

Ik ∼ f distr
M (v2,s,k,T )

∫
�vk

P V T
ii ′ (v0)dv0, (14)

where the integral bound on the �vk range is simply the
calculation of the area related to the kth peak. The surface of
this peak can be estimated by the method of “triangles” [49],
i.e., by multiplying its height h2,s,k by its width at the half
height �v′

k . Thus, the relation Eq. (14) becomes

Ik ∼ f distr
M (v2,s,k,T )P V T

ii ′ (v2,s,k)�v′
k. (15)

Finally, introducing the above relation in Eq. (12), we
can estimate the general VT rate coefficients Eq. (5) by a
quadrature method as follows:

kV T
ii ′ (T ) ∼ Zcoll

M (T )

[
Ik=1 +

∑
k>1

f distr
M (v2,s,k,T )

×P V T
i,f (v2,s,k)�v′

k

]
. (16)

However, Fig. 1 shows that the first peak (k = 1) is larger
than the others and that the assumption of slow variation of the
collisional distribution function within this peak is not justified,
especially at lower temperatures (as at 10 000 K). To maintain
the goal of reducing computing time without loss of accuracy
in calculations at high temperatures, in the first approximation
we split the integral Ik=1 Eq. (13) over the three ranges of
application of the approximate transition probability Eq. (8)
as follows:

Ik=1 =
∫ x1,s

x0,1

+
∫ x2,s

x1,s

∫ x0,2

x2,s

∼
3∑

j=1

I
(j )
k=1, (17)

where the components x0,1 (= 0) and x0,2 [= (2s + 3)π/4]
correspond to the positions of the end points of the first peak
(k = 1). The various subintegrals I

(j )
k=1 are also evaluated by

assuming a constant value of the distribution function and
using the triangle integral method, similarly to the relation
Eq. (15). The constant values are taken to be those evaluated
at the midpoints of the first interval [x0,1,x1,s] and last interval
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FIG. 2. Monoquantum VT rate coefficients related to

N2(X 1	,i = 5,25) + N2 → N2(X 1	,i − 1) + N2 processes as
functions of the translational temperature. Various VT models are
considered.

[x2,s ,x0,2], while in the central region [x1,s ,x2,s] the constant
value is taken to be the maximum value of the distribution
function located at x1,s . It may be noted that the approximation
of the distribution function in the central region can also
be alternatively chosen to correspond to the midpoint value.
However, the error in the latter approximation was found to be
much higher (perhaps due to the rapid decay of the distribution
function) and hence this alternative is not used.

The rate coefficients related to VT monoquantum transi-
tions N2(X 1	,i) + N2 → N2(X 1	,i − 1) + N2 at low (i = 5)
and higher (i = 25) quantum numbers are shown in Fig. 2. We
can see that the asymptotic model of Nikitin and Osipov [46]
agrees well with that of Adamovich et al. [43] in a wide range
of temperature and vibrational states. The approximate model
Eq. (16) of this study underestimates VT rate coefficients at
low temperatures due to the simple quadrature calculation on
the first peak (Ik=1). However, results obtained with this model
become in very good agreement with those of FHO models
from nearly 8000 K. Indeed, we saw that the distribution
function covers more peaks (k > 1) at higher temperature, so
quadrature calculations on these peaks are more accurate due to
their narrowness. Figure 3 confirms that the rate coefficients of
monoquantum VT transitions Eq. (16) developed in this study
can be used for high temperatures and in the whole range of
vibrational levels.

Figure 4 illustrates VT multiquantum and monoquantum
rate coefficients from the 30th vibrational level to lower
states i (=20,28,29) of the N2 molecules in their ground
electronic state X 1	. We can see that the multiquantum jumps
predicted by Adamovich et al. [43] are in good agreement
with those given by the model of Nikitin and Osipov [46], so
that from now only this latter reference is considered for the
comparison. The approximate model Eq. (16) developed in this
study provides a very good agreement of the rate coefficients
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N2(X 1	,i) + N2 → N2(X 1	,i − 1) + N2 processes for various
temperatures (8000 and 40 000 K) and as functions of the vibrational
quantum numbers i. Various VT models are considered.

with those given by the FHO models for temperatures over
∼8000 K.

Note that multiquantum rate coefficients (i = 20,28)
become comparable to that of the monoquantum process
(i = 29) with rising translational temperature. Hence, mul-
tiquantum processes cannot be ignored in high temperature
conditions. However, large multiquantum transitions (i = 20)
are very unlikely to occur at lower temperature since collision
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FIG. 4. Multiquantum and monoquantum VT rate coefficients
related to N2(X 1	,i = 30) + N2 → N2(X 1	,i ′ = 20,28,29) + N2

processes and as functions of the translational temperature. Various
VT models are considered.

energies are not high enough to permit large energy jumps.
Nevertheless, we can see in Fig. 4 that the rate coefficient for
multiquantum transitions (i = 28) is not far from that of the
monoquantum transition (i = 20) at low temperature. Indeed,
since the energy levels become closer to each other with rising
vibrational quantum numbers, the vibrational jumps become
easier at moderate and high vibrational levels. Therefore,
we can expect from Fig. 4 that the first vibrational levels
are populated mainly by monoquantum transitions and thus
the well known SSH model [37] can be applied for these
levels at low temperature.

IV. APPLICATION AND DISCUSSION

Similarly to the works in Refs. [15–17,29,44], we consider
a state-to-state nonequilibrium reactive gas flow, on the basis
of kinetic equations for distribution functions in the spatial and
temporal coordinates (r,t). The gas flow is under the following
conditions:

τel ∼ τRR ∼ τRT 
 τV T ∼ τV E ∼ ϑ, (18)

where τel,τRR,τRT ,τV T , and τV E are the characteristic mean
times related to elastic, rotation-rotation (RR), rotation-
translation (RT), vibration-translation (VT), and vibration-
electronic (VE) processes; ϑ is the mean time of variation
of macroscopic parameters. The above condition is satisfied in
a wide temperature range, in particular for high enthalpy and
high temperature hypersonic flows [1]. Under these conditions
and using the modified Chapman-Enskog method [29,50,51],
the zero-order distribution function of diatomic molecules is
found to be in the following form:

f
(0)
α,i,j =

(
m

2πkT

)3/2 Nα,is
αi
j

Zrot
α,i

exp

(
−mC2

2kT
− εαi

j

kT

)
, (19)

where m and k are the mass of the molecule and the Boltzmann
constant, respectively. The terms sαi

j , εαi
j , and Zrot

α,i are the
rotational statistical weight, the energy of the rotational level j,
and the rotational partition function, respectively. These
terms are related to the electrovibrational state (α,i) of
the number density Nα,i . The peculiar velocity C(=u − v)
is related to the macroscopic velocity v of the gas flow
(u is the microscopic velocity of molecules). The molecular
distribution Eq. (16) describes a local Maxwell-Boltzmann
distribution over velocities and rotational energies at the gas
temperature T. The nonequilibrium character of the gas flow
is carried by the electrovibrational density Nα,i .

The molecular distribution function Eq. (19) is expressed
in terms of the macroscopic parameters Nα,i(r,t), v(r,t), and
T (r,t) which form a reduced set of variables to provide a
closed self-consistent gas flow description in the state-to-
state approach. A system of governing equations for these
variables was derived in the general form in Refs. [15,29].
In the Euler approximation of a one-dimensional stationary
gas flow behind a shock, this system of equations leads to
the conservation equations of momentum and total energy
coupled to the equations of state-to-state vibrational-electronic
kinetics [16,17]:

d(vNα,i)

dx
= Rα,i, (20)
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pv
dv

dx
+ dP

dx
= 0, (21)

pv
dU

dx
+ P

dv

dx
= 0, (22)

respectively. The terms x, v, P, and Uare the distance
from the shock front, the flow velocity in the x direction,
the pressure, and the total internal energy per unit mass,
respectively. The source term in Eq. (20) is expressed as a
sum of several source terms related to various processes:

Rα,i = RV T
α,i + RV E

α,i . (23)

The source term related to VT transitions is given by

RV T
α,i =

∑
M

NM

∑
i ′ �=i

(
kM
α,i ′iNαi ′ − kM

α,ii ′Nαi

)
, (24)

where the term NM corresponds to the number density of the
collisional partner M in the process Eq. (1). The forward rate
coefficients kM

α,ii ′ are calculated from the general form Eq. (5)
by considering various VT models discussed in this paper. The
backward rate coefficients kM

α,i ′iare obtained from the detailed
balance at thermal equilibrium.

A VE transition can be described as follows:

Aα,i + M ↔ Aα′,i ′ + M, (25)

where the molecule A in its initial electronic state α is found in
a final electronic state α′. The molecule is assumed to remain
in the ground vibrational level of the corresponding electronic
state (i = i ′ = 0). The source term associated with this
VE transition is

RV E
α,i =

∑
M

NM

∑
α′ �=α

(
kM
α′ Nα′i ′ − kM

α Nαi

)
, (26)

where the rate coefficients kM
α and kM

α′ expressed in the
Arrhenius form are taken from Losev and Yarygina [52] for
N2 molecules.

We apply the governing equations (20), (21), and (22) to
study a pure N2 gas flow behind a plane shock wave. The
ground X 1	 and first excited electronic states A 3	 and B 3�

of N2 molecules are considered in the modeling. These excited
electronic states come from the VE transitions as follows [52]:

N2(X 1	) + M ↔ N2(A 3	,B 3�) + M. (27)

Coefficients of Dunham given in Refs. [53,55] are taken
into account to calculate the vibrational energy levels of N2

molecules in their various electronic states. These coefficients
lead to 49, 31, and 29 total vibrational levels for X 1	,A 3	,

and B 3� states, respectively. The free stream conditions are
the same as in Ref. [56], i.e., a Mach number of 19.83,
a temperature of 300 K, and a pressure of 27 Pa. Indeed,
we expect in the future to complete the two-dimensional
hypersonic blunt body N2 gas flow simulations by Josyula
et al. [56] using the analysis of results obtained in this paper.

Our N2 gas flow is simulated on a 2 GHz quad-core Intel
Xeon processor, by considering a geometric progression of
∼80 000 grids along the x axis. Numerical calculations run
until a distance of 10 cm behind the shock is reached. The
stiff ordinary differential equations (20), (21), and (22) are
integrated by using Gear’s method [57].
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FIG. 5. Vibrational distributions of N2(X 1	,i = 1,10,20,40)
molecules as functions of the distance behind the shock. Multi-
quantum and monoquantum transitions and various VT models are
considered. Free stream conditions: P∞ = 27 Pa, T∞ = 300 K, and
M∞ = 19.82.

Figure 5 shows the vibrational distributions of molecules
N2

(
X 1	,i

)
for various levels i (=1,20,30,40) as functions of

the distance behind the shock. Compared to monoquantum
transitions, those multiquantum transitions lead to a much
faster relaxation of high vibrational states. Indeed, multiquan-
tum mechanisms are more efficient on high levels because
of their proximity to each other, so there is a small energy
gap for the energy exchanges. Consideration of multiquantum
processes causes a slight decrease of the concentration of the
first vibrational states and more population of higher levels.
Note that results obtained with the VT model of this study,
Eq. (16), are in a good agreement with those obtained with
the model of Nikitin and Osipov [46]. However, we can see in
Table I that with the approximate model the one-dimensional
N2 gas flow code runs ∼82 and ∼107 times faster in cases of
multiquantum and monoquantum collisions, respectively.

The local vibrational temperatures of each level i are
illustrated in Fig. 6 and are defined as follows:

T α
v (i) =

(
εα
i − εα

i=0

)
k ln(Nα,i/Nα,i=0)

, (28)

where the term εα
i corresponds to the energy of the vibrational

level i related to the electronic state α. This figure confirms
faster relaxation of high levels when multiquantum jumps
are considered. Indeed, the vibrational temperatures of these
states increase more rapidly with the distance from the shock
compared to those of lower levels. In the case of monoquantum
jumps, the behavior of these vibrational temperatures is
opposite. Here, vibrational temperatures of high levels increase
more slowly compared to those of lower states, because
monoquantum processes involve vibrational energy exchanges
only between nearest neighbor vibrational levels. Clearly,
molecules reach a vibrational state by jumping step by step
from the lower levels, which leads necessarily to a slower
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TABLE I. Computing time estimated according to the various VT models, kind of vibrational energy exchange (monoquantum and
multiquantum), and total number of vibrational levels in the modeling.

Energy exchange + electronic state VT model Clock time

Multiquantum + ground electronic state (49 levels) Nikitin and Osipov [46]// Present 5.9 h// 4.3 min
Monoquantum + ground electronic state (49 levels) Nikitin and Osipov [46]// Present 25 min// 14 s
Multiquantum + ground and excited electronic states (109 levels) Nikitin and Osipov [46]// Present 1.8 days// 31.2 min
Monoquantum + ground and excited electronic states (109 levels) Nikitin and Osipov [46]// Present 3.7 h// 2 min

relaxation of high levels in the case of monoquantum transi-
tions. This kind of displacement through levels of vibration
also explains the shift of the thermal equilibrium obtained
with the various models of VT energy exchanges. Indeed,
molecules need more VT collisions to reach a vibrational level
on a characteristic time of observation, so these molecules
reach the thermal equilibrium at a longer distance behind the
shock than in the multiquantum case.

In this Fig. 6, we can also see that the translational tempera-
ture decreases more rapidly with the distance when we take into
account multiquantum processes. This behavior arises from
the rapid release of energy from the translational mode to the
vibrational one resulting in the population of higher vibrational
levels and allowing them a fast relaxation. Note that from the
evolution of the translational temperature with the distance
behind the shock, we can see that multiquantum processes
become active when intermediate levels become sufficiently
populated from the first levels. Indeed, molecules on these
intermediate levels can easily jump to higher vibrational states
since energy levels become closer to each other for higher
vibrational quantum number, and multiquantum transitions
are more efficient when energy gaps are small. Figure 6 also
confirms the limits of application of one- and multitemperature
models. These models assume a single vibrational temperature
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FIG. 6. Evolution of local vibrational temperatures of
N2(X 1	,i = 1,20) molecules and the translational temperature
as functions of the distance behind the shock. Multiquantum and
monoquantum transitions and various VT models are considered.
Free stream conditions:P∞ = 27 Pa, T∞ = 300 K, and M∞ = 19.82.

for all levels, which is not the case in the figure as shown by
the state-to-state approach.

Figure 7 illustrates the vibrational distribution as a function
of the vibrational quantum number related to N2 molecules
in their ground electronic state. This figure is obtained by
considering multiquantum and monoquantum processes for
various distances behind the shock (0.01 and 0.03 cm). It is
clear that multiquantum mechanisms populate intermediate
and high levels more quickly, i.e., for i > ∼10. With the
multiquantum transition case, the last vibrational levels seem
to follow a Boltzmann distribution with a common vibrational
temperature. This can be explained by the fact that the energies
of these last levels are so close (compared to lower levels)
that a few VT collisions permit them to follow a similar
relaxation behind the shock. However, concentrations of the
first levels (i <∼ 10) vary and decrease slowly during the
relaxation of the gas flow behind the shock wave. The reason
for the slow variation is that VT transitions of molecules
in the first vibrational levels require a large energy gap and
monoquantum or multiquantum collisions are less effective in
these conditions. The concentrations of the first vibrational
levels decrease because molecules in these levels jump to
higher levels due to VT transitions. This figure also shows
that the VT model developed in this paper gives satisfactory
results.

Figures 8, 9, and 10 present the vibrational temperature
related to the first (i = 1), intermediate (i = 20), and last
(i = 40) vibrational levels as a function of the distance
behind the shock, calculated taking into account various VT
energy exchanges. Monoquantum (s = 1) and multiquantum
(s > 1) transitions are considered. These figures show that all
vibrational levels are influenced by multiquantum processes.
However, relaxation of the first vibrational levels is finally
achieved by VT collisional interaction between the five nearest
levels. Densities of intermediate and higher levels depend,
respectively, on 20 and almost all levels (∼40) of the ground
electronic state. This behavior of all levels shows again the
connection of the efficiency of multiquantum transitions with
the magnitude of the energy jumps. Indeed, transitions from
the first levels already occur for large energy jumps, so VT
transitions are less efficient and only a few nearest levels
contribute to multiquantum mechanisms. However, the energy
levels are closer for higher quantum numbers of the vibra-
tion; therefore vibrational distributions of higher levels are
sensitive to the concentrations of more levels via VT collisions.
The above results show that the number of multiquantum
transitions needed in our simulations to capture state-specific
behavior increases with vibrational quantum number. This
observation can be used to further improve the computational
efficiency of our simulations by using different maximum
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FIG. 7. Vibrational distributions of molecules N2(X 1	,i) as
functions of the vibrational quantum number i for various distances
behind the shock. Multiquantum and monoquantum transitions and
various VT models are considered. Free stream conditions: P∞ =
27 Pa, T∞ = 300 K, and M∞ = 19.82.

numbers of allowable jumps depending on the vibrational
quantum number of each state.

Figure 11 also shows the influence of VT processes on the
evolution of the translational temperature with the distance
behind the shock. We can see that this evolution is almost
entirely governed by the first and intermediate vibrational
levels. Indeed, the densities of higher levels are too weak
compared to those of low levels, and thus they cannot play
a great role in the evolution of the macroscopic parameters of
the gas flow with the initial conditions of this study.
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FIG. 8. Evolution of the local vibrational temperature of
N2(X 1	,i = 1) molecules as a function of the distance behind the
shock. Monoquantum (s = 1) and multiquantum (s > 1) transitions
are considered. Free stream conditions: P∞ = 27 Pa, T∞ = 300 K,

and M∞ = 19.82.
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FIG. 9. Evolution of the local vibrational temperature of
N2(X 1	,i = 20) molecules as a function of the distance behind the
shock. Monoquantum (s = 1) and multiquantum (s > 1) transitions
are considered. Free stream conditions: P∞ = 27 Pa, T∞ = 300 K,

and M∞ = 19.82.

Until now, only the ground electronic state of N2

molecules was considered with its 49 total vibrational levels
(i = 0, . . . ,48). Now, the excited electronic states A 3	

andB 3� are implemented in the modeling and Fig. 12
shows their evolution with the distance behind the shock in
consideration of various VT mechanisms and models. We
can see that concentrations of excited electronic states still
relax and do not reach the equilibrium state at a distance of
under 10 cm. Moreover, their concentration is slightly higher
in the case of monoquantum transitions because molecules
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FIG. 10. Evolution of the local vibrational temperature of
N2(X 1	,i = 40) molecules as a function of the distance behind the
shock. Monoquantum (s = 1) and multiquantum (s > 1) transitions
are considered. Free stream conditions: P∞ = 27 Pa,T∞ = 300 K,

and M∞ = 19.82.
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FIG. 11. Evolution of the translational temperature as a function
of the distance behind the shock. Monoquantum (s = 1) and multi-
quantum (s > 1) transitions are considered. Free stream conditions:
P∞ = 27 Pa, T∞ = 300 K, and M∞ = 19.82.

reach excited electronic states via VE collisions [see Eq. (27)]
from their first vibrational levels of the ground electronic state.
Indeed, we saw above that populations of the first levels related
to the ground electronic state are higher with monoquantum
collisions (see Fig. 5).

However, as the total mass fraction is equal to unity, we
can see that the densities of the excited electronic states
remain very low under the free stream conditions of this study.
Therefore, excited electronic states can be neglected in the
actual modeling, and N2 molecules in their ground electronic
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FIG. 12. Evolution of concentrations of N2 molecules in their
excited states A 3	 and, B 3� as functions of the distance behind
the shock. Multiquantum and monoquantum transitions and various
VT models are considered. Free stream conditions: P∞ =
27 Pa,T∞ = 300 K, and M∞ = 19.82.

state give the main contribution to the predicted evolution
of the gas flow macroscopic parameters. Nevertheless, these
excited electronic states must be taken into account if radiative
intensities from the first positive N2 system [58] are expected
to be evaluated accurately. Note that vibration-electronic
transitions observed for CO molecules [59,60] may effectively
increase the concentration of excited electronic levels in
the present modeling. Unfortunately, data for VE jumps
related to N2 molecules are not available to our knowledge.
Figure 12 also shows the good agreement of electronic level
concentrations obtained using the present VT model with that
of Nikitin and Osipov [46].

Further, it would be interesting to evaluate the increase in
computing time required by the one-dimensional numerical
code, when excited electronic states are considered along with
supplemental vibrational levels. Indeed, the excited electronic
states of N2 molecules involve slightly more than double
the total number of vibrational levels (=106). Table I shows
that consideration of excited electronic states considerably
increases the computing time with the VT model of Nikitin and
Osipov [46]. Indeed, the latter model implies almost two days
of computing time, whereas our model requires only about
thirty minutes in the multiquantum case. When considering
monoquantum transitions, the model developed in this study
is also ∼100 times faster.

V. CONCLUSIONS

A model is presented in this paper to calculate FHO rate
coefficients related to VT transitions at high temperatures.
This model is obtained with a quadrature method by using
properties of Bessel’s functions. Rates obtained with this
model are in good agreement with those obtained with FHO
models found in the literature. This model is used to simulate
a pure N2 gas flow behind a shock by considering a state-
to-state approach. The macroscopic parameters behind the
shock obtained using the proposed model are similar to those
obtained on the basis of FHO models. The difference lies
in the computing time, where the model developed in this
study is ∼100 times faster. For the free stream conditions
considered in this work we found a low concentration of N2

molecules in their excited electronic states; therefore they can
be neglected in the modeling. Nevertheless, their presence
shows that additional vibrational levels strongly increase
the computing time especially if multiquantum transitions
are taken into account. Multiquantum processes are found
to have a great influence on the evolution of macroscopic
parameters of the N2 gas flow behind the shock. Indeed,
the relaxation of high vibrational states is much faster than
that of lower states, while a contrary behavior is observed
if monoquantum transitions are considered. Moreover, with
multiquantum processes, a thermal equilibrium distribution
of vibrational levels is attained at a considerably shorter
distance behind the shock. Multiquantum jumps must be taken
into account for all vibrational levels in modeling. However,
the number of these transitions may decrease inversely as a
function of the vibrational quantum numbers.

Further validation of the approximate model developed in
this study can be performed using more accurate quantum
calculations or experimental data on VT energy exchanges
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at high temperatures. However, this model can be efficiently
utilized in nonequilibrium gas flow studies, because it can
allow us to consider excited electronic states of molecules
and their multiquantum jumps with a very short computing
time. We plan to extend the present work to investigate the
effects of dissociation of N2 molecules by accounting for VT
multiquantum transitions obtained with the proposed model.
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