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In-flight dissipation as a mechanism to suppress Fermi acceleration
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Some dynamical properties of time-dependent driven elliptical-shaped billiards are studied. It was shown
that for conservative time-dependent dynamics the model exhibits Fermi acceleration [Phys. Rev. Lett. 100,
014103 (2008).] On the other hand, it was observed that damping coefficients upon collisions suppress such a
phenomenon [Phys. Rev. Lett. 104, 224101 (2010)]. Here, we consider a dissipative model under the presence
of in-flight dissipation due to a drag force which is assumed to be proportional to the square of the velocity of
the particle. Our results reinforce that dissipation leads to a phase transition from unlimited to limited energy
growth. The behavior of the average velocity is described using scaling arguments.
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I. INTRODUCTION

Dissipative systems have attracted much attention during
the last few years since they can be used to explain different
physical phenomena in different fields of science, including
atomic and molecular physics [1,2], turbulent and fluid dynam-
ics [3–5], optics [6,7], nanotechnology [8,9], and quantum and
relativistic systems [10,11]. Different procedures can be used
to describe such systems. Billiard models are often considered
since they can easily be described mathematically and can be
realized experimentally in many different ways; for example,
by using microwave resonators, as initiated by Stöckmann in
1990 [12], and as well as by using superconducting microwave
resonators [13], quantum dots [14], and ultracold atoms [15],
along with many others. From a mathematical point of
view, a billiard is defined by a connected region, Q ⊂ RD ,
with a boundary ∂Q ⊂ RD−1 which separates Q from its
complement. If the system has a time-dependent boundary,
∂Q = ∂Q(t), it can exchange energy with the particle upon
collision. In such a case, it is possible to investigate the
phenomenon called Fermi acceleration, i.e., unlimited energy
growth [16]. According to the Loskutov-Ryabov-Akinshin
(LRA) conjecture [17], a chaotic component in phase space
with a static boundary is a sufficient condition to observe
Fermi acceleration when a time-dependent perturbation is
introduced. Results that corroborate the validity of this con-
jecture include the time-dependent oval billiard [18], stadium
billiard [19], and Lorentz gas [20]. Recently, it was shown
even that a specific perturbation in the boundary of an elliptical
billiard (integrable) leads to unlimited energy growth [21]. The
separatix gives place to a chaotic layer and the particles can
now experience unlimited energy growth while diffusing in
the chaotic layer.

The paper is organized as follows. In Sec. II we describe the
details in order to obtain the four-dimensional mapping which
describes the dynamics of the system. Section III is devoted to
the numerical results. Conclusions are drawn in Sec. IV.

II. MODEL AND MAP

In this paper, we will consider a dissipative elliptical billiard
with a periodically moving boundary as has been studied
in the pioneering paper in 1996 [22]. Usually, dissipation
is considered upon collision when damping coefficients

(see Refs. [23,24] and references therein) or dissipation during
flight are introduced [25–27]. First, we assume that particles
of mass m are immersed in a fluid. The dissipative drag
force is considered to be proportional to the square of the
velocity of the particle,

−→
V . In Ref. [28], collisional dissipation

is considered and in Ref. [29] viscous drag force (in-flight
dissipation) is shown. Both studies found the suppression
of Fermi acceleration, but neither of them considered the
acceleration exponents. To obtain the equation that describes
the velocity of the particle along its trajectory, we need to
solve Newton’s equation, where md| −→

V |/dt = −η′ −→
V 2 with

the initial velocity | −→
V n| > 0, and where η′ is the coefficient

of the drag force. After we introduce the variables η′/m = η,
we obtain the velocity of the particle as function of time
as

−→
V p(t) = −→

V n/[1 + Vnη(t − tn)], where Vn = |−→V n |. We
describe the model using a four-dimensional nonlinear map,
T (θn,αn,| −→

V n|,tn) = (θn+1,αn+1,| −→
V n+1|,tn+1), where the dy-

namical variables are, respectively, the angular position of the
particle, the angle formed by the trajectory of the particle
with the tangent line at the position of the collision, the
absolute velocity of the particle, and the instant of the hit
with the boundary. Figure 1 illustrates the geometry of five
successive collisions of the particle with the time-dependent
boundary. To obtain the map, we start with an initial condition
(θn,αn,| −→

V n|,tn). The Cartesian components of the boundary
at the angular position (θn,tn) are the following:

X(θn,tn) = [A0 + C sin(tn)] cos(θn), (1)

Y (θn,tn) = [B0 + C sin(tn)] sin(θn), (2)

where A0 and B0 are constants. Thus at any time, tn, we
have an elliptical shape. The control parameter 0 < C <

min(A0,B0) controls the amplitude of oscillation and θ ∈
[0,2π ) is a counterclockwise polar angle measured with
respect to the positive horizontal axis. The angle between
the tangent of the boundary at the position [X(θn),Y (θn)]
measured with respect to the horizontal line is tan(φn) =
( (Y ′(θn,tn)
X′(θn,tn)) ), where X′(θn,tn) = dX(θn,tn)/dθn and Y ′(θn,tn) =

dY (θn,tn)/dθn. Since the expressions for φn and αn are known,
the angle of the trajectory of the particle measured with
respect to the positive X axis is (φn + αn). Such information
allows us to write the particle’s velocity vector as

−→
V n =

|−→Vp(t)|[cos(φn + αn )̂i + sin(φn + αn)ĵ ], where î and ĵ denote
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FIG. 1. (Color online) Illustration of the five collisions with a
time-dependent boundary. The corresponding angles describing the
dynamics are also illustrated.

the unity vectors with respect to the X and Y axes, respectively.
The particle travels on a straight line until it hits the time-
dependent boundary. The position of the particle, as a function
of time, for t � tn, is Xp(t) = X(θn,tn) + r(t) cos(φn + αn),
Yp(t) = Y (θn,tn) + r(t) sin(φn + αn), where the subindex p

denotes that such coordinates correspond to the particle
and r(t) = η−1 ln[1 + Vnη(t − tn)], which is the displace-
ment of the particle obtained from direct integration of
dr(t)/dt = |−→V p(t)|. The distance of the particle measured
with respect to the origin of the coordinate system is given

by Rp(t) =
√

X2
p(t) + Y 2

p (t), and θp at Xp(t),Yp(t) is θp =
arctan[Yp(t)/Xp(t)]. Therefore, the angular position at the
(n + 1)th collision of the particle with the boundary, i.e., θn+1,
is numerically obtained by solving the following equation:
Rp(t) = √

X2(θp,t) + Y 2(θp,t). We use the bisection method
to numerically solve this equation. The time at the (n + 1)th
collision is obtained by evaluating tn+1 = t = tn + tc, where
tc is the time during the flight. To obtain this new velocity we
should note that the reference frame of the boundary continues
to move. Therefore, at the instant of collision, the following
conditions must be obeyed:

−→
V n+1 · −→

T n+1 = −→
V n · −→

T n+1, (3)
−→
V n+1 · −→

N n+1 = − −→
V n · −→

N n+1 + 2
−→
V b(tn+1) · −→

N n+1, (4)

where
−→
T and

−→
N are the unitary tangent and normal vectors,

respectively, and the velocity of the boundary is
−→
V b(tn+1) =

C cos(tn+1) [cos(θn+1)̂i + sin(θn+1)ĵ ]. Then we have

| −→
V n+1| =

√
(
−→
V n+1 · −→

T n+1)2 + (
−→
V n+1 · −→

N n+1)2. (5)

Finally, the angle αn+1 is written as

tan(αn+1) =
( −→

V n+1 · −→
N n+1−→

V n+1 · −→
T n+1

)
. (6)

With this four-dimensional mapping, we can explore the
dynamics of the model. However, before considering
the time-dependent model, let us illustrate the behavior of the
phase space for the static boundary. Indeed, it is well known
that the ellipse is an integrable billiard system, the product of

FIG. 2. (Color online) Phase space for the static elliptical billiard.
The control parameters are denoted as A0 = 2 and B0 = 1.

the two angular momenta with respect to the foci being the
integral of motion [30,31]. Figure 2 shows the phase space for
A0 = 2 and B0 = 1. We can see a large double island limited
by a separatrix and a set of invariant spanning curves. We
can observe two types of behavior separated by a separatrix
(red curve), namely, rotators and librators. Librators consist of
trajectories that are confined between the two foci and in the
phase space are confined by the separatrix curve. On the other
hand, rotators are trajectories near the boundary that explore
all the values of θ . In phase space they are outside of the
separatrix curve.

III. NUMERICAL RESULTS

As a part of our numerical results, in the following we
will mainly discuss the behavior of the average velocity of the
particle. Two steps were applied in order to obtain the average
velocity. First, we evaluate the average velocity over the orbit
for a single initial condition (fixed i) and then over an ensemble
of initial conditions. This procedure is motivated by the fact
that phase space is four dimensional and it is difficult and
perhaps even meaningless to study typical orbits individually.
Hence, the average velocity is written as

V = 1

M

M∑
i=1

1

n + 1

n∑
j=0

Vi,j , (7)

where the index i denotes a member of an ensemble of initial
conditions, and M is the number of different initial conditions.
We have considered M = 200 in our simulations. It was shown
by Lenz et al. [21,32] that when a driving perturbation is
introduced into the system, opposite to expectations, it exhibits
a phenomenon known as Fermi acceleration or unlimited
energy gain. Such a behavior happens when the driving
amplitude C �= 0 and the separatix is replaced by a chaotic
layer. A particle which starts its dynamics in a rotator orbit can
change its dynamics to a librator and vice versa. The chaotic
diffusion within the chaotic layer leads to unlimited energy
growth. Figure 3 shows the behavior of the average velocity as
a function of the number of collisions. We have considered the
nondissipative case where the drag coefficient is η = 0. This is

026202-2



In-FLIGHT DISSIPATION AS A MECHANISM TO . . . PHYSICAL REVIEW E 83, 026202 (2011)

FIG. 3. (Color online) Behavior of V̄ vs n for different ini-
tial velocities. The control parameters used were A0 = 2 and
B0 = 1. This is the nondissipative case with vanishing drag
force η = 0.

FIG. 4. (Color online) (a) Behavior of the average velocity as a
function of n for different values of the control parameter C. (b) The
initial collapse after the transformation nC2. (c) The collapse onto a
single universal plot.

a time-dependent Hamiltonian system in which the Liouville
theorem of phase-space volume conservation still applies. For
such a case, the velocity of the particle is

−→
V p(t) = −→

V n and
r(t) = Vn(t − tn). As one can see, all the curves of V̄ behave
quite similarly in the sense that (a) for short n � nx , the
average velocity remains constant for a while up to n ≈ nx ,
but eventually, after a crossover (b) n ≈ nx , all the curves
start growing with the same exponent at n 	 nx . This is in
agreement with the results obtained by Lenz et al. [33,34],
where they consider the average velocity for large enough
values of n.

We now discuss the effect of dissipation introduced via a
frictional force. To obtain the average velocity, we randomly
choose t ∈ [0,2π ], θ ∈ [0,2π ], and α ∈ [0,π ]. We also fix
the value of η = 10−3. Additionally, in order to avoid the
initial plateau we also have fixed the initial velocity as
V0 = 10−5. The model of collisional dissipation by Leonel
and Bunimovich [28] is different from our model of in-flight
dissipation due to the drag force in detail, but it should behave
similarly in the statistical sense (on the average), especially in
the chaotic regime because then we have 〈Vn+1〉 = 〈Vn〉e−ηr .
Thus the effective damping coefficient is δ = e−η〈r〉, where 〈r〉
is the mean-free path of the particle.

In Fig. 4(a) we show the behavior of the average velocity as
a function of the number of collisions for different values of C.
Note that for different values of C and for short n, the average
velocity starts to grow and then it bends toward a regime of
saturation for long enough values of n. It must be emphasized
that different values of the parameter C generate different

FIG. 5. (Color online) (a) Plot of Vsat as a function of the control
parameter C. (b) Behavior of the crossover number nx vs C.
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FIG. 6. (Color online) (a) Plot of the average velocity as a
function of the number of collisions n for different values of the
drag coefficient. (b) The collapse onto a single universal plot.

behaviors for short n. However, applying the transformation
n → nC2 coalesces all the curves at short n, as shown in
Fig. 4(b). For such behavior, we can also propose the following
scaling hypotheses:

(1) When n � nx the average velocity is

V (nC2,C) ∝ (nC2)β, (8)

where the exponent β is called the acceleration exponent.
(2) When n 	 nx , the average velocity is described as

V sat ∝ Cγ , (9)

where γ is the saturation exponent.
(3) The crossover from growth to saturation (n ≈ nx) is

supposed to scale as

nx ∝ Cz, (10)

where z is called the crossover exponent.
These scaling hypotheses, following the method of Leonel,

McClintock and da Silva [35], allow us to describe the average
velocity in terms of a scaling function of the type

V (nC2,C) = λV (λpnC2,λqC), (11)

where p and q are scaling exponents and λ is a scaling factor.
Moreover, p and q must be related to β, γ, and z. Because λ

is a scaling factor, we can specify that λpnC2 = 1, yielding

V (nC2,C) = (nC2)
−1/p

V 1(n−q/pC), (12)

where V 1[(nC2)−q/pC] = V [1,(nC2)−q/pC] is assumed to be
constant for n � nx . Comparing Eqs. (8) and (12), we obtain
β = −1/p. Now choosing λqC = 1, we find that λ = C−1/q

and Eq. (11) is given by

V (nC2,C) = C−1/qV 2(C−p/qnC2), (13)

where V 2(C−p/qnC2) = V (C−p/qnC2,1) is assumed to be
constant for n 	 nx . Comparing Eqs. (9) and (13), we obtain
γ = −1/q [see Fig. 5(a)]. A power-law fitting in Fig. 4
gives us β = 0.501(2). Such a value was obtained from the
range C ∈ [10−3,2 × 10−1]. Given the two values of the
scaling factor λ, and the condition for the crossover, λ =
(nC2)−1/p = (nC2)β = C−1/q = Cγ , one can easily conclude
that z = γ

β
− 2 = −0.97(1), which is in excellent agreement

with the values obtained numerically, as shown in Fig. 5(b).
A confirmation of the initial hypotheses is made by the
collapse of all the curves of V versus n onto a single and
universal plot, as shown in Fig. 4(c), showing that the
system is scaling invariant under specific transformations.
With this good collapse of all the curves of the average
velocity and considering that the critical exponents are
β ∼= 0.5, γ ∼= 0.5, and z ∼= −1, we can conclude that the
time-dependent, dissipative, driven elliptical billiard belongs
to the same class of universality as the one-dimensional (1D)
nondissipative Fermi-Ulam model [35] and the periodically
corrugated waveguide [36]. However, the physical reason for
the saturation of the average velocity is quite different in the
two cases. In the nondissipative case it is due to the existence
of invariant curves, and in the dissipative case as studied in this

FIG. 7. (Color online) (a) Plot of Vsat as a function of the control
parameter η. (b) Behavior of the crossover number nx vs η.
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paper it is due to dissipation. In the latter case attractors emerge
in phase space onto which particles will be eventually captured,
thus destroying unlimited diffusion, as also shown in [29]. The
scaling can also be described in terms of the coefficient of the
drag force η, as one can see in Fig. 6. In such a case, Vsat ∝ ησ

and nx ∝ ηξ , and σ = −0.521(3) and ξ = −1.070(6), as can
be seen in Fig. 7. We have fixed C = 0.1 and V0 = 10−5.
Therefore, η → 0 implies that Vsat and nx both diverge, thus
recovering the results for the nondissipative case, i.e., exhibit-
ing Fermi acceleration. Additionally, our results reinforce that
in-flight dissipation is a sufficient condition to suppress the
phenomenon of Fermi acceleration as in the case of collisional
dissipation [28].

IV. CONCLUSION

We have studied some dynamical properties of a time-
dependent elliptical driven billiard. In the static case, the
system is integrable and two kinds of trajectories are observed:
rotator and librator. We have introduced time-dependent
perturbations and in-flight dissipation. We have observed that
the average velocity grows for a small number of collisions,

n � nx, and then, after crossover n ≈ nx , it reaches a regime
of saturation for large n 	 nx . Thus we do not observe the
unlimited energy growth (Fermi acceleration). We have also
studied the behavior of the average velocity using scaling
arguments. We have shown that there is a relation between
the critical exponents γ , β, and z. Our scaling hypotheses
are confirmed by a perfect collapse of all the curves onto
a single universal plot. Additionally, we confirm that the
two-dimensional dissipative elliptical model belongs to the
same class of universality of the nondissipative Fermi-Ulam
model (1D) and the corrugated waveguide (1D), for the range
of the control parameters studied. The existence of power laws
and the scaling property so far is established empirically and
is thus an important open theoretical question.

ACKNOWLEDGMENTS

D.F.M.O is supported by the Slovenian Human Resources
Development and Scholarship Program. M. R. acknowledges
financial support from the Slovenian Research Agency
(ARRS).

[1] G. Katz, M. A. Ratner, and R. Kosloff, Phys. Rev. Lett. 98,
203006 (2007).

[2] S. E. Sklarz, D. J. Tannor, and N. Khaneja, Phys. Rev. A 69,
053408 (2004).

[3] V. S. L’vov, A. Pomyalov, I. Procaccia, and V. Tiberkevich, Phys.
Rev. Lett. 92, 244503 (2004).

[4] P. Parmananda, M. Hildebrand, and M. Eiswirth, Phys. Rev. E
56, 239 (1997).

[5] J. K. Bhattacharjee and D. Thirumalai, Phys. Rev. Lett. 67, 196
(1991).

[6] M. N. Shneider and P. F. Barker, Phys. Rev. A 71, 053403 (2005).
[7] R. Gommers, S. Bergamini, and F. Renzoni, Phys. Rev. Lett. 95,

073003 (2005).
[8] M. Steiner, M. Freitag, V. Perebeinos, J. C. Tsang, J. P.

Small, M. Kinoshita, D. Yuan, J. Liu, and P. Avouris, Nature
Nanotechnol. 4, 320 (2009).

[9] Y. Zhao, C. C. Ma, G. H. Chen, and Q. Jiang, Phys. Rev. Lett.
91, 175504 (2003).

[10] W. V. Liu and W. C. Schieve, Phys. Rev. Lett. 78, 3278 (1997).
[11] K. Tsumura and T. Kunihiro, Phys. Lett. B 668, 425 (2008).
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