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Excitability in optically injected semiconductor lasers: Contrasting quantum-
well- and quantum-dot-based devices
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Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the
phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated
multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental
observations show the marked differences in the pulse shapes while theoretical considerations reveal the
underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers
to perturbations as the root.
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I. INTRODUCTION

Excitability refers to the response of a system to
perturbations from a steady state. In an excitable sys-
tem, perturbations below a certain threshold result in
short phase-space trajectories back to the steady state. How-
ever, a perturbation above the threshold results in a large
phase-space response as the system returns to the steady state.
In the case of noise-induced excitability the noise within a
system is sufficient to push it beyond the threshold and so
excitable responses are spontaneously generated. The form of
these responses depends on the system in question: examples
include voltage spikes in the case of neuronal excitability,
chemical concentration spikes in reaction-diffusion systems,
and intensity pulses in semiconductor lasers (see [1] and
references therein for studies of excitability in different
areas of science). In this paper we consider the excitable
dynamics observed with an optically injected semiconductor
laser. In this configuration two lasers are coupled in a
unidirectional manner so that light from one (the master) is
injected into the cavity of the other (the slave). When the
frequency of the master laser is sufficiently close to that of
the slave and the coupling is sufficiently high, the field of
the slave can become synchronized with that of the master.
Other observed dynamics are chaos, multistability, and the
focus of this paper, excitability. (See [2] for a review of
optically injected quantum-well-based semiconductor lasers
and [3–6] for recent results using quantum-dot lasers.)
Excitability can also be observed in lasers with saturable
absorbers [7], lasers undergoing optical feedback [8], multi-
section lasers [9], and ring lasers [10]. One particular benefit of
the optically injected system is its amenability to analysis both
experimentally and theoretically; indeed excellent quantitative
agreement between experiment and theory is possible, as
shown in [11].

The excitable regime for the case of optical injection
is found for low levels of injection strength. A common
assumption is that the Adler model [12] for the phase locking
of two oscillators can explain the underlying physics in this
regime. The Adler model is a prototype for excitability in
phase-locked oscillators and is governed by the equation

φ̇ = −� − K sin φ, (1)

where � is the detuning (the frequency of the master minus
that of the slave), φ is the phase difference between the
master and the slave, and K is a measure of the injection
rate. Excitable events in this system consist of 2π rotations
of the slave phase. The important realization that the Adler
mechanism is not always the mechanism for excitability in
optically injected semiconductor lasers was made in [13].
There it was shown that there are certain regions—homoclinic
teeth—where the system is excitable but where very com-
plicated excitable trajectories involving rotations of 2nπ

can be obtained. However, this was a numerical analysis
of the system without an experimental confirmation of the
phenomenon. Excitable pulses were observed experimentally
using quantum-dot lasers operating at approximately 1300 nm
in [3]. However, there was no indication of the complex
multipulse behavior expected in homoclinic teeth. For single-
mode devices, only single pulses were observed and in [4] it
was shown that these corresponded to excitable phase slips
of 2π rotations. Multipulse excitability in the form of double
pulses (4π phase slips) was observed using multimode devices
in [3] but appears to result from a period doubling of the
single-pulse behavior rather than from a homoclinic tooth.
Furthermore, it was shown in [14] that the same saddle-node
mechanism gives rise to trains of pulses and phase slips in
mutually coupled quantum-dot lasers.

In this work we reveal experimental multipulse excitability
using quantum-well-based lasers and contrast this with the
observations for quantum-dot-based lasers. We consider rate
equation models for the two types of devices and examine
the behavior via analytic calculations and numerical studies of
the Lyapunov exponents and numerical time series. Via this
analysis we show how the increased stability of quantum-dot
lasers leads to a reduction in observed chaotic behavior and
the consequent removal of the multipulse excitability, thus
explaining the discrepant observations.

II. EXPERIMENTAL EXCITABLE BEHAVIOR

The experimental setup is shown in Fig. 1. Light from the
master laser was coupled to the slave using a lensed fiber via
an optical circulator (with an isolation greater than 40 dB).
The light from the slave was then free-space-coupled to an
oscilloscope of bandwidth 12 GHz. (An optical isolator with
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FIG. 1. (Color online) Experimental setup. M is the master laser,
S is the slave laser, PM is a power meter used to measure the injection
strength, OSC is a digital oscilloscope, and ISO is an optical isolator
used to prevent unwanted feedback effects.

isolation greater than 40 dB was used to prevent unwanted
feedback effects.) The master laser was a commercially
available tunable laser with a linewidth of less than 100 kHz.
The quantum-well slave laser was a single-mode device similar
to those described in [15] and the quantum dot a single-mode
(distributed feedback) device similar to those used in [4]. (Both
types of device operated at a wavelength of around 1300 nm.
The threshold of the quantum well device was 14 mA and that
of the quantum-dot device was 38 mA and both were operated
at approximately 1.5 times threshold.)

A. Negative detuning

Let us begin with the quantum well device. Close to the
locking boundary for negative detuning, intensity pulsations
such as those in Fig. 2 were observed. The injection strength
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FIG. 2. (Color online) Experimental pulses for the quantum
well device. (a) Single-pulse behavior and (b) multipulse behavior
associated with a homoclinic tooth. For (a), the injection strength
was approximately 0.05 and the detuning was approximately
−1.5 GHz, while for (b), the injection strength was approximately
0.1 and the detuning was approximately −2.5 GHz.
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FIG. 3. (Color online) Experimental pulses for the quantum-dot
device. The injection strength was approximately 0.05 and the
detuning was approximately −1 GHz.

(the ratio of the intensity of the light from the master reaching
the slave to the intensity of the slave in the injection-free case)
was approximately 0.05 for Fig. 2(a). At this level single pulses
were observed, as shown in Fig. 2(a), and outside the locking
boundary a wave mixing signal was observed (resembling
essentially a periodic train of single pulses). After the strength
was increased to approximately 0.1, the nature of the pulsations
became quite different, as shown in Fig. 2(b). Two “pulsations”
are shown where the two events have very different intensity
shapes. Outside the locking region at this level chaotic behavior
was observed. After the strength was increased still further, the
behavior returned to a simple single-pulse type, after which
another complicated region was found. Continued increase of
the injection level was found to change the locking boundary
from a saddle-node to a Hopf bifurcation.

In contrast to these observations, for the quantum-dot
devices only single pulses such as those shown in Fig. 3
were observed. (While we are primarily concerned here with
the excitable features, we note that various other dynamical
regimes were observed including bistability between locked
behavior and a limit cycle and bistability between two locked
solutions as reported in [3,5].)

B. Positive detuning

For completeness we also describe the observations for
positive detuning. For quantum well devices it is well known
that the locking boundary for positive detuning is of saddle-
node type for a small region only and that for a large parameter
range the positive detuning boundary is a Hopf bifurcation
corresponding to the undamping of the relaxation oscillations
(ROs). (In fact, this boundary can even cross the zero detuning
line and so both the saddle-node (SN) and Hopf lines can
be of negative detuning.) The locking region is bounded by
saddle-node lines on both sides only for very low injection
levels, and identifying excitability via traditional spectral and
intensity techniques is very difficult at these levels due to
the necessary low levels of injection. However, it was shown
in [16] that, even for a positively detuned quantum well device,
excitable phase slips could be observed by making use of an
interferometric technique to measure the phasor of the slave
laser at the requisite low injection levels. For the quantum-
dot devices, excitable pulses are readily observed for positive
detuning over a relatively large region because of the large
area bounded on both sides by the saddle-node bifurcation. It
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has been shown that it is the high damping of the relaxation
oscillations in these devices that is responsible for the size of
this region [4,5]. The most important qualitative feature for
both device types is that the direction of rotation is reversed
for positive detuning. That is, for negative detuning, rotations
of +2π are obtained, while for positive detuning, rotations of
−2π are obtained.

III. RATE EQUATION MODELS

Let us now consider rate equation models for the systems.
We begin with the equations for an optically injected quantum
well device as used in [13,17],

Ė = 1/2(1 + iα)nE + Kei�t + Fr (t) + iFi(t), (2)

ṅ = −2�n − (1 + 2Bn)(|E|2 − 1) + Fn(t), (3)

where a dot means differentiation with respect to �t with �

the RO frequency, E the electric field of the slave laser, α

the linewidth enhancement factor of the slave, n the carrier
density of the slave, � the detuning, and K the injection rate
with both � and K dimensionless through a rescaling with
�. � is a rescaled measure of the RO damping and B is the
rescaled carrier lifetime. White noise is included via the Fj (t)
terms (j = r for the real part of the electric field, j = i for the
imaginary part of the electric field, and j = n for the carrier
density). These are given by Fj = √

2Djξj (t) for the effective
diffusion constants Dj and the stochastic terms ξj (t) satisfying
〈ξj (t)〉 = 0 and 〈ξj (t),ξj (t ′)〉 = δ(t − t ′).

Figure 4 shows a stability mapping made by calculating
Lyapunov exponents [18]. Mappings based on the largest
Lyapunov exponent (LLE) for the optically injected laser
system were previously found in [19]. In [18], the method
was extended to also make use of the second largest Lyapunov
exponent (SLLE): whenever the LLE is equal to zero the SLLE
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FIG. 4. (Color online) Numerical stability diagram for quantum-
well equations with α = 2, � = 0.035, and B = 0.015. Dark shading
(grayscale in color version) corresponds to stable behavior while
the light shading (colored in color version) corresponds to chaotic
behavior. SN, H, and PD refer to saddle-node, Hopf, and period
doubling bifurcations, respectively. The (blue) points p1 and p2

correspond to the working points for the numerical time series plots
shown in Fig. 6.

is used instead. This has the advantage of providing more
information about the dynamics of the system using the same
computational efforts. It allows the detection of additional
bifurcation curves (such as period doubling and torus bifur-
cations) and indicates where multistability between different
limit cycles is expected to occur. Dark shading (grayscale in
the color versions) corresponds to stable operation while light
shading (colored in the color versions) corresponds to chaos
(with red the most positive exponent). In the colored versions,
black is associated with zero-value exponents. The Lyapunov
figure is complementary to figures created using continuation
methods, and their combination allows a fuller understanding
of the dynamical behavior. In [13] a stability diagram was
made using the continuation package AUTO. For comparison,
we use the material parameters of [13]. The locking region for
low levels of injection is bounded by a saddle-node bifurcation.
For much of the saddle-node bifurcation there is a coinciding
homoclinic bifurcation. The main discovery in [13] was that
in certain regions the saddle-node and homoclinic bifurcations
do not coincide and instead form so-called homoclinic teeth
in which multipulse excitability can be found. Comparing the
diagram in [13] to that here, we see that the chaotic regions just
outside the locking boundary for negative detuning lie next to
the homoclinic teeth. Thus, we identify the complexity of these
teeth with the complex motion outside the locking boundary.
The association of these chaotic regions in the unlocked
region to the homoclinic teeth in the locked region does not
seem to have been appreciated hitherto and may be of help
in unraveling the underlying complications. While an in-depth
analysis of these regions and their association to the multipulse
excitability is beyond the scope of this work, a plausibility
argument can be given for expecting this association. As shown
in [13], there are many homoclinic tongues within a tooth and
many of these either touch or come very close together. (Also,
many either touch or come close to the SN line.) The behavior
of the excitable trajectories within the tongues must mirror the
deterministic trajectories outside them, and so where multiple
homoclinic tongues are close together one expects extremely
complicated dynamics. A zoom of part of the first complicated
region is shown in Fig. 5, which can be compared with the
corresponding continuation figure (see Fig. 3 in [13]). This
supports our plausibility argument as the chaotic regions in
our figure seem to grow from regions where different tongues
are close together.

As was shown in [13], within the tooth the excitable
response to a perturbation is deterministic, and different
regions give rise to different numbers of peaks in the response.
However, if noise is included then the situation is not so
straightforward. The regions of different behavior can be quite
small in parameter space. One effect of noise is a blurring of the
boundaries between regions; that is, a noise-induced diffusion
in parameter space can give rise to a distribution of the numbers
of peaks in an excitable event. An example of the single-pulse
behavior away from a homoclinic tooth is shown in Fig. 6(a)
and that of the multipulse behavior within a tooth is shown
in Fig. 6(b), showing an excellent qualitative agreement with
the experimental observations. Thus, we interpret the complex
regions observed experimentally as homoclinic teeth.

In [13], the importance of α in the formation of the
teeth was identified. However, for multipulse excitability it is
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FIG. 5. (Color online) Zoom of part of Fig. 4. Dark shading
(grayscale in color version) corresponds to stable behavior while
the light shading (colored in color version) corresponds to chaotic
behavior as in previous figures.

also necessary to have a weak RO damping. By increasing
the value of the damping, the size of the chaotic regions
becomes progressively smaller. Figure 7 shows the stability
mapping for a higher damping value, and one can easily see
the shrinking of the chaotic regions outside the homoclinic
teeth. As the damping is further increased, these regions
shrink further and further until for very high damping they
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FIG. 6. (Color online) Numerical time traces for Eqs. (3). (a) An
example of single-pulse excitability away from a homoclinic tooth
with parameters K = 0.3 and � = −0.656 (point p1 in Fig. 4).
(b) An example of multipulse excitability within a homoclinic tooth
with parameters K = 0.46 and � = −0.99 (point p2 in Figs. 4 and 5).
The noise parameters are Dr = Di = 2 × 10−4 and Dn = 2 × 10−6.
In the noise-free deterministic case, the parameters for (b) are in a
region of double pulse excitability.
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FIG. 7. (Color online) Numerical stability diagram for quantum-
well equations with α = 2, � = 0.5 and B = 0.48. SN, H and
PD refer to saddle-node, Hopf and period doubling bifurcations
respectively. Again, dark shadings (grayscale in color version)
correspond to stable behavior while the light shadings (colored in
color version) correspond to chaotic behavior.

do not appear at all. The reason why is clear. For very high
damping, one may adiabatically eliminate the carrier equation
in the Class A approximation. Thus, the highly damped
system is effectively two-dimensional and cannot produce
deterministic chaos. Even so, the separation of the saddle-node
and homoclinic bifurcations persists, but for sufficiently high
damping it does not lead to multipulse excitability. Rather, it
can lead to a bistability between phase-locked operation and
the wave-mixing limit cycle. This bistability is also observed
for the quantum-dot case, as we see below.

A rate equation model for optically injected quantum-dot
lasers was considered in [5]. There a four-dimensional system
was considered; two equations for the electric field of the slave,
one for the dot occupation probability and one for the carrier
density in the wetting layer. Because of the material parameters
of quantum dots operating around 1.3 μm, the occupation
probability ρ of the dots is close to 1. This motivates the
introduction of a small parameter ε such that ρ = 1 + εu.
The equation for ρ then becomes an equation for u and an
adiabatic elimination of this equation can be justified (see [5]
for details), bringing the system to a three-dimensional form.
These equations were not explicitly given in [5], but we display
them here:

Ė = 1

2
(1 + iα)

[
1 − 2(1 + |E|2)

Bεn

]
E + Kei�s, (4)

ṅ = ε−1η[J − n − 2(1 + |E|2)]. (5)

In these equations, a dot means differentiation with respect to
s = εt/τph; J is the pumping current; n is the carrier density
in the wetting layer; B ≡ ττ−1

cap and η ≡ τphτ
−1, where τ , τcap,

and τph denote the carrier recombination time, the capture
time from the wetting layer to the dot, and the photon lifetime,
respectively; K is the injection rate rescaled using ε/τph and
� is the detuning, also rescaled using ε/τph. Let us consider
the injection-free system: this is given by simply removing the
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FIG. 8. (Color online) Numerical stability diagrams for the
quantum-dot rate equations. The parameters are B = 100, ε = 0.01,
and J = 1.5Jth(Jth = 4) as given in [5], and we take α = 2 as with
the quantum-well case; K̄ = K/�D and �̄ = �/�D . (a) Diagram
generated by scanning from right to left, showing the saddle-node
bifurcation clearly. (b) Diagram generated by scanning from left
to right, showing clearly the separation of the saddle-node and
homoclinic bifurcations.

last term in Eq. (4). A standard linear stability analysis yields
the characteristic equation

λ2 + 2�Dλ + ω2
0 = 0, (6)

where �D = 1
2 (d + 1 − Jth/J ) and ω2

0 = d(1 + B1)[1 −
Jth/J ] with Jth the threshold current, B1 ≡ Bε, and d ≡ ε−1η.
�D is the RO damping and the RO frequency is given by
�2

D = ω2
0 − �2

D . Using the parameters in [5], ω0, �D , and �D

are comparable and, in particular, the ratio �D/�D is very
high in comparison to that obtained for quantum well devices,
as previously reported in [20,21]. This feature is responsible
for many of the unique properties reported for quantum-dot
lasers: it explains their enhanced stability when undergoing
external optical feedback [22], it allows an enhanced stability
in mutually coupled configurations [14,23], and it is also key to
various properties of the optically injected quantum-dot laser

described in [3–5]. In Fig. 8, the stability close to the negative
detuning unlocking boundary is shown via a calculation of the
Lyapunov exponents. (We take α = 2 as in the quantum-well
case, emphasizing that it is the high damping that provides
the contrast rather than a low value of α. We take the other
parameters from [5].) Figure 8(a) was generated by scanning
from top to bottom (i.e., decreasing the detuning). Only part of
the unlocking (saddle-node) boundary for negative detuning is
shown. The regions of chaos identified with the homoclinic
teeth for the quantum-well-based devices are not observed.
Figure 8(b) was generated by increasing the detuning. When
comparing the two figures, there is a clear hysteretic effect on
the stability diagram (near K̄ � 0.5 in the figure), where the
saddle-node bifurcation does not coincide with the death of
the unlocked, limit-cycle behavior. The details of this region
are complex and deserve further study but for the purposes
of this work we note that, rather than multipulse excitability,
bistability between phase-locked operation and a limit cycle is
observed. There are in fact (at least) two mechanisms leading
to bistability in the optically injected quantum-dot system,
and both are found to occur. One results from the separation
of the saddle-node and homoclinic bifurcations and, indeed,
this separation of the saddle-node and homoclinic bifurcations
was recently predicted and demonstrated for a quantum-dot
laser in [24]. The other results from the interaction of the
saddle-node bifurcation and a Hopf bifurcation, as for the
bistability identified in [5].

Future work may include an experimental examination of
the statistics of the interpulse times. This has been considered
both experimentally and theoretically for quantum-dot devices
in [24]. However, thus far it has only been considered
theoretically for quantum-well-based lasers in [17] and the
experimental confirmation or otherwise of the results should
be pursued.

IV. CONCLUSION

In conclusion, we have shown that while the appearance
of excitability in an optically injected semiconductor laser
is a generic feature, the manifestation of the effect can vary
depending on the type of laser. Quantum-well lasers display
regions of single-pulse excitability and also homoclinic teeth
where very complicated multipulse trajectories are found.
In contrast, highly damped quantum-dot devices display
only very simple pulse trajectories. It was shown that a
homoclinic tooth inducing multipulse excitability inside the
locking boundary is typically associated with a chaotic region
outside the locking boundary. The enhanced RO damping of
quantum-dot lasers results in the removal of these chaotic
regions and the associated multipulse excitability.
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