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The 0-1 test for chaos is a recently developed time series characterization algorithm that can determine
whether a system is chaotic or nonchaotic. While the 0-1 test was designed for deterministic series, in real-world
measurement situations, noise levels may not be known and the 0-1 test may have difficulty distinguishing
between chaos and randomness. In this paper, we couple the 0-1 test for chaos with a test for determinism and
apply these tests to noisy symbolic series generated from various model systems. We find that the pairing of the
0-1 test with a test for determinism improves the ability to correctly distinguish between chaos and randomness
from a noisy series. Furthermore, we explore the modes of failure for the 0-1 test and the test for determinism
so that we can better understand the effectiveness of the two tests to handle various levels of noise. We find that
while the tests can handle low noise and high noise situations, moderate levels of noise can lead to inconclusive
results from the two tests.
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I. INTRODUCTION

The goal of time series analysis is to understand the
behavior of a system from which a time series has been
measured. There are many time series analysis algorithms [1,2]
that provide useful pieces of information about a system by
analyzing the data measured from that system. In this paper,
we are interested in the problem of characterization, where
one attempts to determine whether the behavior of a system
is regular (periodic or quasiperiodic), chaotic, or random by
analyzing symbolic time series measured from a noisy system.

One of the standard tests for chaos is the estimation of
the maximum Lyapunov exponent [3,4] for a system. The
Lyapunov exponent measures the rate of divergence between
two initially close trajectories in the system’s phase space.
If the maximum Lyapunov exponent is greater than zero, then
initially close trajectories diverge exponentially in time and the
system is chaotic (this is a reflection of the chaotic system’s
sensitive dependence on initial conditions). If the maximum
Lyapunov exponent is less than zero, the system is not chaotic.

Recently, another test for chaos has been proposed. This
test is called the 0-1 Test for Chaos [5,6] and is intended for
use on deterministic systems. The 0-1 test will be described in
detail in Sec. II. Unlike methods that determine the Lyapunov
exponent, the 0-1 test does not depend on a reconstruction
of the system’s phase space. Furthermore, the test is easy to
interpret since the test results in a 1 if the system is chaotic or
a 0 if the system is not chaotic. Questions about the reliability
of the 0-1 test were raised [7] and were addressed [8]. One of
the comments made in Ref. [7] was that the 0-1 test might not
be useful for data with little a priori knowledge and that such
a problem could lead to misclassification of a time series. A
misclassification could arise if the 0-1 test is applied to a time
series that is stochastic (or suffers from very high levels of
noise) because the 0-1 test will return a 1 if the system is not
deterministic. Hence, a noisy system could be misclassified
as chaotic. This kind of situation could be easily encountered
when analyzing real-world data where little is known about
the system, a priori. Furthermore, in our experience with noisy
systems, the 0-1 test can also produce values between 0 and 1;

we will discuss those results in Sec. III. To address the issues of
misclassification, we propose to couple the 0-1 test with a test
for determinism. The 0-1 test has been applied to experimental
data [9]; however, in Ref. [9], the experimental system was well
understood and the results were, therefore, easier to interpret.
For example, the authors knew that the data were measured
from a deterministic system; hence, a result of 1 from the
0-1 test implies the system was chaotic as opposed to random.
In Ref. [9], no test for determinism was performed on the data.
Such a test was not needed because the source of the data was
well understood. Thus, in this paper we combine a test for
determinism with the 0-1 test.

Our characterization algorithm will consist of two tests.
A test for determinism must first be done on the time series
to see if the 0-1 test is applicable. If the series fails the test
for determinism, then the series is stochastic (or very noisy)
and the 0-1 test cannot be applied to that series. There are
many different tests for determinism in the literature such
as Refs. [10–13]. Each test has its own way of detecting
determinism. In Refs. [12] and [13], an embedding is used. The
work done in Ref. [11] analyzes the singular-value spectrum
of a trajectory matrix constructed from the time series. In
Ref. [10], a symbolic time series is partitioned into nonover-
lapping subsets and the test compares the symbol spectrum
of the subsets. In this paper, we refer to the work done in
Ref. [10] as the symbol spectrum test. In Sec. II, we will discuss
the work in Ref. [10] as it is the test for determinism used in
this paper. We chose the symbol spectrum test because it is
computationally efficient and requires little a priori knowledge
of the system such as the dimension of the system’s phase
space. Furthermore, because we are working with symbolic
series, a test for determinism that uses symbolic analysis seems
to be a natural fit for our problem. However, we have found that
interpreting the results generated from the symbol spectrum
test can be difficult, as we will show in Sec. III.

The goal of this paper is to explore the modes of failure
for a characterization algorithm that combines the symbol
spectrum test for determinism with the 0-1 test. We are
combining a test for determinism with a test for chaos because
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of the 0-1 test’s tendency to produce a 1 when a series
is stochastic. Hence, when dealing with experimental time
series measured from systems whose dynamics may be largely
unknown, it will be important to determine whether the data
are deterministic or stochastic (possibly due to high noise)
before applying the 0-1 test to classify the dynamics. In order
for these tests to be reliably applied to experimental data, we
must understand under what conditions the tests misclassify
time series as chaotic. Of course, if we want to understand
the conditions in which the symbol spectrum test and the
0-1 test misclassify a time series, we must know something
about the system generating the time series. In this paper, we
used contrived time series whose dynamics are well known
in order to test the modes of failure for the combined symbol
spectrum/0-1 test algorithm. We generate our time series from
model systems (the Logistic map, Duffing equation, and a
complex continuous regular system) with known dynamics
and noise levels. Next, we apply the symbol spectrum and
0-1 tests, and then use the results of the tests to classify the time
series. Our approach in this paper is different from previous
work in that we perform something similar to a blind test. As
we will see in Sec. III, we look at the results of the symbol
spectrum test and the 0-1 test and then we ask, according to the
results of these tests, what conclusion should be made about
the nature of the system. We then compare that result with
the actual known dynamics to determine whether or not the
symbol spectrum test and the 0-1 test misclassified the series.
By using this kind of methodology on known systems, we hope
to obtain a better understanding of how these tests perform on
experimental time series in which little may be known about
the system’s dynamics a priori.

The structure of the paper is as follows. In Sec. II, we
give a brief description of the symbol spectrum test and the
0-1 test and present references that provide more details for the
interested reader. In Sec. III, we discuss the methodology and
the results of our study. Finally, Sec. IV wraps up with some
concluding remarks as well as comments on future work.

II. THE CHARACTERIZATION TESTS

In this section, we briefly outline the symbol spectrum test
and the 0-1 test for chaos. For more details on each test, the
interested reader is referred to the references in this section.

A. Symbol spectrum test

We chose to use the symbol spectrum test [10] as our test
for determinism for two reasons. First, the test uses symbolic
series. Since we are working with symbolized series, the test
appeared to be a natural fit. Second, as we will show in this
section, the test is generally easy to interpret, especially for
noise-free periodic series. The symbol spectrum test is the first
test in our characterization method because it should determine
whether or not the 0-1 test for chaos is appropriate for the series
we wish to characterize because the 0-1 test was designed for
deterministic series and not random ones.

Consider a symbolized series of length N . For simplicity,
we will use a binary alphabet for our series. However, such a
restriction is not necessary for the symbol spectrum test. The
symbol spectrum test begins by partitioning the series into
disjoint subsets of length l. The choice of l will be discussed

FIG. 1. Demonstration of the transformation done to a binary
series during the symbol spectrum test.

later and is dependent upon the next step. Next, we choose
which level, L, of the symbol tree we wish to use. The choice
of L groups the elements of each partition into “words” of
length L. For example, consider the case L = 2. Then, for a
binary series, there will be four possible words in the partition:
00, 01, 10, and 11. For a binary series, there will be 2L words
at the Lth level of the symbol tree. If the series has an alphabet
of length, A (i.e., A different symbols in the series), then the
number of words will be AL for a given level, L, of the symbol
tree. Our next step is to convert each word to base 10. While
this step is not necessary, it is done to speed up the computation
of the symbol spectrum test [14]. For each partition of length
l, there will be l − (L − 1) words (the second element of one
word is the first element of the next). Figure 1 illustrates these
steps for one partition of a binary series. The top line of
Fig. 1 is a partition of some binary series. Note that l = 12
in Fig. 1. The middle line of Fig. 1 uses the second level of the
symbol tree to break up the series into words of length L = 2.
The length of the middle line is l − (L − 1) = 11. Finally, the
third line shows the conversion to base 10.

Next, we plot the number of times each base-10 “word”
appears in the partition. This is the symbol spectrum for
the partition. Finally, we plot the symbol spectrum for each
partition on the same graph. If a series is deterministic, then
the symbol spectrum from each partition will be similar.
However, if the series is stochastic, there should be little to
no similarities between the symbol spectra for each partition.
Figure 2 illustrates some possible results of the symbol
spectrum test for three different series, each with N = 20 000,
l = 1000, and L = 6. Figure 2(a) is the symbol spectrum test
result of a periodic series generated from the Logistic map,
xn+1 = rxn(xn − 1) with r = 3.55. The thick line of the plot
is actually the overlapping of 20 symbol spectra. Figure 2(b)
is the symbol spectrum test result of a chaotic series generated
from the Logistic map with r = 3.91. The regularity of the
chaotic symbol spectra is not as clean as the periodic case,
which, in our experience, can lead to some difficulties in the
regime of high noise. We will discuss those issues in Sec. III.
Figure 2(c) is the symbol spectrum test result for a random
series with a uniform distribution. Notice that there is no
common regularity shared between the symbol spectra.

At this point, we can address the question of how to choose
the partition size l and the symbol tree level L. While there
is no formula for choosing these parameters, our experience
with the test has helped us develop a few guidelines. The
authors of the test [10] use very long time series (N = 50 000)
with l = 1000 and L = 6. It is often not possible to work
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FIG. 2. Some results of the symbol spectrum test for the periodic Logistic map (a), the chaotic Logistic map (b), and a uniform random
series (c). Notice that the spectra are more similar in (a) and (b) (more overlap) as compared to the spectra in (c) (less overlap).

with such long time series. Hence, we focus on generating a
specific number of symbol spectra and let that choice dictate
l and L. We have found that 20 spectra tend to be enough
to determine whether the spectra are similar or not. If one
uses too few spectra, then it is difficult to distinguish between
a deterministic or a stochastic series, because it is difficult
to establish a pattern (or lack there of) between the spectra.
If one chooses too many partitions, then the partition length
might be too short to produce a reliable spectrum. Once the
partition length is determined, then one can choose L, which
essentially determines the number of different words in the
spectrum. We want to choose an L such that 2L (or AL for the
general case) is significantly less than l. In this way we can
obtain a good spectrum from each partition. If 2L is too close to
l, we find it difficult to establish patterns in the symbol spectra,
especially for chaotic series. In this paper, we use N = 10 000
for each series with l = 500 and L = 5. If a series is found
to be deterministic when using the symbol spectrum test, then
we can get meaningful results from the 0-1 test that will tell
us if the series is chaotic or not.

B. 0-1 test for chaos

The 0-1 test for chaos first appeared in Ref. [5]. As
mentioned previously, the 0-1 test is designed to distinguish
chaotic behavior from regular (periodic or quasiperiodic)
behavior in deterministic systems. The test results in a 1
if the system is chaotic and a 0 if the system is regular.
Theoretical justification was given to the 0-1 test in Ref. [15].
An implementation guide for the 0-1 test was developed [6]
that has been very useful in the work presented in this paper.

For reference, we provide a brief outline of the 0-1 test below.
The material for this outline comes from the work in Ref. [6].
For more details, the interested reader is directed to Ref. [6],
and references therein.

Consider a time series of length N . The 0-1 test begins with
a computation of two variables, pc(n) and qc(n):

pc(n) =
n∑

j=1

φ(j ) cos(jc),

(1)

qc(n) =
n∑

j=1

φ(j ) sin(jc),

where φ(j ) is an observable constructed from the time series
and c ∈ (0,π ) is randomly chosen. In this paper, we will choose
φ(j ) to be the j th value of the time series. The quantities
pc(n) and qc(n) are referred to as “translation variables” in
Ref. [6] and it is the behavior of these translation variables
(either diffusive or nondiffusive) that determines whether the
dynamics of the system are regular or chaotic.

To determine the behavior the translation variables, the test
uses their mean square displacement

Mc(n) = lim
N→∞

1

N

N∑

j=1

[pc(j + n) − pc(j )]2

+ [qc(j + n) − qc(j )]2. (2)

The theory of the test developed in Ref. [15] shows that if
the dynamics of the system is regular, then (2) is bounded
in time. However, if the dynamics of the system is chaotic,
then (2) scales linearly in time. In order to numerically handle
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the limit in (2), we must use n � N . Hence we calculate Mc(n)
for n < ncut = N/10, as recommended in Ref. [6].

As mentioned earlier, (2) has two possible behaviors; either
it is bounded in time or it scales linearly in time. As explained
in Ref. [6], as long as the autocorrelations of the series are
absolutely summable, then for a given value of c, Mc(n) takes
the form

Mc(n) = V (c)n + Vosc(c,n) + e(c,n), (3)

where e(c,n) is an error term [e(c,n)/n → 0 as n → ∞] and

Vosc(c,n) = 〈φ〉2 1 − cos(nc)

1 − cos(c)
. (4)

The term 〈φ〉 is the expectation value of the time series. Hence,
ignoring the error term, Mc(n) has the form of a cosine with a
slope given by V (c), which is constant for a given value of c.

To determine the scaling behavior of Mc(n), we calculate
its asymptotic growth rate Kc. We can find the asymptotic
growth rate directly from Mc(n) by using a linear regression
of a log-log plot of Mc(n). However, in Ref. [6] it is pointed
out that we can get a better estimate of Kc if we subtract the
oscillatory term from Mc(n), creating a modified mean square
displacement

Dc(n) = Mc(n) − Vosc(c,n). (5)

In Ref. [6], there is one more recommended correction to
Dc(n) for noisy series. There it was found that the 0-1 test
gives better results with noisy data if a modified version of
Dc(n), denoted as D∗

c (n), is used,

D∗
c (n) = Dc(n) − αVdamp(n), (6)

where Vdamp(n) = 〈φ〉2 sin(
√

2n). In Ref. [6], it is stated that
the

√
2 was chosen arbitrarily. In this paper, we use the same

frequency in Vdamp,
√

2, as in Ref. [6] since we are interested in
testing their algorithm. In Ref. [6] it is stated that α controls the
sensitivity of the test to weak noise and weak chaos. Hence,
by increasing α, the 0-1 test loses the sensitivity to weak
noise but also increases its robustness to noise. In Ref. [6],
α = 2.5 was used to characterize data from the Logistic map
that had uniformly distributed additive noise with an amplitude
of 0.1. In this paper, we use α = 10. We chose to use a higher
α because some of the noise levels with which we will be
working are significantly higher and we are not working with
weakly chaotic systems. We are effectively losing sensitivity
to weak chaos but gaining sensitivity to noise. Our choice of
α is the only change we made to the algorithm presented in
Ref. [6].

Finally, we find the asymptotic growth rate Kc of the mod-
ified mean square displacement D∗

c (n). While we could use a
similar linear regression method as previously mentioned, the
authors of the 0-1 test state that, in practice, using a correlation
method to estimate Kc works better than the linear regression
method. Hence, Kc is the correlation coefficient of the vectors,

ξ = (1,2, . . . ,ncut) , (7)

� = D∗
c (1),D∗

c (2), . . . ,D∗
c (ncut). (8)

Recall that Mc(n) is bounded for regular dynamics and scales
linearly in time for chaotic dynamics; hence, Kc = 1 for
chaotic dynamics and Kc = 0 for nonchaotic dynamics.

Note the subscripts of c in the preceding equations. Each
of the foregoing quantities depends on the chosen value of c.
As mentioned in Ref. [6], while most values of c give Kc = 0
for periodic systems, there are some isolated values of c for
which a resonance occurs in the test that leads to a periodic
system producing Kc = 1 when using the correlation method.
Hence, we need to compute Kc for many values of c in order
to get an accurate characterization. One way to avoid some,
but not all, of the resonant values of c is to restrict the choice
of c to c ∈ (π/5,4π/5) [6]. In Ref. [16], it was found that
100 different values of c chosen at random is sufficient to
characterize a system. The final result for the characterization
is K , which is the median of the Kc’s. The choice of the
median is used to further suppress any resonances that may
not have been avoided by the restricted choice of c. Using the
median becomes important if one does not restrict the values
of c as recommended and/or if one uses the regression method
in which resonances can lead to values of Kc = 2. There are
other ways K can be chosen from the spectrum of Kc values;
however, for the work described in this paper, we chose to
follow what is done in Ref. [6] since that is the algorithm
we are testing in conjunction with the symbol spectrum test.
While the median value, K , of Kc is used for characterization,
it is often helpful to inspect the “spectrum” of Kc. A sample
spectrum of a random binary series is given in Fig. 3(a). Note
that, in this paper, we will use the notation that Kc is the
asymptotic growth rate for a particular value of c while K is
the median of the Kc’s.

It was commented in Ref. [8] that the 0-1 test was not
intended for stochastic series. We include Fig. 3 for two
reasons. First, it serves as an example spectrum to illustrate
the results of the 0-1 test. Second, it also demonstrates the
necessity of pairing a test for determinism with the 0-1
test. If one were to calculate a spectrum similar to the one
shown in Fig. 3(a) from a system whose dynamics were not
known a priori, one might assume the series was measured
from a chaotic system. However, this series fails the test for
determinism, as shown in Fig. 3(b). Because our series fails
the test for determinism, we can conclude either that the series
must have a high level of noise or that it is random.

To further illustrate the need for understanding the modes
of failure for the symbol spectrum/0-1 test algorithm, in
Fig. 4 we present the results of the algorithm applied
to apparent magnitude data taken from the variable star
S Persei. S Persei is a variable star in the constellation
Perseus. The magnitude data shown in the top left graph of
Fig. 4 are available at the American Association of Variable
Star Observers (AAVSO) website [17]. We took 20 000
measurements from the AAVSO database for S Persei and
symbolized the magnitude data into a binary series by using
the series mean as the threshold for symbolization. We then
ran the symbol spectrum test by using L = 6 and a partition
size of 1000. The results of the symbol spectrum test appear
in the top right of Fig. 4. While the symbol spectrum appears
irregular, there are some regular tall peaks. Note that the whole
range of the vertical axis is not shown in Fig. 4 because there
are very tall peaks that exist at either end of the graph that
wash out the detail in the middle of the plot. The 0-1 test
results are shown in the bottom graph of Fig. 4. Note that the
Kc values are at or very close to 1 for all values of c shown. The
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FIG. 3. Test results for a random binary series with a uniform distribution and a length of 1000. The left graph is a Kc spectrum for
100 random values of c ∈ (π/5,4π/5). The right graph is the result of a symbol spectrum test for the same series. Here we use a partition size
of 50 and a word length of 4 (hence values run from 0 to 24 = 16).

median of the Kc spectrum is 1. The 0-1 test implies that the
star’s variability is chaotic. However, the interpretation of the
symbol spectrum test is difficult. While irregularity certainly
exists among the symbol spectra, the regular large peaks hint
toward determinism. While S Persei’s variability is known to
be semiregular and consists of several frequencies [18], can
we say that these results suggest that the star’s variability is
chaotic? We know that there is measurement error (noise)
and irregularity in sampling. How do these affect the symbol
spectrum/0-1 test algorithm? The S Persei example motivates
the goal of this paper. We explore the modes of failure of

the symbol spectrum/0-1 test algorithm for systems whose
dynamics and noise characteristics are known so that we can
hopefully better understand results such as those obtained for
S Persei on real-world data. We should note that the effect of
irregular sampling on these algorithms is still an open question.

III. RESULTS

In this section, we look at our results of applying the symbol
spectrum test and the 0-1 test to three model systems: the
Logistic map, the Duffing equation, and a complex continuous
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FIG. 4. Results of the symbol spectrum/0-1 test algorithm for apparent magnitude data measured from the variable star S Persei. The top
left graph shows the time series before symbolization. The upper right graph shows the results of the symbol spectrum test (with L = 6 and a
partition size of 1000). The bottom graph is the Kc spectrum for 100 random values of c ∈ (π/5,4π/5).
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regular oscillation. We will discuss each system in detail
in the following subsections. We chose the Logistic map
and the Duffing equation because these systems can display
both chaotic and periodic behavior. The complex continuous
regular oscillation is the superposition of two sine waves with
incommensurate frequencies and is a different type of behavior
from the periodic oscillations of the Duffing equation, which
contains only one frequency. However, the 0-1 test should
produce a 0 for a complex continuous regular system. Our
choice of systems includes an example of a discrete system
(Logistic map) and two continuous systems (Duffing equation
and complex continuous regular). In Ref. [6], it was shown
that with continuous systems, the sampling rate is important.
If the sampling rate is too high, a chaotic system can produce
a false 0. The details of this are explained in Ref. [6].

We begin by generating a noisy series from a model system.
While each model system is different, we generated symbolic
time series from each system in a similar way. Here, we will
outline how a noisy symbolized series is generated from the
model systems. Let xi be the ith element of a time series
generated from one of our model systems. Next, we add noise
to the series,

Xi = xi + ηξi, (9)

where ξi are independent and identically distributed random
variables from either a uniform distribution on [−1,1] or
a normal distribution with a mean of zero and a standard
deviation of 1.0. In this paper, we study both a uniform noise
distribution with varying η’s and a normal noise distribution
with varying η’s. After a noisy series is generated, we
symbolize the series. Symbolization assigns a symbol to each
element of the series. In this paper, we work with binary
series; hence, the symbols are either 0 or 1. Symbolization
can be done for a variety of reasons. One of the most
common reasons to symbolize is to increase the speed of
calculations done on the series. Because a symbolic series
has fewer unique elements, calculations such as probability
estimates are much more computationally efficient. Another
reason symbolization is done is for noise suppression. We
will see the effects of noise suppression later in this section.
We symbolize each series by looking at the range of values
contained in the unsymbolized noisy time series. We then
choose our threshold for symbolization to be the mean of the
range. This method was chosen because it is easily generalized
to symbolic series with larger alphabets, in which case we
break the range of the series up into equal parts and assign a
symbol to each part. The characterization of noisy symbolic
series with longer alphabets is part of our planned future
work.

After the series is generated and symbolized, we apply the
classification algorithms. First, we apply the symbol spectrum
test to determine whether or not the series is deterministic.
Regardless of the results of the test for determinism, we next
apply the 0-1 test to the series. If the series is found not to be
deterministic (i.e., the series “fails” the test for determinism)
we still apply the 0-1 test even though it is not designed for
nondeterministic series. We apply the 0-1 test to series that fail
the test for determinism to demonstrate the possible results the
0-1 test can provide for random series.

TABLE I. Results of the symbol spectrum and 0-1 tests for the
Logistic map with uniform noise. An asterisk denotes an apparent
pass that is different from the η = 0 case.

Periodic (r = 3.55) Chaotic (r = 3.91)

η Symbol spectrum K Symbol spectrum K

0 pass −0.012 pass 1
0.01 pass −0.012 pass 1
0.05 pass −0.012 pass 1
0.10 pass* 0.79 pass 1
0.50 fail 0.99 fail 1
1.0 fail 1 fail 1

A. Logistic map

The Logistic map

xn+1 = rxn(xn − 1) (10)

was chosen for two reasons. First, it is the system most
frequently used in much of the 0-1 test literature. Second, it is
a well-understood example of a discrete system that displays
both chaotic and periodic behaviors. In this paper, we use the
same parameter values as those used in Ref. [6], r = 3.55 for
periodic behavior and r = 3.91 for chaotic behavior. In each
case, the initial condition for the series is x1 = 0.01 and we
begin the time series after 20 000 iterations to allow transients
to decay.

The results of the symbol spectrum test and the 0-1 test
for the Logistic map with noise having a uniform distribution
and a normal distribution are displayed in Tables I and II,
respectively.

Recall that our approach is to assume that we know
nothing about the dynamics a priori. We ask the ques-
tion, how accurately do the symbol spectrum test and the
0-1 test characterize the series if the dynamics of the system is
unknown? Let us begin by discussing the data summarized
in Table I, which contains data for the case in which a
uniform noise distribution was used. The detailed results from
Table I appear in Figs. 5 and 6 for the cases of r = 3.55
and r = 3.91, respectively. For each figure, the first column
contains the unsymbolized time series, the second column
contains the results of the symbol spectrum test, and the third
column contains the results of the 0-1 test in the form of the
Kc spectrum for 100 randomly chosen values of
c ∈ (π/5,4π/5).

TABLE II. Results of the symbol spectrum and 0-1 tests for the
Logistic map with normally distributed noise. An asterisk denotes an
apparent pass that is different from the η = 0 case.

Periodic (r = 3.55) Chaotic (r = 3.91)

η Symbol spectrum K Symbol spectrum K

0 pass −0.012 pass 1.0
0.01 pass −0.012 pass 1.0
0.05 pass* 0.73 pass 1.0
0.10 pass* 0.98 pass 1.0
0.50 fail 1.0 fail 1.0
1.0 fail 1.0 fail 1.0
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FIG. 5. Results of the symbol spectrum test and the 0-1 test for the Logistic map with r = 3.55. The first column contains the unsymbolized
time series and the second and third columns contain the results of the symbol spectrum test and the 0-1 test, respectively.

For the case r = 3.55, the Logistic map is periodic and
we expect the 0-1 test to give a result of 0. The top line of
Fig. 5 shows the results for the noise-free periodic Logistic
map. Note that in the time series for η = 0 there are eight
different values in the series; the top two overlap due to the
scale of the graph in Fig. 5. The symbol spectra (top middle
graph of Fig. 5) all lie on top of one another; hence, the series
is deterministic. Furthermore, the Kc spectrum (upper right
graph in Fig. 5) is consistently around 0 for all values of c.

In Table I, we see that for r = 3.55 we have good
performance for our test for low and high noise. For low
noise, η = 0.01 and 0.05, the series manages to pass the
symbol spectrum test (symbol spectra resemble the η = 0
case) and the 0-1 test produces a 0. The low noise results
are not surprising because it has been reported that the
0-1 test works well with low-noise series [6]. In the case of
high noise, η = 0.5 and 1.0, the symbol spectrum test shows
that the time series is stochastic and even though we get a
1 for the 0-1 test, the symbol spectrum test informs us that
this series either is random or has a high amount of noise.
The bottom row of Fig. 5 contains some of the details for the
case of η = 1.0. Notice that if we had not done the symbol
spectrum test, we could have falsely concluded that the series
for the cases of r = 3.55 and η = 0.5,1.0 are chaotic. The case
η = 0.1 (middle of Fig. 5) shows some interesting results. The
symbol spectrum result for η = 0.1 is similar to when η = 0
with the addition of small “bumps” in the spectrum. We denote

this behavior as “pass*” in Table I. In this paper, we say that
the result of the symbol spectrum test is “pass*” if the symbol
spectrum is different from the η = 0 case but could still pass
as a deterministic symbol spectrum. We found “pass*” results
to be difficult to characterize. For example, in the case of
r = 3.55 and η = 0.1, one may see this symbol spectrum and,
with no a priori knowledge of the system, conclude that the
series is deterministic. However, inspection of the Kc spectrum
suggests an inconclusive result. The median of the spectrum is
0.79 and the spectrum itself varies wildly between Kc = 0.7
and 0.9. This suggests that while the tests can handle low noise
and clearly fail at high noise, there exists some “transition”
region of noise where results can be inconclusive or possibly
give an incorrect characterization.

Next, we will analyze the results for the chaotic Logistic
map, r = 3.91, in Table I. The analysis for the periodic case
was much easier to do than in the chaotic case, r = 3.91. For
the periodic case, there are two values that can change, the
result of the symbol spectrum and the 0-1 test result. However,
for the chaotic Logistic map the 0-1 test will provide a 1 for
chaotic series and for random series. Hence, interpretation of
the symbol spectrum test takes on even more importance. As
shown in Fig. 6, the time series and Kc spectra are very similar
for η = 0,0.1, and 1.0. In addition, the symbol spectrum
for the η = 0 case is not as clean as the noise-free periodic
Logistic map. We have found that this can lead to difficulties
in interpreting the results of the symbol spectrum test. As
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FIG. 6. Results of the symbol spectrum test and the 0-1 test for the Logistic map with r = 3.91.The first column contains the unsymbolized
time series and the second and third columns contain the results of the symbol spectrum test and the 0-1 test, respectively.

in the periodic case, the data in Table I suggest that the test
works well for low noise (η = 0.01,0.05) and clearly fails
in the case of high noise (η = 0.5,1.0). In fact, the results
even suggest that the tests can correctly characterize the case
η = 0.1, which could not be done for the periodic series. This
does raise one question: If η = 0.1 is a sufficiently high noise
level to change the symbol spectrum result and the 0-1 test
result for the periodic case, can we trust these results for the
chaotic case? Notice that there are some minor differences
between the symbol spectrum results for η = 0 and 0.1 in
Fig. 6, just as there are minor differences between the two
symbol spectra in Fig. 5. The minor difference in the periodic
case leads to major differences in the Kc spectrum. In the
chaotic case, the Kc spectra for η = 0 and 0.1 are not very
different. If one were to use the knowledge gained from the
periodic series, a conservative analysis would suggest that
the results of the tests for r = 3.91, η = 0.1 are inconclusive.
However, it is easy to see how no a priori knowledge of the
system could lead one to characterize the series as chaotic
because of the nature of the symbol spectrum.

Table II summarizes the results of the Logistic map with
noise from a normal distribution. Again, we will begin
with the periodic results. We see that for the normal noise
distribution, we begin to get inconclusive results for lower
values of η. Again, with the periodic data, we see a transition
region between low noise and high noise where the 0-1 test
results are difficult to interpret. If one was not aware of the

previous results, it would be possible to mischaracterize the
η = 0.1 results as chaotic data for the periodic case. Of course,
in a situation in which one has no a priori knowledge of the
system, such misclassifications would be easy to make; we
avoid such pitfalls only because we know the noise levels and
because of our experience with the other Logistic maps series
analyzed in this paper. Likewise, in the case of the chaotic
Logistic map with normally distributed noise, we do not see
a clear transition region. Again, this is due to the difficulty
of interpreting the symbol spectrum test for chaotic data and
the fact that the 0-1 test will produce a 1 for random (or high
noise) data. Such transitions probably also exist for the chaotic
regime r = 3.91 but are more difficult to detect in the symbol
spectrum for the same reasons as the flat noise case.

B. Duffing equation

Our next model system is the Duffing equation

mẍ + δẋ + ωx + βx3 = A cos(�t + φ) , (11)

where x = x(t). The value of the parameters m, δ, ω, β, A,
�, and φ determine the dynamics of the Duffing equation.
The Duffing equation displays periodic behavior (with a
period of 2π ) when m = 1.0, δ = 0.08, ω = 0.0, β = 1.0,
A = 0.2, � = 1.0, and φ = 0 [19]. The Duffing equation
displays chaotic behavior when m = 1.0, δ = 0.4, ω = −1.0,
β = 1.0, A = 0.4, � = 1.0, and φ = −π/4 [19]. There are
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other parameter values [19] that produce periodic and chaotic
behavior in the Duffing equation; however, the previously
mentioned values are the ones used in this paper.

The Duffing equation was chosen as a model system
because it is a well-understood continuous system. Continuous
systems are different from discrete systems in that, for contin-
uous systems, there is no obvious natural sampling time. For
discrete systems, sampling typically occurs at each iteration.
If a continuous signal is undersampled, one may not be able
to reconstruct the original signal from the sampled series.
Furthermore, it was shown in Ref. [6] that oversampling can
lead to K = 0 for chaotic signals. To generate our time series,
we use the technical computing software MATHEMATICA to
numerically integrate the Duffing equation (with the necessary
choice of parameters), using the NDSolve command with the
initial conditions of x(0) = −0.21 and ẋ(0) = 0.02 for the
periodic series and x(0) = 1.0 and ẋ(0) = 0 for the chaotic
series [19]. After waiting 500 time units for transients to
decay, a time series is produced at a fixed sampling rate
until a time series of length 10 000 is achieved. For the
periodic series, we use the Nyquist frequency, which leads to
a sampling interval of approximately π . For the chaotic series,
the choice of sampling time is not as straightforward and it
is important to avoid oversampling. One method is simply
“visual reconstruction.” In other words, how large can the
sampling time be and still have the sampled series look similar
to the original solution of the Duffing equation? We choose
a sampling time interval of 2 because it was small enough
that the sampled series still had the appearance of the original

series, but it was not so oversampled that the 0-1 test returned
Kc = 0 instead of Kc = 1.

The results of the symbol spectrum test and the 0-1 test for
the Duffing equation with noise having a uniform distribution
and a normal distribution are displayed in Tables III and IV,
respectively.

We will begin by discussing the results in Table III.
Figures 7 and 8 illustrate some of the results found in
Table III for the periodic and chaotic Duffing equation,
respectively. Figures 7 and 8 are laid out in a similar way
as Figs. 5 and 6 in that the first column is the unsymbolized
time series, the second column is the symbol spectrum test
result, and the third column is the Kc spectrum from the
0-1 test. Notice that the graphs in the first column of Figs. 7
and 8 have lines that join one element of time series to the
next. These lines are added to guide the eye along the graph of
the time series.

The data for the periodic series in Table III seem to suggest
that our characterization method is robust to noise. In fact, the
characterization method never seems to fail (i.e., produce a
false positive for chaos). These results are less of a statement
about the effectiveness of the symbol spectrum test and the
0-1 test and more of a demonstration of the ability of
symbolization to suppress noise. The original time series
for the periodic case has the form of a sine wave with an
amplitude slightly greater than 1.2; see Fig. 9. The threshold
for symbolization is approximately located at x = 0. In the
periodic noise-free case, Fig. 9(a), the series is sampled
consistently approximately at x = ±0.6; when we add noise,
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FIG. 7. Results of the symbol spectrum test and the 0-1 test for the periodic Duffing equation. The first column contains the unsymbolized
time series and the second and third columns contain the results of the symbol spectrum test and the 0-1 test, respectively.
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TABLE III. Results of the symbol spectrum and 0-1 tests for the
Duffing equation with uniform noise.

Periodic Chaotic

η Symbol spectrum K Symbol spectrum K

0 pass −0.012 pass 0.98
0.01 pass −0.012 pass 0.97
0.05 pass −0.012 pass 0.98
0.10 pass −0.013 pass 0.98
0.50 pass −0.012 pass* 0.99
1.0 fail 1.0 fail 0.99

we see that a noise amplitude of η = 0.5 would not be
enough to change a noise-free value from being greater than
zero to being less than zero (or vice versa). Hence, noise
is not causing the noisy symbolized series to be different
from the noise-free symbolized series. Noise effects should
not alter the symbolized series until η ≈ 0.6. As we see in
Table III, the symbol spectrum finds that the symbolic series
are deterministic until η = 1.0. The symbol spectrum result
for the η = 1.0 case is shown in Fig. 7. While the peaks
in the symbol spectra occur at the same locations for the
η = 1.0 case, we see that there is little overlap in the individual
spectra; hence, this result is interpreted as a failure for the test
for determinism. Note that we see a similar pattern for the
periodic data in Table IV. The series does not fail the test for
determinism until η = 0.5. A large standard deviation for the

TABLE IV. Results of the symbol spectrum and 0-1 tests for the
Duffing equation with normally distributed noise.

Periodic Chaotic

η Symbol spectrum K Symbol spectrum K

0 pass −0.012 pass 0.98
0.01 pass −0.012 pass 0.98
0.05 pass −0.012 pass 0.99
0.10 pass −0.013 pass 0.98
0.50 fail 0.99 pass* 1.0
1.0 fail 1.0 fail 1.0

normal distribution can cause symbol changes between the
noise-free and the noisy symbolic series. It is important to
note here that if we had chosen a longer alphabet length for
our symbolic series (i.e., more than two symbols in our series),
the noise tolerance of symbolization would decrease.

As we found with the Logistic map, the chaotic Duffing
equation is a bit more difficult to interpret than the periodic
Duffing equation. Similar to the periodic case, the symbol
spectrum test finds that the series are deterministic until
η = 0.5 for the flat distribution. Furthermore, even though
the spectra for the periodic and chaotic cases are different,
their symbol spectrum test results are similar for the normal
distribution. Like the Logistic map, the noise-free chaotic
symbol spectra have less overlap than the noise-free periodic
case. However, there is still a distinct difference in the symbol
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FIG. 8. Results of the symbol spectrum test and the 0-1 test for the chaotic Duffing equation.The first column contains the unsymbolized
time series and the second and third columns contain the results of the symbol spectrum test and the 0-1 test, respectively.
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FIG. 9. Sampled solution of the periodic (a) and chaotic (b) solutions of the Duffing equation. For each case, η = 0. The sampling rate and
parameter values are the same as discussed in the text.

spectra between the η = 0 and η = 1.0 case as shown in
Fig. 8. There is little overlap between much of the spectra
for the η = 1.0 case; hence, the series is stochastic (since we
know the noise is high in this series, that result is expected).
Similarly to the periodic case, the high noise tolerance for the
symbol spectrum test is likely due to symbolization. Although
Fig. 9(b) shows some points of the noise-free time series close
to the threshold at x ≈ 0, the vast majority of the points in the
series are closer to x = ±1.0. Because of the regularity of the
symbol spectra even in high noise series, we feel that it is safe to
claim that the symbol spectrum test and the 0-1 test accurately
determine that the series are chaotic up to η = 0.5 and that the
η = 1.0 case is stochastic. Hence, we see that for the Duffing
equation, symbolization is a powerful tool to suppress noise
and still accurately captures the dynamics of the system.

C. Complex continuous regular system

Our final model system consists of a superposition of two
sine waves with incommensurate frequencies,

√
2 and

√
3:

x(t) = sin(2π
√

2t) + sin(2π
√

3t). (12)

In this paper, we refer to (12) as an example of a “complex
continuous regular system,” where “complex” means that
there is more than one frequency contributing to the underlying
dynamics and the term “regular” implies that the system is not
chaotic. We use a sampling time of 1

2
√

3
, based on the Nyquist

2 4 6 8 10
t

2
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1

2
x t

FIG. 10. Sampled noise-free complex continuous regular system
(12).

frequency. We chose this system because it is a continuous
system that contains more than one frequency. Whereas our
periodic Duffing equation was continuous, it consisted of
only one frequency. Many continuous systems consist of
multiple frequencies, so it makes sense to test our algorithm
on a continuous system that has more than one frequency
contributing to the underlying dynamics. While (12) is a
simple example of a complex continuous regular series, it
serves as a first step in testing the 0-1 algorithm on other
systems that have larger numbers of frequencies contributing
to the dynamics of the system. Figure 10 shows the graph of
(12) and the first few elements of the noise-free time series
(the dots).

The results of the symbol spectrum test and the 0-1 test for
the complex continuous regular system with noise having a
uniform distribution and a normal distribution are displayed in
Tables V and VI, respectively.

The results for the uniform distribution, as summarized
in Table V and illustrated in Fig. 11, are different from
the uniform noise results for the Logistic map and Duffing
equation. For the complex continuous regular system, the
median of the Kc spectrum, K , slowly increases to 0.99 as η

increases. This is unlike the Logistic map and Duffing equation
cases, in which there is a sharp increase from a low value of
K to a high value as η increases. Recall that in this paper,
our interest is in being able to accurately characterize a time
series with no a priori knowledge of the system. The complex
continuous regular series produces many intermediate results
for the 0-1 test that would be difficult to interpret for a series
about which we know little. If we look at the original series,

TABLE V. Results of the symbol spectrum and 0-1 tests for the
complex continuous regular system (12) with uniform noise. An
asterisk denotes an apparent pass that is different from the η = 0
case.

η Symbol spectrum K

0 pass 0.077
0.01 pass 0.11
0.05 pass 0.49
0.1 pass 0.76
0.5 pass* 0.98
1.0 fail 0.99
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TABLE VI. Results of the symbol spectrum and 0-1 tests for the
complex continuous regular system (12) with normally distributed
noise.

η Symbol spectrum K

0 pass 0.077
0.01 pass 0.16
0.05 pass 0.74
0.1 pass 0.90
0.5 fail 0.99
1.0 fail 1.0

the upper left graph of Fig. 11, we see that the symbolization
threshold would be at approximately x = 0 and that there are
significantly many elements of the series between x = 0 and
x = ±0.5. Hence, noise amplitudes on the order of 0.5 should
cause threshold crossings that do not exist in the original
series. This is supported by Table V, where K jumps from
0.76 when η = 0.1 to 0.98 when η = 0.5. In fact, further
inspection of the original series shows that there are some
elements of the series between x = 0 and x = ±0.1, which
explains the relatively high value of K for η = 0.1. Although
not shown in Fig. 11, the symbol spectrum for the η = 0.1
case is very similar to the η = 0 case (shown in Fig. 11),
which is why we interpret the result of the symbol spectrum
test as a “pass” suggesting the series is deterministic. However,
because K = 0.76 for η = 0.1, we should conclude that the

results of the combined symbol spectrum test and the 0-1 test
are inconclusive. The η = 0.5 results (middle row of Fig. 11)
can also be difficult to interpret. Because of our knowledge
of the noise-free data and the nature of the system, we know
that this series is very noisy and, hence, random. However,
without such prior knowledge, one could interpret the symbol
spectrum test result (middle graph in Fig. 11) as a deterministic
system because it appears to be similar to some of the results
for chaotic series with which we have worked before. Hence,
we could incorrectly characterize the series as chaotic because
of the consistently high Kc spectrum for η = 0.5. The symbol
spectrum test identifies the η = 1.0 case to be stochastic due
to the relatively low degree of overlap of the symbol spectra.
This, of course, is consistent with the knowledge of the original
series. As we have worked with this test, we have learned
that symbol spectrum results similar to those of the η = 0.5
case are common “transitional” results as the noise amplitude
increases from low to high noise and usually suggests a very
noisy (hence stochastic) series. The previous statement is a
result of our experience with the symbol spectrum test and is
not a rigorous formal result.

The results from the normal noise distribution in Table VI
parallel the uniform noise distribution results of Table V.
We see that the normal distribution does produce some
inconclusive results where the series appears to be deter-
ministic (passes the symbol spectrum test), but produces a
middle-range value for the 0-1 test.

The symbol spectrum test and the 0-1 test combined seem
to work well for the complex continuous regular series in the
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FIG. 11. Results of the symbol spectrum test and the 0-1 test for the complex continuous regular system (12). The first column contains
the unsymbolized time series and the second and third columns contain the results of the symbol spectrum test and the 0-1 test, respectively.
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cases of low noise and high noise. However, just as with the
Logistic map, the test can be inconclusive for “moderate” noise
levels.

D. S Persei

Based on our work in the preceding sections, what can
we say about the results obtained from the S Persei data
illustrated in Fig. 4? The symbol spectrum test has some hints
of regularity between the spectra, especially when it comes to
the location of the peaks in the spectra. However, there is also
much variability in the spectra between the peaks. The 0-1 test
returns K = 1 and the lowest Kc is around 0.95. This, in fact,
could be noisy chaotic data; however, the symbol spectrum is
simply not clean enough to characterize the data as chaotic with
certainty. The regularities of the peaks suggest that there may
be some hint of deterministic structure in the series. However,
the series is irregularly sampled, as many real-world data sets
are, and the effects of irregular sampling on these tests are
unknown. It is possible that irregular sampling may affect
the tests in a way similar to noise. Understanding the effects
of irregular sampling on these tests is part of our planned
future work. Based on our results, we believe a conservative
characterization is warranted here. The results on their own
are inconclusive. A more definitive characterization could be
made if we had more information about how irregular sampling
affects the tests.

IV. CONCLUSION

In this paper, we have studied the modes of failure for
the symbol spectrum test and the 0-1 test when attempting to
classify noisy binary time series generated from three model
systems. The symbol spectrum test and the 0-1 test combined
can serve as an effective tool for the characterization of noisy
binary time series, especially when noise levels are low or very
high. Furthermore, the tests seem more sensitive to normally
distributed noise than to uniformly distributed noise. We have
also found that these tests could incorrectly characterize a
series as chaotic. Understanding the modes of failure is an
important prerequisite for using any test on time series of
which little is known.

We approached the problem of characterization supposing
that we had no a priori knowledge of the system before
running the characterization tests. Of course, this is typically
not the case. Often, one has some estimate or model of the
amount of noise present in a measurement. Furthermore, it is
not uncommon to have working models of the systems from
which the data are being measured. We chose to approach the
problem assuming no knowledge of the system in order to test
the characterization algorithm in the worst-case scenario. We
believe the characterization algorithm worked well even with
such strict assumptions. Of course, the more one knows about

the system from which the time series is measured, the easier
it is to interpret results from tests such as the symbol spectrum
test and the 0-1 test.

Our results suggest that we should consider tolerances for
the 0-1 test result. Our experience with these tests suggests that
a K < 0.5 can be used to characterize a system as regular (i.e.,
neither chaotic nor random). This threshold has been identified
as a guideline based on our experience of using the 0-1 test in
conjunction with the symbol spectrum test and is not formally
derived. Values of K > 0 for regular dynamics are sometimes
due to working with short time series. We have also found
cases in which poor choice of sampling times for regular
continuous systems can lead to 0 < K < 0.5. The complex
continuous regular and Logistic map results suggest that this
guideline is at least a good starting point for such a threshold.
Refining the K < 0.5 guideline will be the subject for future
work. In our experience, a similar lower bound for chaotic
series is not as necessary. The chaotic series we have studied
with the 0-1 test so far have produced K > 0.95.

While we believe that our model systems display a
good range of different behaviors from which to assess the
characterization tests, it is of course impossible to test any
algorithm on all possible systems. However, we believe that the
results of this paper can serve as a guide to implementing these
tests on data taken from “real-world” systems. In the future,
we plan to apply the combined symbol spectrum test and
0-1 test to “real-world” data taken from systems whose
dynamics are known. The 0-1 test has been successfully
applied to some laboratory data [9] from a system known
to be deterministic. However, if the dynamics of the system
are not known a priori, a test for determinism such as the
symbol spectrum test should be done to properly characterize
the dynamics. Understanding how well the symbol spectrum
test works with such laboratory data will be a critical next step
in being able to confidently apply the symbol spectrum test and
the 0-1 test to systems whose dynamics are largely unknown.
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