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Escape behavior of quantum two-particle systems with Coulomb interactions
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Quantum escapes of two particles with Coulomb interactions from a confined one-dimensional region to a
semi-infinite lead are discussed by using the probability of finding all particles within the confined region, that
is, the survival probability, in comparison with free particles. By taking into account the quantum effects of
two identical particles, such as the Pauli exclusion principle, it is shown analytically that for two identical free
fermions (bosons), the survival probability decays asymptotically in power ∼t−10 (∼t−6) as a function of time t ,
although it decays in power ∼t−3 for one free particle. On the other hand, for two particles with attractive
Coulomb interactions it is shown numerically that the survival probability decays in power ∼t−3 after a long
time. Moreover, for two particles with repulsive Coulomb interactions it decays exponentially in time ∼exp (−αt)
with a constant α, which is almost independent of the initial energy of particles.
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I. INTRODUCTION

The escape is a behavior of open systems in which materials
move out from an observed area. It has drawn considerable
attention from various points of view, for example, Kramers’
escape problem [1–3], the α-decaying nucleus [4–6], radiative
decay of molecules [7], the first-passage time problem [1–3],
the recurrence time problem [8], the controlling chaos [9],
and the Riemann hypothesis [10]. Escapes involve transport
and can be used to calculate transport coefficients [11–13].
Particles escaping from thermal reservoirs can sustain flows
such as electric currents [14,15]. Escape phenomena have been
investigated in many systems, for example, billiard systems (by
theories [16–18] and by experiments [19,20]), map systems
[8,9,21], wave dynamics [22,23], and stochastic systems [1–3].

A typical quantity for characterizing a particle escape is the
probability of finding particles within the observed area from
which particles can move out, the so-called survival proba-
bility. The survival probability would decay in time because
particles keep escaping from the observed area without coming
back, and its decay properties have been an important subject
in dynamical systems [12,13,24]. In classical billiard systems,
it is conjectured, based on an ergodic argument, that the
survival probability decays exponentially for chaotic systems,
while it shows a power decay for nonchaotic systems [16].
This conjecture has been examined in detail, for example, in
a finite-size effect of holes [17], weakness of chaos [8], a
connection to correlation functions [18], and a deviation from
an escape rate estimated by the natural invariant measure [8,9].
Particle escapes have also been discussed in quantum systems
by using the survival probability. Reference [25] discussed
an escape behavior of a free particle in a one-dimensional
system, and Refs. [6], [26], and [27] investigated escapes of
particle systems with a potential barrier. Quantum escapes
have also been considered using a random matrix approach for
quantum scattering systems [28,29] and numerical approaches
to wave-packet dynamics in quantum billiard systems [30].
These studies show that the survival probability decays in
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power or exponentially, depending on how quantum states are
superposed initially.

The principal aim of this paper is to investigate effects of
particle-particle interactions in quantum escape phenomena in
comparison with free-particle escapes. To investigate them in
systems as simple as possible, we consider particle escapes
from a confined one-dimensional region to a semi-infinite
one-dimensional lead. Furthermore, as a simple many-particle
system with particle-particle interactions, we choose the
system consisting of two particles with Coulomb interactions
and discuss interaction effects by comparing the interacting
two-particle cases with the cases of one or two free particles.
In these situations we consider particle escapes whose initial
states are represented as an energy eigenstate of particles
confined spatially in the finite region at the initial time, so
that voluntariness of initial superposition of quantum states
in the escape dynamics does not appear in discussions of this
paper. After specifying these general setups in detail in Sec. II,
we start our arguments for quantum escapes in the case of one
free particle (Sec. III), in which the survival probability decays
asymptotically in power ∼t−3 as a function of time t . Next,
we consider the cases of two identical free particles (Sec. IV),
imposing quantum effects of identity of two particles, like
the Pauli exclusion principle, and show analytically that the
survival probability for two free bosons decays asymptotically
in power ∼t−6, while for two free identical fermions it decays
asymptotically in power ∼t−10, differently from the boson
case. Then we discuss escape behaviors of two particles with
Coulomb interactions (Sec. V). First, for the case of two
identical fermions with attractive Coulomb interactions, it
is shown numerically that the survival probability decays in
power ∼t−3 after a long time, although its power decay close
to t−10 appears for very weak Coulomb interactions. Here, the
power decay ∼t−3 of the survival probability for two-particle
systems after a long time suggests that two particles are moved
together like one molecule by attractive interactions, and its
power decay ∼t−10 in the weak interaction limit is consistent
with the results for two identical free fermions. Second, for the
case of two identical fermions with strong repulsive Coulomb
interactions, we show numerically that the survival probability
decays exponentially ∼exp (−αt) in time with a constant α,
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although it decays in power close to t−10 for very weak
interactions. Our numerical results suggest that the exponential
decay rate α of the survival probability does not depend on
values of initial energies.

II. ESCAPE OF MANY PARTICLES IN A SEMI-INFINITE
ONE-DIMENSIONAL SPACE

In this paper, we consider quantum systems consisting of
N particles in a one-dimensional semi-infinite region [0,+∞).
Before the initial time t < 0, we set the infinite potential
barrier in the region [l,+∞) and confine the particles in the
finite region [0, l] with a positive constant l. At the initial
time t = 0 we remove this infinite potential barrier in x � l,
so that a particle escape to the region [l,+∞) begins to
occur. The schematic illustration of this escaping behavior
is shown in Fig. 1. (Here, the particles in Fig. 1 are drawn as
particles with a nonzero finite size to make them visible, but
in the actual models used in this paper we regard particles as
material points.) To make a clear image of this kind of escape
phenomena, we call the region [0, l] the “subspace” and call
the region (l,+∞) the “lead,” so particle escape occurs from
the subspace to the lead.

This system is described by the wave function
�(x1,x2, . . . ,xN ,t) at time t as a solution of the Schrödinger
equation,

ih̄
∂�(x1,x2, . . . ,xN ,t)

∂t
= Ĥ�(x1,x2, . . . ,xN ,t), (1)

where Ĥ is the Hamiltonian operator, h̄ is the Planck constant
divided by 2π , and xj is the position of the j th particle,
j = 1,2, . . . ,N . If the system consists of identical particles
in the quantum mechanical sense, then the wave function
�(x1,x2, . . . ,xN ,t) must satisfy

�(x1,x2, . . . ,xN ,t) = ±�(x1,x2, . . . ,xN ,t)|(xj ,xk )→(xk,xj ) (2)

(a) t = 0

(b) t > 0

0 l
x

x
subspace lead

FIG. 1. Schematic of a particle escape in a semi-infinite one-
dimensional system. (a) Particles confined inside a finite region [0, l]
at t = 0. (b) Particles escaping to a semi-infinite region at t > 0, by
removing the infinite potential barrier in the region [l,+∞). In this
situation we call the region [0, l] the subspace and call the region
(l,+∞) the lead.

for exchange of any particle indices j and k, j = 1,2, . . . ,N ,
k = 1,2, . . . ,N . Here, the minus sign (plus sign) on the
right-hand side of Eq. (2) should be taken for fermions (bosons)
[31], for example, imposing the Pauli exclusion principle
for fermions. Using the wave function �(x1,x2, . . . ,xN ,t)
satisfying Eq. (1) we introduce the probability P (t)
defined by

P (t) ≡
∫ l

0
dx1

∫ l

0
dx2 · · ·

∫ l

0
dxN |�(x1,x2, . . . ,xN ,t)|2.

(3)

This is the probability that the N particles are still inside
the subspace and have not escaped to the lead at time t yet,
and we call it the “survival probability” hereafter [32]. The
purpose of this paper is to discuss the escape behavior of
particles by a time dependence of the survival probability
P (t). It may be noted that the subspace can be regarded
as an open system coupled to a semi-infinite lead, but the
phenomena considered here are not scattering phenomena
described by a response of the system to incident waves,
because particles always exist only in a finite region at
any finite time and the wave function is normalizable, that
is,

∫ +∞
0 dx1

∫ +∞
0 dx2 · · · ∫ +∞

0 dxN |�(x1,x2, . . . ,xN ,t)|2 = 1
at any time t , different from scattering states including an
incoming plain wave from the infinite region.

In general, the survival probability P (t) depends on the
initial condition. As an initial condition at time t = 0, in
this paper we choose an energy eigenstate �n(x1,x2, . . . ,xN )
of N particles confined inside the subspace region [0,l]
corresponding to energy eigenvalue En (E1 � E2 � · · · ). In
this way, we obtain the survival probability for each initial
wave function �(x1,x2, . . . ,xN ,0) = �n(x1,x2, . . . ,xN ) and
present it as Pn(t), n = 1,2, . . . .

Under such initial conditions, we calculate the survival
probability Pn(t) analytically for free particle cases in Secs. III
and IV. We also show numerical results for the survival
probability by discretizing space and time in the Schrödinger
equation for two-particle systems in Sec. V, as well as
for part of a one-particle case in Sec. III. As a numerical
technique we use the pseudospectral method [33,34]. As an
example, in Appendix A we outline a spatial discretization of
the Schrödinger equation for two-particle cases and its time
discretization by the pseudospectral method, which are used
to calculate the numerical results reported in this paper. In
these numerical calculations we take the unit of m = 1 for
the particle mass, l = 1 for the length of the subspace, and
h̄ = 1 for the Planck constant divided by 2π . For numerical
calculations the one-dimensional space is discretized by the
length δx = l/N0 with the integer site number N0 of the
subspace (see Appendix A 1). For numerical calculations by
the pseudospectral method, we also discretize the time by δt

(see Appendix A2) and choose the concrete value of δt so that
the average energy and the normalization of wave function
are almost conserved during the numerical calculations. The
total system length consisting of the subspace and the lead in
our numerical calculations is chosen as L = N δx = N l/N0

with the total site number N (so that the site number of the
lead is given by N − N0), and we calculate the particle escape
dynamics in a time interval in which return of particles to the
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subspace from the lead region is negligible. Concrete values of
the parameters N0, N , and δt are reported for each numerical
result in this paper.

III. ESCAPE OF ONE FREE PARTICLE

We first consider the case of a single free particle in a semi-
infinite one-dimensional space, whose Hamiltonian is given by
Ĥ = −[h̄2/(2m)]∂2/∂x2, with the particle position x ≡ x1.
Using this Hamiltonian we solve the Schrödinger equation
ih̄∂�(x,t)/∂t = Ĥ�(x,t) for the wave function �(x,t) of the
system, for x � 0 and �(0,t) = 0, and calculate the survival
probability, Eq. (3).

In this system, as shown in Appendix B1, we can solve the
Schrödinger equation analytically, and the survival probability
P (t) is represented asymptotically as

P (t)
t→+∞∼ A1

t3
. (4)

Here, the constant A1 is given by

A1 ≡ 2

3π

(
ml

h̄

)3 ∣∣∣∣
∫ l

0
dx x �(x,0)

∣∣∣∣
2

, (5)

with the wave function �(x,0) at the initial time t = 0.
Equation (4) means that the survival probability P (t) decays
in power ∼t−3 asymptotically in time, for arbitrary initial
conditions of the subspace as far as A1 �= 0. Power decays
of the survival probability for one-particle systems in a
one-dimensional space have been discussed in some papers
[6,25,27].

Figure 2 shows graphs of the survival probabilities Pn(t),
n = 1,2,3 obtained by solving the Schrödinger equation for
one free particle numerically, using the subspace site number
N0 = 60, total space site number N = 32 768, and discretized
time interval δt = 10−2. The energy values corresponding to

P n
(t
)

t

0.0001

0.001

0.01

0.1

0.4 0.6 0.8 1 2 4

n=1
n=2
n=3

0.01

0. 1

1

0 0.2 0.4 0.6 0.8

FIG. 2. Survival probabilities Pn(t), n = 1,2,3 of one free particle
in a semi-infinite one-dimensional space as a function of time t

(log-log plots for long-time behavior; inset, linear-log plots for
short-time behavior), corresponding to the energies E1 (circles),
E2 (triangles), and E3 (squares), respectively. Lines are plots of Eq. (4)
with the coefficient, Eq. (5), for the energies En, n = 1,2,3, which
are proportional to t−3.
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FIG. 3. Probability distribution function f3(x,t) ≡ |�3(x,t)|2 of
the particle position as a function of t and x, corresponding to the
energy E3, for one free particle in a semi-infinite one-dimensional
space x � 0.

these graphs are E1 = 4.77, E2 = 19.1, and E3 = 42.9. For
a comparison, in Fig. 2 we also draw a graph of Eq. (4)
with coefficient (5) for each energy. The numerical results
for survival probabilities Pn(t), n = 1,2,3 in Fig. 2 show a
behavior of the power decay ∼t−3 independent of n in a large
time region, and they agree with our analytical result, Eq. (4),
including the value of the coefficient, Eq. (5).

To visualize an escape behavior of one-free-particle sys-
tems, in Fig. 3 we show the probability distribution function
fn(x,t) ≡ |�n(x,t)|2 for n = 3 as a function of time t and
position x. Here, we took the case of n = 3 in Fig. 3 so that
this spatial distribution f3(x,t) has three peaks at the initial
time t = 0, but two of these three peaks decay quickly in time
and only one peak survives for a long time and moves away
from the subspace region [0, l].

IV. ESCAPE OF TWO IDENTICAL FREE PARTICLES

As a many-particle effect in escape phenomena, we first dis-
cuss the quantum effect of identity of two particles, such as the
Pauli exclusion principle, in a semi-infinite one-dimensional
system. The Hamiltonian operator of the system is given by
Ĥ = −[h̄2/(2m)](∂2/∂x2

1 + ∂2/∂x2
2 ), with the position xj of

the j th particle (j = 1,2), and we impose condition (2) for the
wave function �(x1,x2,t) as

�(x1,x2,t) = ±�(x2,x1,t). (6)

Here, the plus sign (minus sign) on the right-hand side of
Eq. (6) is taken when the particles are identical bosons
(fermions). Condition (6) is guaranteed at any time t as far
as it is imposed at initial time t = 0 because the Hamiltonian
operator Ĥ is invariant under the exchange of the positions of
the two particles.

A. Boson case

In the case of two identical free bosons, as reported
in Appendix B2a, the asymptotic behavior of the survival
probability P (t) is represented as

P (t)
t→+∞∼ A2b

t6
. (7)
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Here, A2b is defined by

A2b ≡ 4

9π2

(
ml

h̄

)6 ∣∣∣∣
∫ l

0
dx1

∫ l

0
dx2 x1x2�(x1,x2,0)

∣∣∣∣
2

, (8)

with the initial wave function �(x1,x2,0). Therefore, in the
case of two identical free bosons, the survival probability
P (t) decays asymptotically in power ∼t−6, which is simply
the square of the result of the one free particle discussed in
Sec. III.

B. Fermion case

In the case of two identical free fermions, as reported
in Appendix B2b, the asymptotic behavior of the survival
probability P (t) is represented as

P (t)
t→+∞∼ A2f

t10
, (9)

with the constant A2f defined by

A2f ≡ 2

4725π2

(
ml

h̄

)10

×
∣∣∣∣
∫ l

0
dx1

∫ l

0
dx2 x1x2

(
x2

1 − x2
2

)
�(x1,x2,0)

∣∣∣∣
2

. (10)

It is important to note that in the case of two identical free
fermions, the survival probability P (t) asymptotically decays
in the power ∼t−10, which is different from the power ∼t−6

in the corresponding boson case shown in Eq. (7). In the
two identical free fermions the power decay term ∼t−6 of
the survival probability disappears by a cancellation due to
the Pauli exclusion principle �(x1,x2,t) + �(x2,x1,t) = 0,
and such fermions escape more rapidly qualitatively than the
corresponding two identical free bosons. Effects of Bose or
Fermi statistics in quantum escapes in Tonk-Girardeau gases
have been discussed in Ref. [26].

V. ESCAPE OF TWO PARTICLES WITH COULOMB
INTERACTIONS

Now we discuss escapes of two particles with Coulomb
interactions in a semi-infinite-one-dimensional space. The
Hamiltonian operator of the system is given by Ĥ =
−[h̄2/(2m)](∂2/∂x2

1 + ∂2/∂x2
2 ) + U (x1,x2), with the

Coulomb potential

U (x1,x2) = λ√
d2 + (x1 − x2)2

. (11)

Here, λ is a constant representing the strength of Coulomb
interactions, and d is a small but nonzero constant introduced
as an effect of the quasi-one-dimensionality of the system
[35]. Using this Hamiltonian we solve the Schrödinger equa-
tion ih̄∂�(x1,x2,t)/∂t = Ĥ�(x1,x2,t) for the wave function
�(x1,x2,t) of this system with condition (6), then calculate the
survival probability, Eq. (3).

In this section, we report only results of the two-identical-
fermion case, since many results for the corresponding two-
identical-boson case are similar to those for the fermion case,
except in the limit of weak interactions, where different power
decays of survival probabilities between fermions and bosons

occur as reported in Sec. IV. Moreover, we discuss effects
of Coulomb interactions separately in the two cases: attractive
Coulomb interactions and repulsive Coulomb interactions. The
repulsive Coulomb interactions corresponding to a positive
constant λ can be regarded, for example, as those for two
electrons, and the attractive interactions corresponding to a
negative constant λ can be regarded as those for gravitational
interactions or, possibly, in an approximated description of
systems consisting of an electron and a hole. In this paper we
do not take into account collision-like particle-particle inter-
actions even in the case of attractive Coulomb interactions, but
the Pauli exclusion principle for identical fermions excludes
the possibility of two particles overlapping in space.

A. Attractive interaction case

First, we consider escapes of two particles with attractive
Coulomb interactions with λ < 0. Figure 4 shows graphs for
the survival probabilities Pn(t), n = 1,2,3,10,15 as a function
of time t for two identical fermions with attractive Coulomb
interactions in a semi-infinite one-dimensional space. Here,
we used the parameter values λ = −20 and d = 10−5 for
potential (11), and also the subspace site number N0 = 20,
the total one-dimensional space site number N = 2048 (so
the total site number in two-dimensional x1x2 space is N 2 =
4 194 304), and the discretized time interval δt = 1.5 × 10−3.
Energy values corresponding to survival probabilities Pn(t),
n = 1,2,3,10,15 in Fig. 4 are given by E1 = −91.0, E2 =
−81.1, E3 = −65.7, E10 = 37.7, and E15 = 100, respec-
tively. In Fig. 4 we also show fitting lines for the survival
probabilities Pn(t), n = 1,3,15, in a large time region to a
power decay function μt−ν with fitting parameters μ and ν.
Here, the values of fitting parameters are chosen as (μ,ν) =
(8.91 × 10−2,2.95) for P1(t), (μ,ν) = (1.09 × 10−2,2.85) for

t

P n
(t
)

10-5

10-4

0.001

0.01

0.1

1

0.2 0.4 0.6 0.8 1

n =  1
n =  2
n =  3

n = 10
n = 150.01

0.1

1

0 0.1 0.2 0.3 0.4

FIG. 4. Survival probabilities Pn(t), n = 1,2,3,10,15 for two
particles with attractive Coulomb interactions in a semi-infinite
one-dimensional space as a function of time t (log-log plots), cor-
responding to the energies E1 (circles), E2 (triangles), E3 (squares),
E10 (plus signs), and E15 (crosses), respectively. Inset: Linear-log
plots of Pn(t) for these energies in a short-time region. Lines are fits
for the graphs of Pn(t), n = 1,3,15, to a power function μt−ν with
fitting parameters μ and ν.
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P3(t), and (μ,ν) = (1.31 × 10−4,2.80) for P15(t). These fitting
results suggest that after a long time the survival probability
P (t) decays in power ∼t−3, as in the case of one free particle
discussed in Sec. III. This feature could be explained by the fact
that two particles with attractive Coulomb interactions behave
like one single molecule, so their escape behavior could be
similar to that in one-particle cases.

To discuss the molecule-like behavior of two particles with
attractive Coulomb interactions, we consider the one-particle
spatial distribution function fn(x,t) defined by

fn(x,t) ≡
∫ +∞

0
dx2 |�n(x,x2,t)|2

=
∫ +∞

0
dx1 |�n(x1,x,t)|2, (12)

noting the relation |�n(x1,x2,t)|2 = |�n(x2,x1,t)|2 for two
identical particles, to derive the second equation in Eq. (12).
Figure 5(a) is the graph of the one-particle spatial distri-
bution function fn(x,t) for n = 3 as a function of time
t ∈ [0,2.03] and position x. [Here, to calculate the data
used in Fig. 5(a), as well as in Fig. 5(b) explained later,
we use the same parameter values as in Fig. 4.] As in
the one-free-particle case, after some time the one-particle
spatial distribution shows one big peak, while the other
peaks existing at the initial time decay very rapidly. This
one big peak of the one-particle spatial distribution should
be due to a one-molecular-like behavior of two particles with
attractive Coulomb interactions. Furthermore, we can consider
a contribution of each particle in the spatial distribution
fn(x,t) by using the distributions f (R)

n (x,t) and f (L)
n (x,t),

defined by

f (R)
n (x,t) ≡

∫ +∞

x

dx2|�n(x,x2,t)|2

=
∫ +∞

x

dx1|�n(x1,x,t)|2, (13)

f (L)
n (x,t) ≡

∫ x

0
dx2|�n(x,x2,t)|2=

∫ x

0
dx1|�n(x1,x,t)|2.

(14)

By these definitions, the function f (R)
n (x,t) [f (L)

n (x,t)] is the
part of fn(x,t) by the particle with the position whose x value
is larger (smaller) than that of the other particle, satisfying
the relation

fn(x,t) = f (R)
n (x,t) + f (L)

n (x,t). (15)

In this sense, we may regard the distribution
f (R)

n (x,t)[f (L)
n (x,t)] as the right-particle component (left-

particle component) of the particle spatial distribution fn(x,t)
in a one-dimensional space [36]. Figure 5(b) shows the distri-
butions f (R)

n (x,t) and f (L)
n (x,t) for n = 3 at end time t = 2.03

shown in Fig. 5(a). The figure shows that the distributions
f (R)

n (x,t) and f (L)
n (x,t) are rather overlapped, and both the

“right” and the “left” particles contribute to the one big peak
in Fig. 5(a) at time t = 2.03, implying that two particles are
moving together like a single molecule at this time. This
feature is very different from the case of repulsive Coulomb
interactions, as shown in Sec. V B.
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f3
(L)(x,t)

t

FIG. 5. (a) One-particle spatial distribution function f3(x,t) ≡∫ +∞
0 dx2 |�3(x,x2,t)|2 as a function of time t ∈ [0,2.03] and

position x, corresponding to the energy E3, for two particles with
attractive Coulomb interactions in a semi-infinite one-dimensional
space x � 0. (b) Right-particle component of the spatial distribution
f

(R)
3 (x,t) ≡ ∫ +∞

x
dx2 |�3(x,x2,t)|2 and left-particle component of

spatial distribution f
(L)

3 (x,t) ≡ ∫ x

0 dx2 |�3(x,x2,t)|2 as a function of
position x at time t = 2.03.

It is also important to note in Fig. 4 that the survival
probability P (t) decays in power ∼t−3 even in high-energy
cases. In high-energy cases of En > 0, the average energy is
higher than the value of the attractive potential energy [which
is negative by Eq. (11) with λ < 0] and can have enough
energy to break a binding force of two particles by attractive
interactions in a classical mechanical sense. However, even in
the cases of E10 = 37.7 and E15 = 100 in Fig. 4, the survival
probabilities still decay in power ∼t−3 after a long time,
as in the one-free-particle case. A possible way to explain
this behavior is that in the open systems considered here,
each escape state of a two-particle system is expressed as a
superposition of energy eigenstates of the open system, and
(because particles with a higher energy would escape more
quickly) main contributions to the survival probability after a
long time would come from those with low energies in which
two particles have to behave like a molecule, leading to the
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FIG. 6. Survival probability P1(t) for two particles with attractive
Coulomb interactions corresponding to the energy E1 in a semi-
infinite one-dimensional space as a function of time t (log-log plots),
for the interaction strengths λ = −20 (circles), λ = −10 (triangles),
λ = −6 (squares), λ = −4 (plus signs), λ = −2 (crosses), λ =
−1 (inverted triangles), and λ = −0.01 (diamonds). Lines are
fits for the graphs of P1(t) for λ = −20,−4,−0.01 to a power
function μt−ν with fitting parameters μ and ν.

power decay ∼t−3 as in the one-particle case, even though the
average energy En of the system could be very high.

Although the survival probability decays in power ∼t−3 in
Fig. 4 as in the one-free-particle case, it should decay in a
different power, ∼t−10, in the weak interaction limit λ → 0,
consistent with the results for two identical free fermions.
To discuss such a transition from the power decay ∼t−3

to the other power decay ∼t−10 as the absolute value |λ|
of interaction strength decreases, we show in Fig. 6 graphs
of the survival probabilities P1(t) for two particles with
attractive Coulomb interactions as a function of time t for
different interaction strengths: λ = −20,−10,−6,−4,−2,−1,
and −0.01. Here, we used the same parameter values as
in Fig. 4, except for the values of λ, for N = 4096 in the
cases of λ = −2,−1 and for δt = 4 × 10−3 in the cases of
λ = −2,−1,−0.01. The values of E1 corresponding to the
cases shown in Fig. 6 are −91.0, −18.4, 0.741, 8.69, 15.8,
19.1, and 22.2 for λ = −20,−10,−6,−4,−2,−1, and −0.01,
respectively. Figure 6 shows that the time region of the power
decay ∼t−3 of the survival probability becomes later as the
absolute value |λ| of the interaction strength decreases from
|λ| = 20 (see the cases of λ = −20,−10,−6, and −4 in Fig. 6),
and a more rapid decay behavior closer to t−10 appears as the
value of |λ| becomes very small (see the case of λ = −0.01
in Fig. 6). To clarify these behaviors quantitatively we also
fitted the survival probabilities for λ = −20,−4, and −0.01 to
a power function μt−ν with fitting parameter values (μ,ν) =
(8.91 × 10−2,2.95) for λ = −20, (μ,ν) = (1.82 × 10−4,3.17)
for λ = −4, and (μ,ν) = (3.36 × 10−7,9.79) for λ = −0.01 in
Fig. 6. Comparison of these fitting lines with the corresponding
survival probabilities shows that in the case of λ = −20, the
survival probability P1(t) decays almost in power ∼t−3 after
about the time t = τ̃ ≈ 1.4, while in the case of λ = −4 it
decays almost in the same power after about time t ≈ 1.8, later

than time t = τ̃ . On the other hand, in the case of λ = −0.01
the power decay ∼t−10 is a good approximation of the survival
probability P1(t) after about time t ≈ 0.8. This feature of
λ dependence in the decay of the survival probability could
be explained by the fact that, in an escape state expressed
as a superposition of various energy eigenstates of the open
system, the long-time behavior of particles in the subspace
is dominated by the molecular-like behavior of two-particle
states with a very low energy, causing the power decay ∼t−3

in a very-long-time region even in a weak interaction case,
although for the cases of very weak interactions a behavior
similar to that for two-free-particle cases appears in some time
regions.

B. Repulsive interaction case

Now we consider escapes of two particles
with repulsive Coulomb interactions with λ >

0. Figure 7 shows graphs for the survival
probabilities Pn(t), n = 1,2,3,9,16,19 as a function of
time t for two identical fermions with repulsive Coulomb
interactions in a semi-infinite one-dimensional space.
Here, we used the parameter values λ = 50 and d = 10−5

for potential (11), and also the subspace site number
N0 = 60, the total one-dimensional space site number
N = 2048, and the discretized time interval δt = 10−3

for n = 1,2,3,9,16 and δt = 8 × 10−4 for n = 19. Energy
values corresponding to the survival probabilities Pn(t),
n = 1,2,3,9,16,19 in Fig. 7 are given by E1 = 131,
E2 = 181, E3 = 192, E9 = 330, E16 = 455, and E19 = 507,
respectively. Repulsive interactions have the effect of making
particles farther apart from each other in distance and lead
to faster decay of the survival probability Pn(t) than in the
case for free or attractively interacting particles. Actually,
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FIG. 7. Survival probabilities Pn(t), n = 1,2,3,9,16,19 for two
particles with repulsive Coulomb interactions in a semi-infinite
one-dimensional space as a function of time t (linear-log plots), cor-
responding to the energies E1 (circles), E2 (triangles), E3 (squares),
E9 (plus signs), E16 (crosses), and E19 (inverted triangles), respec-
tively. Inset: Linear-log plots of Pn(t) for these energy cases in a
short-time region. Lines are fits for the survival probabilities Pn(t),
n = 1,2,3,9,16,19 to an exponential functionA exp(−αt) with fitting
parameters A and α.
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Fig. 7 shows that decay of the survival probability Pn(t)
for repulsively Coulomb-interacting two particles is well
approximated as an exponential decay after a short time,
which is much faster than power decays in the cases of
one free particle, two free particles, and two attractively
Coulomb-interacting particles discussed in Secs. III, IV,
and V A. In Fig. 7 we also show a fitting line for each survival
probability Pn(t) to an exponential function A exp (−αt)
with the fitting parameter A and α. Here, the values of
fitting parameters are chosen as (A,α) = (2.37 × 105,147)
for P1(t), (A,α) = (1.87 × 105,148) for P2(t), (A,α) =
(8.83 × 104,154) for P3(t), (A,α) = (8.73 × 103,158)
for P9(t), (A,α) = (1.97 × 104,147) for P16(t), and
(A,α) = (2.81 × 102,139) for P19(t). The escape rate, defined
by the parameter α, does not depend strongly on the value of
the energy En in these numerical results. This feature of the
escape rate of the survival probability could be explained by
a feature of the escape state represented as a superposition
of various energy eigenstates of the open system. Since the
escape state includes various energy states and the main
contribution to the survival probability could come from
low-energy states after a long time, the decay rate α of the
survival probability determined by low-energy states could be
independent of the average energy En of particles.

As a general tendency, particles with a higher energy En

escape faster, with a lower value of the survival probability,
but this is not always true. The graphs in Fig. 7 include
an example of a higher survival probability Pn(t) for a
higher energy En; concretely speaking, P9(t) < P16(t) for
E9 < E16 after a time t̃ ≈ 0.09, although P16(t) < P9(t) for
a short-time region. This kind of behavior of survival prob-
abilities, that is, Pn(t) < Pn′ (t) for En < En′ at some times,
is sometimes observed in two-particle systems with Coulomb
interactions.

Figure 8(a) is a graph of the one-particle spatial distribution
function fn(x,t) defined by Eq. (12) for n = 3 as a function
of time t and position x. This figure clearly shows that
two peaks corresponding to two particles can survive for a
long time, although there are many peaks in a short-time
region. The position of one of these two peaks closer to the
wall at x = 0 does not change very much in time, probably
because the particle corresponding to this peak receives a
repulsive Coulomb force from another particle in the direction
of the wall and its escape movement is suppressed. On the
other hand, the position of another peak moves away quickly
from the subspace. This interpretation of these two peaks
as behaviors of different particles in the one-particle spatial
distribution function fn(x,t) could be justified by the right-
particle component of spatial distribution (13) and the left-
particle component of spatial distribution (14), which are
shown in Fig. 8(b) at time t = 0.172, that is, at the final
time shown in Fig. 8(a). Figure 8(b) suggests that at time
t = 0.172 the right-hand peak of f3(x,t) consists of the right
particle represented by a peak of the distribution f

(R)
3 (x,t),

and the left-hand peak of f3(x,t) consists of the left particle
represented by a peak of the distribution f

(L)
3 (x,t). It should

be noted that, differently from Fig. 5(d) for two particles with
attractive Coulomb interactions, the peaks of distributions (13)
and (14) are clearly separated for two particles with repulsive
Coulomb interactions in Fig. 8(b).
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FIG. 8. (a) One-particle spatial distribution function f3(x,t) ≡∫ +∞
0 dx2 |�3(x,x2,t)|2 as a function of time t ∈ [0,0.172] and

position x, corresponding to the energy E3, for two particles with
repulsive Coulomb interactions in a semi-infinite one-dimensional
space x � 0. (b) Right-particle component of spatial distribution
f

(R)
3 (x,t) ≡ ∫ +∞

x
dx2 |�3(x,x2,t)|2 and left-particle component of

spatial distribution f
(L)

3 (x,t) ≡ ∫ x

0 dx2 |�3(x,x2,t)|2 as a function of
position x at time t = 0.172.

Now, we discuss an interaction strength λ dependence of the
survival probability Pn(t). In Fig. 9 we plot the survival prob-
ability P1(t) as a function of time t for λ = 50,20,5,0.5,0.001.
Here, we used the parameter values N0 = 60, d = 10−5,
and also δt = 10−3 for λ = 50,20,5, δt = 5 × 10−3 for λ =
0.5,0.001, N = 2048 for λ = 50, and N = 4096 for λ =
20,5,0.5,0.001. The values of E1 for the cases shown in Fig. 9
are 131, 73.7, 38.5, 25.4, and 23.9 for λ = 50, 20, 5, 0.5,
and 0.001, respectively. This figure shows that in the case
of very weak interactions such as λ = 0.001, the survival
probability decays in power rather close to t−10 as in the
two-free-fermion case. To clarify this point, in Fig. 9 we fit the
survival probability P1(t) for λ = 0.001 to the function μt−ν

with fitting parameter values (μ,ν) = (2.25 × 10−7,9.49).
In other words, a transition from an exponential decay to
a power decay occurs in the survival probability of two
particles with repulsive Coulomb interactions in a semi-infinite
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FIG. 9. Survival probability P1(t) for two particles with repulsive
Coulomb interactions corresponding to the energy E1 in a semi-
infinite one-dimensional space as a function of time t (log-log plots),
for the interaction strengths λ = 50 (circles), λ = 20 (triangles), λ =
5 (squares), λ = 0.5 (plus signs), and λ = 0.001 (crosses). Lines are
a fit for the graph of P1(t) for λ = 0.001 to a power function μt−ν

with fitting parameters μ and ν.

one-dimensional system, as the value of the interaction
strength λ(�0) decreases.

So far, we have considered mainly properties of the
subspace via the survival probability of escapes in a semi-
infinite one-dimensional space, but escape phenomena can also
be regarded as a driving source to produce a particle current.
From this point of view, we consider the average position

Xn(t) ≡
∫ +∞

0
dx1

∫ +∞

0
dx2 x1|�n(x1,x2,t)|2 (16)

of a particle in whole space at time t , corresponding to the
energy En. Differently from the survival probability, which
is determined by information on two particles within the
subspace [0,l] only, this average position Xn(t) is determined
by information on the particles in all space [0,+∞), and
its time dependence can be an indicator of particle currents
produced by the escape dynamics. Figure 10 shows graphs of
Xn(t) as a function of time t for n = 1,2,3,9,16,19, where
we used the same parameter values as used to obtain the
results shown in Fig. 7, and the time interval in Fig. 10 is also
almost the same as in Fig. 7. Figure 10 shows that each particle
moves with a stable constant average velocity, as indicated by a
constant slope of Xn(t) as a function of t , after a short time. It is
important to note that, roughly speaking, this constant-velocity
movement of the average particle position seems to occur
when an exponential decay of the survival probability in Fig. 7
appears. One should also notice that in all cases shown in
Fig. 10 a particle with a higher energy En moves faster on
average, even for n = 9,16 satisfying the inequality X9(t) <

X16(t), although the corresponding survival probability with
higher energy En does not always take a smaller value after
a long time, for example, P9(t) < P16(t) for t > t̃ ≈ 0.09, as
shown in Fig. 7. A constant slope in the average position
Xn(t) as a function of t appears not only in two-particle
systems with repulsive Coulomb interactions, but also in other
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FIG. 10. Average particle position Xn(t) ≡ ∫ +∞
0 dx1

∫ +∞
0 dx2 x1

|�n(x1,x2,t)|2, n = 1,2,3,9,16,19 for two-fermion systems with
repulsive Coulomb interactions in a semi-infinite one-dimensional
space as a function of time t (linear-linear plots), cor-
responding to the energies E1 (circles), E2 (triangles),
E3 (squares), E9 (plus signs), E16 (crosses), and E19 (inverted
triangles), respectively.

systems such as one free particle, two free particles, and two
attractively Coulomb-interacting particles, although we do not
show graphs of Xn(t) for those cases in this paper.

VI. CONCLUSION AND REMARKS

In this paper we have discussed quantum escape behaviors
of one- and two-particle systems with and without Coulomb
interactions from a one-dimensional finite subspace to a
semi-infinite one-dimensional lead. For these particle escapes,
we prepared the wave function of the system at initial time
t = 0 as an energy eigenstate of particles confined within the
subspace, and we calculated the survival probability for all
particles to stay within the subspace at time t . We showed
analytically that the survival probability decays in power ∼t−3

asymptotically for one free particle, and it decays in power
∼t−10 (∼t−6) for two identical free fermions (bosons) upon
taking into account quantum effects of two identical particles,
such as the Pauli exclusion principle. On the other hand, it is
shown numerically that two identical fermions with attractive
Coulomb interactions behave like one single molecule, so their
survival probability decays in power ∼t−3 after a long time,
as in the one-free-particle case. Moreover, we showed numer-
ically that for two identical fermions with repulsive Coulomb
interactions, the survival probability decays exponentially
∼exp (−αt) in time. Our results suggest that the decay rate
α of the survival probability in the cases of repulsive Coulomb
interactions is almost independent of the initial particle
energy.

Although we showed an exponential decay of the sur-
vival probability for two particles with repulsive Coulomb
particle-particle interactions, it is meaningful to note that
an exponential decay of the survival probability could occur
even in one-particle systems. As such an example, in Fig. 11
we show the survival probabilities Pn(t), n = 1,2,3 for the
one-particle system with a very localized single potential
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FIG. 11. Survival probabilities Pn(t), n = 1,2,3 of a one-particle
system with a localized single potential barrier in a semi-infinite
one-dimensional space as a function of time t (linear-log plots),
corresponding to the particle energies E1 (circles), E2 (triangles),
and E3 (squares), respectively. Here, the potential barrier is located
just outside the subspace, and the potential magnitude of the
barrier is chosen to be very strong in comparison with the particle
energies.

barrier at a site just outside the subspace in a semi-infinite
one-dimensional space, where we used parameter values as
the subspace site number N0 = 60, the total space site number
N = 32 768, and the discretized time interval δt = 2 × 10−4.
Here, we chose the potential magnitude of the single site
barrier as 1.8 × 103, which is much larger than the particle
energies E1 = 4.77, E2 = 19.1, and E3 = 42.9. Figure 11
shows a clear exponential decay of the survival probability
for such a one-particle system with a strong potential barrier
[26,27]. However, in Fig. 11 the exponential decay rates of
the survival probabilities for this one-particle case with a
potential barrier depend strongly on the value of their particle
energies, different from the results for two-particle systems
with repulsive Coulomb-interactions shown in Fig. 7. This
energy-dependent exponential decay rates can be explained
by the fact that particle escape via a strong potential barrier
is caused by quantum tunneling, and such quantum tunnel-
ing can occur more strongly for a particle with a higher
energy.

An interesting problem in escape phenomena is their
quantum-classical correspondence. This is a nontrivial prob-
lem even in a very simple system such as a one-free-
particle system, because the survival probability of nonchaotic
classical systems is generally supposed to decay in power
t−1 [16], while the survival probability of a free particle in
a semi-infinite one-dimensional space decays in a different
power ∼t−3 as shown in this paper. As a first attempt to
discuss classical mechanical escapes corresponding to the
quantum escapes discussed in this paper, we consider classical
mechanical two-particle systems with Coulomb interactions
in a semi-infinite one-dimensional space. We define the
classical survival probability P (t) for classical mechani-
cal two-particles as the probability of both the particles

t

P n
(t
)

t

P n
(t
)

(b)

(a)

0.001

0.01

0.1

1

0.01 0.1 1 10

n =  1
n =  2
n =  3
n = 10
n = 15

0.001

0.01

0.1

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

n =  1
n =  2
n =  3
n =  9
n = 16
n = 19

FIG. 12. (a) Classical survival probabilities Pn(t), for n = 1
(circles), n = 2 (triangles), n = 3 (squares), n = 10 (plus signs), and
n = 15 (crosses) for two classical mechanical particles with attractive
Coulomb interactions in a semi-infinite one-dimensional space as a
function of time t (log-log plots). Line is a fit for the graph of P1(t) to
a power function μt−ν with fitting parameters μ and ν. (b) Classical
survival probabilities Pn(t), for n = 1 (circles), n = 2 (triangles),
n = 3 (squares), n = 9 (plus signs), n = 16 (crosses), and n = 19
(inverted triangles) for classical mechanical two-particle systems with
repulsive Coulomb interactions in a semi-infinite one-dimensional
space as a function of time t (linear-log plots).

staying within the subspace at time t , and to discuss a
quantum-classical correspondence we introduce the probabil-
ity Pn(t) as the classical survival probability of the system with
the initial particle distribution represented as an ensemble of
particles with the constant energy En whose value is the same
as the energy eigenvalue of the initial state in the corresponding
quantum system [37]. In Fig. 12(a) we show graphs of such
classical survival probabilities Pn(t), n = 1,2,3,10,15 for
classical mechanical two-particles with attractive Coulomb
interactions. Here, we used the same parameter values of
l, λ, and d, and the same values of En, n = 1,2,3,10,15,
as in the corresponding quantum two-particle cases whose
quantum survival probabilities are shown in Fig. 4. In this
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figure, the survival probabilities Pn(t),n = 1,2,3 have quite
similar values and it is hard to distinguish them. One may
notice a time period for the graphs of Pn(t),n = 1,2,3 in
which the survival probability seems to decay in power, so
we fit the graph of P1(t) to a power function μt−ν with
fitting parameter values (μ,ν) = (6.06 × 10−2,1.16), close to
a power decay ∼t−1. However, we cannot recognize such a
power decay for Pn(t),n = 10,15 in Fig. 12(a). In Fig. 12(b) we
also show graphs of such classical survival probabilities Pn(t),
n = 1,2,3,9,16,19 for classical mechanical two-particles with
repulsive Coulomb interactions. Here, we used the same
parameter values of l, λ, and d, and the same values of
En, n = 1,2,3,9,16,19, as in the corresponding quantum
two-particle cases whose quantum survival probabilities are
shown in Fig. 7. It is shown that in Fig. 12(b) the classical
survival probabilities of the systems with repulsive Coulomb
interactions do not decay exponentially in time and they rather
seem to go to 0 at a finite time. In both cases shown in
Figs. 12(a) and 12(b), it is rather hard to discuss a direct
quantitative connection of the quantum escapes with the
corresponding classical escapes. However, we should notice
many problems in comparing Fig. 4 and Fig. 12(a), as well as
Fig. 7 and Fig. 12(b), as a quantum-classical correspondence
of particle escapes. First, quantum-classical correspondence is
generally realized in a high-energy region, and realization of
classical states corresponding to quantum low energy states,
such as the ground state and the first and second exited
states discussed in this paper, would be difficult. As another
point of difference from the quantum escapes discussed in
this paper, in the classical cases shown in Fig. 12 we chose
an ensemble of particles with a fixed energy En initially
and the system in the escape state always has this fixed
energy only, while the quantum escape state discussed in this
paper is represented as a superposition of eigenstates of the
open system with various energies even if the initial state is
chosen as the energy eigenstate of particles confined in the
subspace with a fixed energy En. To solve these problems
and to compare quantitatively quantum escapes with the
corresponding classical escapes for two-particle systems with
Coulomb interactions, as well as more detailed discussions
on classical escapes in semi-infinite one-dimensional systems,
are important future problems.

One may notice that in this paper, exponential decays of
survival probabilities in two-particle systems with repulsive
Coulomb interactions are shown numerically, so there is
still the possibility that it might be only a finite time
property and it might decay in power in the long-time limit
t → + ∞. Related to this remark, Refs. [6] and [27] argued
that the survival probability of one-particle systems with a
δ-functional potential barrier in an effectively semi-infinite
one-dimensional space decays in power in the long-time limit,
even if it shows an exponential decay for a finite-time region as
in Fig. 11. However, it should be valuable to show some results
on particle-particle interaction effects in escape behaviors even
if they are finite-time properties.

In future it would be interesting to investigate the relation
of quantum escapes with chaotic dynamics in two-particle
systems with Coulomb interactions. The strength of chaos in
quantum systems can be investigated, for example, by using
energy level spacing distributions [38–40], and quantum chaos

in many-electron systems with Coulomb interactions in a
finite region have been discussed for two-particle systems in a
one-dimensional space [35], in a one-dimensional space with a
random potential [41], and in a two-dimensional space [42,43],
as well as for three-particle systems [44]. However, different
from closed systems considered in these past papers, the
system for particles to escape is an open system in which the
energy spectrum is continuous, and analysis of chaos by energy
level spacing distributions is not applicable to such an open
system. Even in the classical case, analysis of chaos in open
systems without a confining potential barrier could be very
different from that in closed systems or billiard systems with
a small hole, because particles can go very easily to an infinite
region without being trapped in a finite region. In this sense, to
clarify a relation between the chaotic property of many-particle
systems with Coulomb interactions and decay behaviors of
the survival probability is highly nontrivial and remains an
unsettled problem. It would also be important to investigate
escape behaviors of systems consisting of more than two
particles, although to study such a large system numerically we
would need much better numerical resources and techniques
than those used to obtain the results in this paper. Such
large systems with particle-particle interactions could be more
strongly chaotic than two-particle systems, and they could
provide better situations for studying quantum chaotic effects
in escape phenomena. We could also consider the particle
escape of such a large number of particles as a driving source
to produce a particle current from a particle reservoir. For
this case, as the initial state we could choose an equilibrium
(e.g. canonical) state, which is represented as the density ma-
trix given by the energy eigenstates {�n(x1,x2, . . . ,xN )}n used
in this paper, with the weight of an equilibrium distribution.
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APPENDIX A: NUMERICAL CALCULATIONS OF A
ONE-DIMENSIONAL TWO-PARTICLE DYNAMICS

In this Appendix we represent how we discretized the
Schrödinger equation for a system consisting of two particles
in a semi-infinite one-dimensional space to calculate the
survival probability P (t) in this paper. Especially, we show a
spatially discretized Hamiltonian and outline the pseudospec-
tral method used to solve the Schrödinger equation discretized
in time.

1. Spatial discretization of the Hamiltonian operator

We consider two particles in a semi-infinite one-
dimensional space and take xj (�0) as the position coordinate
of the j -th particle, j = 1,2. Then, we discretize the semi-
infinite one-dimensional space by a positive constant δl, so
xj → njδl, nj = 0,1,2, . . . for j = 1,2. In this discretization
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of the one-dimensional space, the spatially second derivative
∂2/∂x2

j applying to any function X(xj ) is represented as

∂2X(xj )

∂x2
j

→ X̃(nj + 1) − 2X̃(nj ) + X̃(nj − 1)

δl2

≡ − 1

δl2

+∞∑
k=0

Knj kX̃(k) (A1)

where X̃(nj ) ≡ X(njδl) is the spatially discretized function
of X(xj ). Here, the matrix K ≡ (Kjk), j = 0,1,2, . . . , k =
0,1,2, . . . , is the matrix whose only nonzero elements are
Kjj = 2 and K(j+1)j = Kj (j+1) = −1, j = 0,1,2, . . .. Using
Eq. (A1), the Hamiltonian operator Ĥ is represented as the
matrix H for the spatially discretized representation:

Ĥ → H ≡ h̄2

2mδl2
K + Ũ (n)I (A2)

with n ≡ (n1,n2) and Ũ (n) ≡ U (n1δl,n2δl) using the potential
U (x1,x2) given by Eq. (11) for the continuous space case. Here,
the matrices K ≡ (Knn′) and I ≡ (Inn′) are defined by

Knn′ ≡ Kn1n
′
1
δn2n

′
2
+ δn1n

′
1
Kn2n

′
2
, (A3)

Inn′ ≡ δn1n
′
1
δn2n

′
2
, (A4)

respectively, for any n ≡ (n1,n2) and n′ ≡ (n′
1,n

′
2). Using

Eq. (A2) the Schrödinger equation is spatially discretized
as ih̄∂�̃(t)/∂t = H �̃(t) as a equation for the vector �̃(t) ≡
(�̃(n,t)) defined by �̃(n,t) ≡ �(n1δl,n2δl,t) with the vector
index n.

It may be meaningful to represent the Hamiltonian matrix
H by using the Dirac notation. Introducing a set of the state |n〉
as those forming a complete (

∑
n |n〉〈n| = 1) and orthogonal

(〈n|n′〉 = δn1n
′
1
δn2n

′
2
) set for the site indexes n and n′, the

Hamiltonian matrix H can be represented as the operator

Ĥ ≡
∑

n

|n〉εn〈n| + u
∑
n,n′

(|n−n′|=1)

|n〉〈n′| (A5)

where εn and u are defined by εn ≡ [2h̄2/(mδl2)] +
U (n1δl,n2δl) and u ≡ −h̄2/(2mδl2), respectively. The op-
erator (A5) has the same type of form as a tight-binding
Hamiltonian with the site energy εn and the hopping rate u, and
the Schrödinger equation is represented as ih̄∂ |�(t)〉 /∂t =
Ĥ |�(t)〉 as a equation for the state |�(t)〉 ≡ ∑

n �̃(n,t) |n〉.

2. Time discretization of the Schrödinger equation by the
pseudospectral method

In the previous subsection of this Appendix we discussed
how we spatially discretized the Hamiltonian operator. In this
subsection we outline how we discretize the time-evolution
by the Schrödinger equation in the way called by the pseudo-
spectral method.

We consider a one-dimensional space of the length L

consisting of the subspace and the lead, and note that the
function X (x1,x2) of x1 and x2 satisfying the boundary

condition X (0,x2) = X (x1,0) = X (L,x2) = X (x1,L) = 0
can be Fourier-transformed as

X̃ (k1,k2) =
√

2

L

∫ L

0
dx1

∫ L

0
dx2X (x1,x2)

× sin

(
πk1

L
x1

)
sin

(
πk2

L
x2

)

≡ F̂[X (x1,x2)], (A6)

X (x1,x2) =
√

2

L

+∞∑
k1=1

+∞∑
k2=1

X̃ (k1,k2) sin

(
πk1

L
x1

)
sin

(
πk2

L
x2

)

≡ F̂−1[X̃ (k1,k2)] (A7)

by using the relation
∫ L

0 dx sin(πkx/L) sin(πk′x/L) =
Lδkk′/2, k = 1,2, . . . , k′ = 1,2, . . . etc. Using Eq. (A7) we
obtain

K̂X (x1,x2) = F̂−1[K̃(k1,k2)X̃ (k1,k2)] (A8)

with the kinetic operator K̂ ≡ −[1/(2m)](∂2/∂x2
1 + ∂2/∂x2

2 )
and the function K̃(k1,k2) ≡ [π2/(2mL2)](k2

1 + k2
2) of k1

and k2.
We discretize the time by a positive constant δt, so

t → νδt,ν = 0,1,2, . . .. By using the formal solutions of the
Schrödinger equation, the wave function �(x1,x2,t + δt) at
time t + δt is related to the wave function �(x1,x2,t) at time
t as

�(x1,x2,t + δt) = e−iĤ δt/h̄�(x1,x2,t) (A9)

= e−iU (x1,x2)δt/(2h̄)e−iδtK̂/h̄e−iU (x1,x2)δt/(2h̄)

×�(x1,x2,t) + O(δt2)

= e−iU (x1,x2)δt/(2h̄)F̂−1[e−iδtK̃(k1,k2)/h̄F̂
× [e−iU (x1,x2)δt/(2h̄)�(x1,x2,t)]] + O(δt2)

(A10)

where we used the relation (A8) and the boundary condi-
tions �(0,x2,t) = �(x1,0,t) = �(L,x2,t) = �(x1,L,t) = 0
for the wave function of the system used in this paper. By
Eq. (A10) we can calculate the wave function �(x1,x2,t + δt)
at time t + δt from the wave function �(x1,x2,t) at the
previous time t .

An advantage of the pseudo-spectral method (A10) is
that in this method we do not have to apply the space-
differential operator e−iĤ δt/h̄ in the time-evolution of wave
function, and it is replaced by simple multiplications of just
the numbers e−iU (x1,x2)δt/(2h̄) and e−iδtK̃(k1,k2)/h̄, leading to
less complicate numerical calculations than to use Eq. (A9)
directly. Instead, we need to do a Fourier transformation and
an inverse Fourier transformation for one step of the time
evolution, but we can use the technique called by the fast
Fourier transformation [34] in actual numerical calculations.
The fast Fourier transformation requires the calculation time
proportional to be Ñ log2 Ñ (instead of Ñ 2) for the total
(x1x2 space) site number Ñ , and it is a big advantage for a fast
numerical calculation of large Ñ systems such as used in this
paper.
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APPENDIX B: SURVIVAL PROBABILITY OF FREE
PARTICLE SYSTEMS IN THE SEMI-INFINITE

ONE-DIMENSIONAL SPACE

In this appendix we calculate the survival probability
analytically for free particle systems in a semi-infinite
one-dimensional space. First, we calculate it for the case
of one free particle, and show analytically an asymptotic
power decay (4) of the survival probability P (t). Sec-
ondly, we show the different power decay behaviors (7)
and (9) of the survival probabilities between two iden-
tical free bosons and fermions with the quantum effect
of identity of two particles, such as the Pauli exclusion
principle for fermions, in a semi-infinite one-dimensional
space.

1. One-free-particle case

For one free particle in a one-dimensional space, the
Hamiltonian operator is given by Ĥ = −[h̄2/(2m)]∂2/∂x2.
Then the wave function � ′(x,t) for this Hamiltonian system
in the full one-dimensional infinite region (−∞,+∞) is
represented as [45]

� ′(x,t) =
√

m

2πih̄t

∫ +∞

−∞
dy � ′(y,0) exp

[
im(x − y)2

2h̄t

]

(B1)

for any initial wave function � ′(x,0) of the system. Using this
function � ′(x,t), the wave function �(x,t) for the system with
the same Hamiltonian but in the semi-infinite one-dimensional
region [0,+∞) is given by

�(x,t) = �′(t)−1[� ′(x,t) − � ′(−x,t)] (B2)

=
√

m

2πih̄t

∫ +∞

−∞
dy �(y,0) exp

[
im(x − y)2

2h̄t

]

(B3)

for x � 0, so that the boundary condition �(0,t) = 0 in the
hard wall at x = 0 is automatically satisfied at any time t

by Eq. (B2). Here, �′(t) ≡ ∫ +∞
0 dx |� ′(x,t) − � ′(−x,t)|2 is

the quantity for normalizing the wave function �(x,t) as∫ +∞
0 dx |�(x,t)|2 = 1 for the semi-infinite space [0,+∞),

and the initial wave function �(x,0) = �′(0)−1[� ′(x,0) −
� ′(−x,0)] satisfies the condition �(−x,0) = −�(x,0) for any
real number x in Eq. (B3). By using Eq. (B3) and noting the
fact that the value of the initial wave function �(x,0) is 0 for
|x| > l, the wave function �(x,t) of one free particle in the
semi-infinite region [0,+∞) is represented as

�(x,t) =
∫ l

0
dy G(x,y; t)�(y,0) (B4)

at position x at time t, with G(x,y; t) defined by

G(x,y; t)

=
√

m

2πih̄t

{
exp

[
im(x − y)2

2h̄t

]
− exp

[
im(x + y)2

2h̄t

] }
,

(B5)

as the time-evolutional propagator for one free particle in the
semi-infinite one-dimensional space [0,+∞).

For large t we expand the propagator G(x,y; t) as

G(x,y; t) = −
√

2i

π

(
m

h̄t

)3/2

xy + O(t−5/2) (B6)

up to the smallest nonzero order of t−1. Inserting Eq. (B6)
into Eq. (B4) and then calculating the survival probabil-
ity, Eq. (3), for N = 1, we obtain Eq. (4) with coeffi-
cient (5).

2. Two-identical-free-particle cases

We consider a two-identical-free-particle system with no
potential energy in a semi-infinite one-dimensional space.
In this case, because there is no potential energy, the time
evolution of the wave function �(x1,x2,t) of this system
is dominated by the one-particle propagator (B5) and is
given by

�(x1,x2,t)

=
∫ l

0
dy1

∫ l

0
dy2G(x1,y1; t)G(x2,y2; t)�(y1,y2,0). (B7)

Here, we used the fact that values of the wave function
�(y1,y2,0) at initial time t = 0 are nonzero only in the
region satisfying 0 < y1 < l and 0 < y2 < l as assumed in this
paper.

Now, we impose the condition

�(x2,x1,0) = ±�(x1,x2,0), (B8)

that is, condition (6) at initial time t = 0. Here, the plus sign
(minus sign) on the right-hand side of Eq. (B8) is taken for
identical bosons (fermions). Under condition (B8), wave func-
tion (B7) automatically satisfies condition (6) at any time t .
We can rewrite Eq. (B7) using Eq. (B8) as

�(x1,x2,t) = 1

2
[�(x1,x2,t) ± �(x2,x1,t)]

= 1

2

∫ l

0
dy1

∫ l

0
dy2[G(x1,y1; t)G(x2,y2; t)

±G(x2,y1; t)G(x1,y2; t)]�(y1,y2,0), (B9)

so that the wave function �(x1,x2,t) automatically satisfies
condition (6) at any time t without noting condition (B8)
anymore.

a. Boson case

For the system consisting of two identical free
bosons, by Eq. (B6) the quantity G(x1,y1; t)G(x2,y2; t) +
G(x2,y1; t)G(x1,y2; t) is asymptotically represented as

G(x1,y1; t)G(x2,y2; t) + G(x2,y1; t)G(x1,y2; t)

= 4i

π

(
m

h̄t

)3

x1x2y1y2 + O(t−4). (B10)
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Inserting Eq. (B10) into Eq. (B9) and then calculating the
survival probability (3) for N = 2, we obtain Eq. (7) with
coefficient (8).

b. Fermion case

For a system consisting of two identical free fermions we
expand the one-particle propagator, Eq. (B5), as

G(x,y; t) =
√

2i

π

(
m

h̄t

)3/2

xy

[
1 + im

2 h̄t
(x2 + y2) − 1

24

(
m

h̄t

)2

× (3x2 + 10x2y2 + 3y2) + O(t−3)

]
(B11)

up to the order t−7/2, which is a higher order than in
Eq. (B6). By Eq. (B11) the quantity G(x1,y1; t)G(x2,y2; t) −
G(x2,y1; t)G(x1,y2; t) is asymptotically represented as

G(x1,y1; t)G(x2,y2; t) − G(x2,y1; t)G(x1,y2; t)

= 1

3πi

(
m

h̄t

)5

x1x2y1y2
(
x2

1 − x2
2

) (
y2

1 − y2
2

) + O(t−6).

(B12)

Inserting Eq. (B12) into Eq. (B9) and then calculating the
survival probability, Eq. (3), for N = 2, we obtain Eq. (9)
with coefficient (10).
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