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Mapping the reaction dynamics in Liouville space onto a reaction coordinate space:
A first-principle- based theory
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We have derived here an exact kinetic equation for the time evolution of the probability distribution for a
general reaction coordinate space, starting from a multidimensional Liouville equation based on first-principles
theory. To make the equation tractable we use two standard approximations, which reduce the exact equation
into a Fokker-Planck-type equation with a sink term. As illustrative examples, we consider its application to two
important classes of reactions, viz., the electron transfer and diffusion-controlled reactions. The kinetic equations
for the reaction coordinates corresponding to these reactions become one dimensional. We also provide a scheme
to find the critical value of the reaction coordinate at which the reaction takes place, and also to obtain the initial
distribution function in the same space for different experimental situations. In the case of photoinduced electron
transfer, we introduce the effect of excitation frequency through the use of suitable initial distribution functions.
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I. INTRODUCTION

Several studies have been concerned with obtaining the
transport equations that govern the time evolution of a many-
body system starting from first principles. Among them, the
most important ones are the works of Zwanzig [1] and Mori
[2], which made use of the projection operator technique,
first introduced by Zwanzig. In subsequent developments,
Garcı̀a-Colı̀n and Rio [3,4] have proposed a unified method for
deriving the exact kinetic equations governing the time evolu-
tion of the dynamical quantities of many-body systems. They
have shown that the results obtained by Mori and Zwanzig
are the special cases of this scheme, which depend only on
how the system was prepared at an initial time (t = 0). In their
theory, they have proposed a generalized projection operator,
which yielded exactly the generalized kinetic equations of
the coarse-grained or mesoscopic distribution function g(a,t)
for various quantities, namely, the hypershell defined in the
phase space (�) by the numerical values {a} of the function
{A(�)}. Although the exact generalized kinetic equation is
used for extracting applications, and most of them have been
concerned with physical processes, as yet no attempt has
been made to derive the generalized kinetic equation [5]
for describing reactions in solution. Dynamical processes in
the condensed phase such as electron transfer (ET) reac-
tions, diffusive escape from potential wells, activated barrier
crossing, nonequilibrium solvation, etc., are of immense and
longstanding importance in various frontier areas of research
in physics, chemistry, and biology. A theoretical description
of these phenomena is, however, severely hindered by the
multidimensional nature of the collective motion involved. The
objective of the present work is to bypass these difficulties
by developing alternative simpler approaches for describing
reaction dynamics in condensed phase.
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II. THEORETICAL FORMALISM

In the case of nonequilibrium processes, initially the system
is prepared away from the equilibrium state, and in subsequent
times, relaxation of the molecules in a downhill potential
brings the system to the equilibrium state. For a given system,
the dynamics of relaxation depends on the state of initial
preparation. Once the system reaches the equilibrium state,
it remains there forever. However, in the case of chemical
reactions in solution, depending on experimental situations,
the system can undergo reactions starting with equilibrium
or nonequilibrium initial conditions. Even a system initially
at equilibrium, in subsequent time, no longer remains in the
equilibrium state owing to chemical reaction. In the cases
of nonequilibrium initial conditions, the system is initially
in a multidimensional reactant potential well, and owing to
diffusion of phase-space coordinates �, the system is brought
to the critical configuration A(�∗) = a∗, when the reaction
does take place with an intrinsic rate constant k. However, in the
case of initial equilibrium conditions, thermal fluctuation first
brings the system to the critical configuration characterized by
A(�∗) = a∗ and then the reaction takes place. The modified
Liouville equation for the reactive system can be written as

∂ρ(�,t)

∂t
= −[iL + kδ(A(�) − a∗)]ρ(�,t), (1)

where L represents the Liouville operator and ρ(�,t) is the
probability density defined in � space at time t. For most of
the reactions, the phase-space function A(�) is a function of
the geometrical coordinates. However, in the case of energy-
diffusion-controlled reactions, the total Hamiltonian H (the
function of phase-space coordinates) of the diffusing particle is
considered to be A(�) [6]. In this case, the particle moves with
a certain energy (H = E) in the potential well, and eventually
through thermal fluctuations, the particle energy reaches the
barrier energy (Eb) when it escapes. In this case, one has
a∗ = Eb. However, to make our theory more general, here
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we consider a general phase-space function A(�). The formal
solution of Eq. (1) can be written as

ρ(�,t) = e−iL̃tρ(�,0), (2)

where L̃ = L − ikδ [A (�) − a∗] and ρ(�,0) is the initial
probability distribution. The average value α(t) of the phase-
space function A(�) is defined as

α(t) =
∫

d� ρ(�,t)A(�). (3)

Thus, if one knows the time evolution of ρ(�,t), one can,
in principle, find α(t). Alternatively, one can evaluate α(t) by
using the equation

α(t) =
∫

d� ρ(�,0)A(�,t), (4)

where A(�,t) = eiL̃†tA(�,0) and L̃† = L + ikδ [A(�) − a∗],
with L̃† as the Hermitian adjoint of L̃. One of the quantities of
interest is p(t), which is the probability of finding the system
in the reactant well at time t and is defined as

p(t) =
∫

d� ρ(�,t). (5)

Here the reaction takes place when A(�) reaches a critical
value a∗, and hence it is convenient to find the distribution
g(a,t) of the phase-space function A(�) to have the numerical
value a at time t, which is defined as

g(a,t) =
∫

d� ρ(�,t)G(a,0), (6)

where G(a,0) = δ [A(�) − a]. Alternatively, one can define
the same quantity as

g(a,t) =
∫

d� ρ(�,0)G(a,t), (7)

where G(a,t) = eiL̃†tG(a,0). Now p(t) can be written in terms
of g(a,t) as

p(t) =
∫

da g(a,t). (8)

In most of the cases, the a space corresponds to a much
lower dimension as compared to the � space. This leads to
much simplification in the evaluation of p(t) through Eq. (8),
in comparison to the same through Eq. (5), which involves a
multidimensional integral. Thus, it is of great interest to obtain
a kinetic equation for g(a,t).

We start by defining the Hilbert space Hg(ω/�) through
the inner product

(A,B) =
∫

d� ω(�)A(�)B∗(�), (9)

where ω(�) is the metric of the space, satisfying iLω(�) = 0.
Now, by writing ρ(�,0) as ω(�)ν(�,0) in Eq. (2) and by using
iLω(�) = 0, one can show that ρ(�,t) = ω(�)e−iL̃t ν(�,0) =
ω(�)ν(�,t), where

ν(�,t) = e−iL̃t ν(�,0). (10)

By using iLω(�) = 0, one can also show that L̃ satisfies
the property

(A(�),L̃B(�)) = (L̃†A(�),B(�)). (11)

Now, to obtain the relevant kinetic equations, we define the
generalized projection operator as defined by Garcı̀a-Colı̀n and
Rio [3], which projects a phase-space function belonging to
Hg(ω/�) onto the Hilbert space spanned by G(b,0) (with
b ∈ R). The latter space is defined as HG(ω/�) and the
projection operator is written as

PG ≡
∫

db
(· · · ,G(b,0))

[G(b,0)]
G(b,0), (12)

where [G(b,0)] = ∫
d�ω(�)G(b,0). We also note the fol-

lowing properties, which will be used in the subsequent
discussions repeatedly, viz.,

(G(a,0),G(b,0)) = [G(b,0)]δ(a − b), (13)

P 2
G = PG, (14)

PGG(a,0) = G(a,0), (15)

(A,PGB) = (PGA,B). (16)

Here, it is clear that as all the projection operators, PG

is also idempotent and Hermitian. Now, before deriving the
kinetic equation for g(a,t), we write Eq. (6) in the following
form:

g(a,t) = (G(a,t),ν(�,0)), (17)

and split G(a,t) into two parts, one lying in HG(ω/�) and the
other lying in the orthogonal space, as follows:

G(a,t) = PGG(a,t) + (1 − PG)G(a,t)

=
∫

db C(a,t/b)G(b,0) + (1 − PG)G(a,t), (18a)

where

C(a,t/b) = (G(a,t),G(b,0))
[G(b,0)]

. (18b)

Now we shall first derive a kinetic equation for C(a,t/b) as
follows:

dC(a,t/b)

dt
=

(
dG(a,t)

dt
,G(b,0)

)
[G(b,0)]

= (iL̃†G(a,t),G(b,0))
[G(b,0)]

= − (G(a,t),iL̃G(b,0))
[G(b,0)]

. (19)

Again we split iL̃G(b,0) into two parts: one lying in
HG(ω/�) and the other lying in the orthogonal space, as
follows:

iL̃G(b,0) = PGiL̃G(b,0) + (1 − PG)iL̃G(b,0)

= PG[iLG(b,0)] + PG[kG(a∗,0)G(b,0)]

+ (1 − PG)iL̃G(b,0). (20)

The first term on the right-hand side can be expressed as

PG[iLG(b,0)] =
∫

dc
(iLG(b,0),G(c,0))

[G(c,0)]
G(c,0)

=
∫

dc i	(b,c)G(c,0), (21a)
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where the frequency i	(b,c) is defined as

i	(b,c) = (iLG(b,0),G(c,0))
[G(c,0)]

. (21b)

Again, the second term of the right-hand side of Eq. (20)
can be simplified as follows:

PG(kG(a∗,0)G(b,0))

=
∫

dc
(kG(a∗,0)G(b,0),G(c,0))

[G(c,0)]
G(c,0)

=
∫

dc
kδ(a∗ − b)δ(b − c)[G(c,0)]

[G(c,0)]
G(c,0)

= kδ(a∗ − b)G(b,0). (22)

Combining Eqs. (19)–(22), we finally obtain

dC(a,t/b)

dt

=
∫

dc
i[	(b,c)]∗[G(c,0)]

[G(b,0)]
C(a,t/c) − kδ(a∗ − b)

×C(a,t/b) − (G(a,t),(1 − PG)iL̃G(b,0))
[G(b,0)]

. (23)

Now, we calculate the last term of the right-hand side as
follows:

(G(a,t),(1 − PG)iL̃G(b,0))
[G(b,0)]

= (G(a,t),(1 − PG)2iL̃G(b,0))
[G(b,0)]

= ((1 − PG)G(a,t),(1 − PG)iL̃G(b,0))
[G(b,0)]

. (24)

It can be shown easily that

(1 − PG)iL̃G(b,0) = (1 − PG)iLG(b,0), (25a)

whereas (1 − PG)G(a,t) can be expressed in terms of the
equation

d

dt
(1 − PG)G(a,t)

= (1 − PG)iLG(a,t) − k(1 − PG)[G(a∗,0)G(a,t)]. (25b)

Now, to calculate the last term of the above expression we
consider the result

PG[G(a∗,0)G(a,t)] =
∫

dc
(G(a∗,0)G(a,t),G(c,0))

[G(c,0)]
G(c,0)

=
∫

dc δ(c − a∗)C(a,t/c)G(c,0)

= C(a,t/a∗)G(a∗,0). (26)

Hence, one has

k(1 − PG)[G(a∗,0)G(a,t)]

= kG(a∗,0)G(a,t) − kC(a,t/a∗)G(a∗,0)

= D1(a,t) − D2(a,t), (27a)

where

D1(a,t) = kG(a∗,0)G(a,t), (27b)

D2(a,t) = kC(a,t/a∗)G(a∗,0). (27c)

Finally we obtain

d

dt
(1 − PG)G(a,t)

= (1 − PG)iLG(a,t) − [D1(a,t) − D2(a,t)]

= (1 − PG)iL(1 − PG)G(a,t) + (1 − PG)iLPGG(a,t)

− [D1(a,t) − D2(a,t)]. (28)

On solving Eq. (28), we obtain

(1 − PG)G(a,t)

=
∫

dc

∫ t

0
ds C(a,t − s/c)F (c,s)

−
∫ t

0
ds U (s){[D1(a,t − s) − D2(a,t − s)]}, (29)

where the random force F (c,t) is defined as

F (c,t) ≡ U (t) [(1 − PG)iLG(c,0)] , (30)

with U (t) = exp[(1 − PG)iLt].
Combining Eqs. (24), (25), (29), and (30), we obtain

((1 − PG)G(a,t),F (b,0))
[G(b,0)]

=
([∫

dc
∫ t

0 ds C(a,t − s/c)F (c,s)
]
,F (b,0)

)
[G(b,0)]

−
(∫ t

0 ds U (s){[D1(a,t − s) − D2(a,t − s)]},F (b,0)
)

[G(b,0)]

=
∫

dc

∫ t

0
ds C(a,t − s/c)

(F (c,s),F (b,0))
[G(b,0)]

−Mb
F

(∫ t

0
ds U (s){[D1(a,t − s) − D2(a,t − s)]}

)
,

(31)

where we have used the following definitions:

Mb
F f (�) = (f (�),F (b,0))

[G(b,0)]
, (32)

K(c,b,s) = (F (c,s),F (b,0))
[G(b,0)]

. (33)

Thus we see that K(c,b,s) = Mb
F [F (c,s)].

Now, by using Eqs. (31) and (33), we ultimately obtain the
kinetic equation for the correlation function C(a,t/b) as

dC(a,t/b)

dt

=
∫

dc C(a,t/c)i	(c,b) − kδ(a∗ − b)C(a,t/b)

−
∫

dc

∫ t

0
ds C(a,t − s/c)K(c,b,s)

+Mb
F

(∫ t

0
ds U (s){[D1(a,t − s) − D2(a,t − s)]}

)
.

(34)

026104-3



ANIKET PATRA, ALOK SAMANTA, AND SWAPAN K. GHOSH PHYSICAL REVIEW E 83, 026104 (2011)

Now, by combining Eqs. (18) and (29), one obtains

G(a,t) =
∫

db C(a,t/b)G(b,0)

+
∫

db

∫ t

0
dsC(a,t − s/b)F (b,s) −

∫ t

0
ds U (s)

×{[D1(a,t − s) − D2(a,t − s)]}, (35)

which, on Laplace transformation, leads to the result

Ĝ(a,ε) =
∫

db Ĉ(a,ε/b)G(b,0)

+
∫

db Ĉ(a,ε/b)F̂ (b,ε)

− Û (ε){[D̂1(a,ε) − D̂2(a,ε)]}, (36)

where the Laplace transform f̂ (ε) is defined as f̂ (ε) =∫ ∞
0 f (t)e−εt dt . Now, by taking the Laplace transform of

Eq. (34) and, after proper rearrangement, one has

δ(a − b) + Mb
F (Û (ε){[D̂1(a,ε) − D̂2(a,ε)]})

=
∫

dc Ĉ(a,ε/c)[−i	(c,b) + kδ(a∗ − c)δ(c − b)

+K̂(c,b,ε) + εδ(c − b)]

=
∫

dc Ĉ(a,ε/c)Ĉ−1
g (c,ε/b), (37)

where

Ĉ−1
g (c,ε/b) = [−i	(c,b) + kδ(a∗ − c)δ(c − b)

+ K̂(c,b,ε) + εδ(c − b)].

Now we multiply Ĝ(a,ε) with Ĉ−1
g (c,ε/a) and integrate

over a to obtain∫
daĈ−1

g (c,ε/a)Ĝ(a,ε)

=
∫

da[−i	(c,a) + kδ(a∗ − c)δ(c − a)

+ K̂(c,a,ε) + εδ(c − a)]Ĝ(a,ε)

=
{∫

da[−i	(c,a) + K̂(c,a,ε)]Ĝ(a,ε)

}
+ kδ(a∗ − c)Ĝ(c,ε) + εĜ(c,ε)

=
∫

da

∫
db Ĉ−1

g (c,ε/a)Ĉ(a,ε/b)[G(b,0) + F̂ (b,ε)]

−
∫

da Ĉ−1
g (c,ε/a)Û (ε){[D̂1(a,ε) − D̂2(a,ε)]}, (38)

where we have made use of Eq. (36). Equation (38) can be
simplified further to obtain∫

da Ĉ−1
g (c,ε/a)Ĝ(a,ε)

=
∫

db[δ(c − b) + Mb
F (Û (ε){[D̂1(c,ε) − D̂2(c,ε)]})]

×[G(b,0) + F̂ (b,ε)] −
∫

da Ĉ−1
g (c,ε/a)Û (ε)

×{[D̂1(a,ε) − D̂2(a,ε)]}
= G(c,0) + F̂ (c,ε) +

∫
db Mb

F (Û (ε){[D̂1(c,ε)

−D̂2(c,ε)]})[G(b,0) + F̂ (b,ε)]

−
∫

da Ĉ−1
g (c,ε/a)Û (ε){[D̂1(a,ε) − D̂2(a,ε)]}, (39)

where we have used the result
∫

dc Ĉ(a,ε/c)Ĉ−1
g (c,ε/b) =

δ(a − b) + Mb
F (Û (ε){[D̂1(a,ε) − D̂2(a,ε)]}).

By equating Eqs. (38) and (39), and after some rearrange-
ment, we obtain

kδ(a∗ − c)Ĝ(c,ε) + [εĜ(c,ε) − G(c,0)]

=
{∫

da[i	(c,a) − K̂(c,a,ε)]Ĝ(a,ε)

}
+ F̂ (c,ε)

+
∫

dbMb
F (Û (ε){[D̂1(c,ε) − D̂2(c,ε)]})

× [G(b,0) + F̂ (b,ε)]

−
∫

da Ĉ−1
g (c,ε/a)Û (ε){[D̂1(a,ε) − D̂2(a,ε)]},

(40)

which, on inverse Laplace transformation, leads to

dG(c,t)

dt
+ kδ(a∗ − c)G(c,t)

=
∫

da[i	(c,a)]G(a,t) −
∫

da

∫ t

0
dsK(c,a,s)G(a,t − s)

+F (c,t) +
∫

db

∫ t

0
ds Mb

F (U (s){[D1(c,t − s)

−D2(c,t − s)]})G(b,0) +
∫

db

∫ t

0
ds F (b,t − s)Mb

F

×
{∫ s

0
dr U (s − r)[D1(c,r) − D2(c,r)]

}

−
∫

da

∫ t

0
ds C̃−1

g (c,t − s/a)
∫ s

0
dr U (s − r)

×{[D1(a,r) − D2(a,r)]}, (41)

where C̃−1
g (a,t/b) is the inverse Laplace transform of

Ĉ−1
g (a,ε/b). Equation (41) can be rewritten as

dG(a,t)

dt
= Z(a,t)G(a,t) − kδ(a∗ − a)G(a,t)

+F (a,t) + E(a,t), (42)

where Z(a,t), which represents the Zwanzig operator, is
defined as

Z(a,t)f (a,t) =
∫

dc [i	(a,c)] f (c,t)

−
∫

dc

∫ t

0
ds K(a,c,s)f (c,t − s), (43a)

and E(a,t) is given by

E(a,t) = +
∫

db

∫ t

0
ds Mb

F (U (s)

×{[D1(a,t − s) − D2(a,t − s)]})
×G(b,0) +

∫
db

∫ t

0
ds F (b,t − s)Mb

F
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×
{∫ s

0
dr U (s − r)[D1(a,r) − D2(a,r)]

}

−
∫

db

∫ t

0
ds C̃−1

g (a,t − s/b)
∫ s

0
dr U (s − r)

× {[D1(b,r) − D2(b,r)]} . (43b)

As we know from Eq. (17) the result dg(a,t)
dt

=
( dG(a,t)

dt
,ν(�,0)), we can write, by using Eq. (42), the result

dg(a,t)

dt
= Z(a,t)g(a,t) − kδ(a∗ − a)g(a,t)

+ (F (a,t),ν(�,0)) + (E(a,t),ν(�,0)). (44)

This is an exact equation for the probability distribu-
tion in a space, which is the reaction coordinate space.
In the case of a nonreactive system (k = 0), the second
and fourth terms on the right-hand side vanish identi-
cally and we get back the kinetic equation derived by
Zwanzig [1] as well as by Garcı̀a-Colı̀n and Rio [3].
Equation (44) is a rather complicated equation at the
outset and hence we use two consecutive approximations to
transform it to a tractable form. For this purpose, we get back to
Eq. (28), and we see that the first two terms eventually yield
the random force. From the expression of the random force, it
is again clear that it lies in the orthogonal space of HG(ω/�).
So for the extra term, it is quite physical to assume that it
mainly belongs to HG(ω/�). Here actually we are assuming
that the portion of G(a,t) that lies in the orthogonal space to
HG(ω/�) goes into the random force, and in the extra term,
i.e., in D1(a,t) − D2(a,t) wherever G(a,t) appears, one can
expand that in terms of orthogonal basis functions [7] [G(b,0),
where b ∈ R], which span the Hilbert space HG(ω/�). Hence
one can write

G(a,t) =
∫

f (a,c,t) G(c,0) dc, (45)

with f (a,c,t) as the expansion coefficients, which can be
obtained by multiplying Eq. (45) with ω(�)G(b,0), integrating
over �, and then dividing both sides with [G(b,0)]. The final
result is given by

f (a,b,t) = C(a,t/b). (46)

By using Eq. (46) in Eq. (45), we obtain

G(a,t) =
∫

C(a,t/c) G(c,0) dc. (47)

By substituting Eq. (47) into the expression of D1(a,t), we
clearly see that D1(a,t) = D2(a,t). Also from Eq. (43), we
note that [E(a,t),ν(�,0)] = 0. We also find that at the initial
time, i.e., at t = 0, G(a,t) belonged entirely to HG(ω/�).
So at least for small times, our approximation is very much
justified. Again within the same approximation, as commonly
used in the case of Brownian motion, we employ here
the result [F (a,t),ν(�,0)] = 0. Hence Eq. (44) takes the
form

dg(a,t)

dt
= Z(a,t)g(a,t) − kδ(a∗ − a)g(a,t). (48)

Although the sink function has appeared in the argument
of the exponential in the time-evolution equation of the

phase-space function A(�,t) = eiL̃†tA(�,0) or the distribution
function ρ(�,t) = e−iL̃tρ(�,0), the speciality of Eq. (48) is that
the Liouville operator that appears in the Zwanzig operator is
the unmodified Liouville operator of the prereactive system
(i.e., without the sink term). It is clear from Eq. (1) that in
Liouville space, the diffusion of the phase-space coordinate
� brings the system to the critical configuration that lies
on the hypersurface A(�) = a∗, leading to the reaction. On
the other hand, in a space, the diffusion of the phase-
space function A(�) is responsible for the attainment of the
a∗ configuration that results into the reaction. This shows
clearly that the variable a or A(�) represents the reaction
coordinate, and the corresponding kinetic equation is given by
Eq. (48).

It is, however, difficult to evaluate the memory kernel
K(a,a′,s) owing to the appearance of the projection operator
in exp [−i (1 − PG) Ls] in the full expression of the memory
kernel K(a,a′,s). By assuming (∂A / ∂t) to be a slowly varying
function, following Zwanzig [1], Eq. (48) can be simplified to
obtain

∂g(a,t)

∂t
+

∑
j=1

∂

∂aj

[vj (a)g(a,t)]

=
∫ t

0
ds

n∑
j=1

n∑
k=1

∂

∂aj

W (a)Kjk (a; s)
∂

∂ak

g (a,t − s)

W (a)

− kδ(a − a∗)g (a,t) + O(Ȧ3g), (49)

where one has

Kjk (a; s) = [G(a,0)]−1 ([Ȧj (s) − vj (a)]

× [Ȧk(0) − vk(a)],G(a,0)),

Ȧj (s) = exp(isL)Ȧj (0),

W (a) = [G(a,0)],

vj (a) = 〈iLAj (�,0); a〉= [G(a,0)]−1(iLAj (�,0),G(a,0)).

In the above expression, we write the set a1,a2, . . . ,an as
a in shorthand. Equation (49) has very nearly the structure
of a Fokker-Planck equation with a sink term of strength k
in a space. As illustrative examples, we now consider the
application to ET and the diffusion-controlled reactions in the
next two sections. In order to solve the kinetic equation
[Eq.(49)], what is needed is the value of the sink position
(a∗) as well as the expression for initial distribution function
[g(a,0)] in a space, the evaluation of which is discussed below.

III. APPLICATION TO ET AND
DIFFUSION-CONTROLLED REACTIONS

A. ET reaction

1. Identifying the phase-space function A (�)

While defining the phase-space function A (�) in the
present formalism, we first write the Hamiltonian for the
reactant-product state of an ET reaction in a polar solvent
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in the general form

Hi(�) = Hi
sol(�) + Hi

el (i = r,p), (50)

where � denotes all the accessible geometrical coordinates of
the solute and solvent molecules and the superscripts r and p

correspond to the reactant and the product, respectively. Here
Hi

el is the electronic term, independent of solvent motions,
corresponding to the energy of the isolated reactant or product
pair, and consists of two parts, viz., the Coulomb interaction
between the net charges of the donor (zi

d ) and the acceptor (zi
a)

sites, separated by a distance R, and their electronic energies
under vacuum. Here the quantity Hi

sol(�) represents the solute-
solvent and solvent-solvent interaction energy.

The electron, which is originally localized at the donor
site in the reactant, will be delocalized when the following
condition is satisfied [8–12], i.e.,

Hr
sol(�

∗) − H
p

sol(�
∗) = H

p

el − Hr
el ≈ −�G, (51)

where �∗ corresponds to the transition point in multidimen-
sional configuration space, and �G represents the electronic
energy contribution [9–12] of the solute particle to the
free energy of the ET reaction in solution. In the case of
a nonequilibrium situation, owing to the diffusion of the
geometrical coordinates � in a downhill potential, the quantity
[Hr

sol(�) − H
p

sol(�)] acquires a specific value such as −�G,
whereas in the case of an equilibrium situation only the
thermal fluctuations are responsible for bringing the same
quantity to the desired value. Owing to thermal fluctuations,
the only quantity that changes with the solvent configuration
� and determines the ET is [Hr

sol(�) − H
p

sol(�)], suggesting an
obvious choice of the microscopic phase-space function A(�)
to be given by [9–12]

A(�) = [
Hr

sol(�) − H
p

sol(�)
]
. (52)

2. Identifying the sink position a∗

Now we consider the probability distribution for the
reaction coordinate. The probability of the microscopic phase-
space function A(�) to have the value a, when the system is
in the reactant-product state, is defined as

exp
[−βV eff

i (a)
] = β−1

∫
d�δ[A(�) − a] exp

[−βHi
sol(�)

]
,

(53)

where Wi(a) = exp[−βV eff
i (a)] (i = 1,2 for r,p) corre-

sponds to the projection of the respective distribution function
for the reactant-product state in full phase space on the
subspace described by the function δ[A(�) − a] directed along
the one-dimensional coordinate a. An important advantage of
defining such effective potential energy curves V eff

i (a) is that
the solvent configurations [corresponding to those phase-space
points that lie on the surface A(�) = a] along the reaction
coordinate a are the same between the initial state (the electron
is on the donor site) and the final state (the electron is on the
acceptor site) because of the delta function. This property
is very important because the position and orientations of
the solvent molecules will be the same for all values of a,

although the total energy is not always the same between the
initial and final states. However, at the transition point a∗, the
orientation and position of the solvent molecules are fixed and
the energy conservation is also guaranteed when the following
relation [10–12] holds, viz.,

exp
[−βV eff

r (a∗)
]

= β−1
∫

d�δ[A(�) − a∗]

× exp
{−βH

p

sol(�) + β
[
H

p

sol(�) − Hr
sol(�)

]}
= exp(β�G)β−1

∫
d� δ[A(�) − a∗] exp

[−βH
p

sol(�)
]

= exp
[−βV eff

p (a∗) + β�G
]
. (54)

The above derivation provides a relation between the
effective potentials of the reactant and the product at the
transition point a∗, viz.,

V eff
r (a∗) = V eff

p (a∗) − �G. (55)

Equation (55) actually provides a route for obtaining the
transition point a∗ for the occurrence of the ET reaction
provided the explicit expression for V eff

i (a∗) is known. An
alternative approach can also be used to derive a relation
similar to the above equation, valid for all values of a, viz.,

V eff
r (a) = −β−1 ln

(
β−1

∫
d�δ[A(�) − a]

× exp
{−βH

p

sol(�) + β
[
H

p

sol(�) − Hr
sol(�)

]})

= −β−1 ln

{
exp (−βa) β−1

∫
d� δ [A(�) − a]

× exp
[−βH

p

sol(�)
]}

= −β−1 ln
{

exp
[−βV eff

p (a) − βa
]}

, (56)

which can be rewritten as

V eff
r (a) = V eff

p (a) + a. (57)

By combining Eq. (55) with Eq. (57), we obtain

a∗ = −�G. (58)

The above relation is very important in the sense that the
transition point is independent of the form of the effective
potential V eff

i (a) but depends only on the free energy (�G) of
the reaction.

3. Initial distribution function [g(a,0)] in ‘a’ space

We consider here a donor (D) and an acceptor (A) in a
solvent environment. Prior to the absorption of a photon,
the solvent molecules are in equilibrium with the D-A pair.
Excitation of the DA pair with an ultrashort laser pulse
leads to the formation of the ion pair D+A−. Thus, the
ion pair is initially produced in a completely nonequilibrium
configuration and then relaxes downward along the potential
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energy surface (corresponding to D+A−) through relaxation
of the surrounding polar solvent until it meets the potential
energy surface of the molecule DA, at which the configuration
of the solvent molecules becomes the critical configuration,
i.e., �∗, where the back ET takes place with an intrinsic
rate constant k. In this situation, initially the phase-space
coordinates � of the D-A solvent system are unknown owing to
thermal fluctuations leading to new microscopic states for each
repetition of the experiment with an identical macroscopic
condition, i.e., A(�,0) = (h̄ω − �G) = a0, and instead what
we know is only the probabilistic information about the initial
�. Because prior to the excitation through the absorption
of a photon, the system was in thermal equilibrium with
a distribution function exp [−βHr ], the initial distribution
corresponding to the excited state in � space is given by

ρ(�,0) = δ [A(�,0) − (h̄ω − �G)] exp (−βHr )∫
d� δ [A(�,0) − (h̄ω − �G)] exp (−βHr )

. (59)

Now, by combining Eqs. (6) and (59), we obtain the initial
probability distribution g(a,0) in a space as

g(a,0) =
∫

d� δ [A (�,0) − a]

× δ [A(�,0) − (h̄ω − �G)] exp (−βHr )∫
d� δ [A(�,0) − (h̄ω − �G)] exp (−βHr )

= δ(a − (h̄ω − �G)). (60)

This is an important result, because the effect of the excita-
tion frequency ω has been introduced. In many situations, the
D-A solvent system is initially in thermal equilibrium. In this
situation, one has

g(a,0) =
∫

d� δ [A (�) − a]
exp (−βHr )∫

d� exp (−βHr )
. (61)

4. Kinetic equation in one-dimensional ‘a’ space

In this case, a is a scalar quantity and hence the coordinate a

corresponds to one-dimensional space. Also, both A(�,0) and
G(a,0) are symmetric under time reversal, whereas L is anti-
symmetric. Hence we clearly see that v(a) = 〈iLA(t); a〉 = 0.
In this situation, Eq. (49) simplifies to

∂g(a,t)

∂t
=

∫ t

0
ds

∂

∂a
W (a)K(a; s)

∂

∂a

g(a,t − s)

W (a)

− kδ(a − a∗)g(a,t) + O(Ȧ3g). (62)

Here K(a; s) also can be written simply as K(a; s) =
〈Ȧ(s)Ȧ(0); a〉. It may be noted that several authors have previ-
ously written a similar type of equation phenomenologically
and also applied it to the case of ET [13,14]. However, a
rigorous derivation from first-principles theory is given here.

B. Diffusion-controlled reaction

1. Initial distribution function [g(a,0)] in ‘a’ space

Many authors have attempted to obtain a useful formulation
for the description of chemical reactions influenced by diffu-
sion effects. In this case, one has A (�) = |r1 − r2| = r , where
r1,r2 represent the position vectors of the pair of reacting par-
ticles, and a∗ is the contact distance. The initial distribution in

a space is written as

g(a,0) =
∫

d�δ(|r1 − r2| − a)
exp(−βHr )∫

d� exp(−βHr )
. (63)

Now, we consider a pair of molecules within a volume
V . The initial probability distribution for the two particles
is given [15] by peq(r) = g(r)/V , where g(r) represents
the prereaction pair radial distribution function. Thus, the
expression for g(a,0) is further simplified as

g(a,0) = 1

V

∫ ∫
dr1 dr2δ(|r1 − r2| − a)g(r) = 2πa2g(a).

(64)

2. Kinetic equation in one-dimensional ‘a’ space

The kinetic equation for g(a,t) can thus be written as

∂g (a,t)

∂t
=

∫ t

0
ds

∂

∂a
W (a)K (a; s)

∂

∂a

g (a,t − s)

W (a)

− kδ(a − a∗)g (a,t) + O(Ȧ3g), (65)

where the memory kernel K(a; s) and effective potential W (a)
are defined, respectively, as

K(a; s) = 〈•
r(s)

•
r(0); a〉, (66)

W (a) = ln〈δ(|r1 − r2| − a)〉 = ln g(a), (67)

where g(a) represents the pair distribution function in a space.

IV. CONCLUSION

In this work, we have derived an exact kinetic equation
determining the time evolution of the probability distribution
for general reaction coordinates starting from a modified
Liouville equation, using the first-principle-based theory. By
using two consecutive approximations along the lines of
Zwanzig, we further simplify the kinetic equation to obtain
a Fokker-Planck-type tractable equation with a sink term of
strength k in reaction coordinate space (a space). As illustrative
examples, we have considered applications to the ET and
diffusion-controlled reactions. Here, we identify the reaction
coordinates and the sink position, and we use appropriate
initial conditions depending upon the experimental situation.
In this case, we simplify the Fokker-Planck-type equation
further by using time-reversal symmetry and the fact that
the reaction coordinate is a scalar to obtain a non-Markovian
Smoluchowski-type equation in one dimension. We have also
shown that the effect of excitation frequency can be incorpo-
rated into the kinetic equation through the use of a suitable
initial distribution function for solving the equation. A multi-
dimensional Liouville space description is very cumbersome
and highly involved, and hence a simpler description, such
as the one-dimensional description presented here for these
multidimensional processes, is very important and significant.
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