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Mathematical model for contemplative amoeboid locomotion
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It has recently been reported that even single-celled organisms appear to be “indecisive” or “contemplative”
when confronted with an obstacle. When the amoeboid organism Physarum plasmodium encounters the chemical
repellent quinine during migration along a narrow agar lane, it stops for a period of time (typically several
hours) and then suddenly begins to move again. When movement resumes, three distinct types of behavior are
observed: The plasmodium continues forward, turns back, or migrates in both directions simultaneously. Here,
we develop a continuum mathematical model of the cell dynamics of contemplative amoeboid movement. Our
model incorporates the dynamics of the mass flow of the protoplasmic sol, in relation to the generation of
pressure based on the autocatalytic kinetics of pseudopod formation and retraction (mainly, sol-gel conversion
accompanying actin-myosin dynamics). The biological justification of the model is tested by comparing with
experimentally measured spatiotemporal profiles of the cell thickness. The experimentally observed types of
behavior are reproduced in simulations based on our model, and the core logic of the modeled behavior is
clarified by means of nonlinear dynamics. An on-off transition between the refractory and activated states of the
chemical reactivity that takes place at the leading edge of the plasmodium plays a key role in the emergence of
contemplative behavior.
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I. INTRODUCTION

It is remarkable that even single-celled organisms can
exhibit complex behavior [1]. Consequently, the possible exis-
tence of primitive psychic life at the level of the cell has been
suggested. One elegant example was reported three years ago:
The giant amoeba of Physarum plasmodium can demonstrate
behavior that is “indecisive” or “contemplative” in nature [2].
When this slime mold encountered low concentrations of the
toxic chemical quinine, it temporarily stopped migrating. The
period of time for which migration stopped was unpredictable
and varied case by case. Nevertheless, after several hours
the plasmodium suddenly began to migrate again, in one
of three different ways: penetration through the toxic zone,
rebounding back from the toxic zone, and the intermediate
case in which the migration front split into both penetration
and rebound parts. This phenomenon represents the selection
of behavior after different periods of quiescence that depend
on the individual organism.

Interestingly, a phenomenological mathematical model for
understanding the mechanism of this contemplative behavior
was also proposed in Ref. [2]. The model is, however, too
abstract to test the correspondence of the model variables
and parameters with real phenomena, although the core
mathematical mechanism is plausible and probably valid.

In this article, we try to develop a more realistic model that
incorporates the dynamics of the mass flow of protoplasmic sol
and reproduces the three different types of behavior. We keep
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the core part of the dynamics described in the previous model.
Our model is constructed such that its biological justification
can be studied; we examine it in detail from a cytological
point of view. The purpose of the modeling is to construct a
reliable interface between the complex biochemical processes
of directed cellular locomotion and the core mechanism of
nonlinear dynamics, which is relatively simple.

We test the biological justification of our model by
experimentally measuring cell thickness profiles for the three
different types of contemplative behavior. By means of
numerical simulations based on the proposed model, these
measurements allow us to study the deformation of a realistic
cell shape that occurs with the mass flow of the protoplasm.

The core dynamics of the previously proposed model has
thus far been considered only from a mathematical point
of view. The importance of the saddle-type nature of the
transient dynamics in dissipative systems has previously been
emphasized [3–6]. By carrying out numerical simulations
using our proposed model, we show that a transition between
the activated and refractory states of chemical reactivity at
the leading edge of the plasmodium, which is regulated
by the protoplasmic sol, is essential to explain the ob-
served avoidance of the toxic region and the contemplative
behavior.

This paper is organized as follows. First, we present a new
experimental study of the spatiotemporal profile of the cell
thickness for each type of contemplative behavior exhibited by
Physarum plasmodium. Second, we propose a more realistic
model to explain this behavior, based on the conventional
model proposed in Ref. [2]. Finally, the mathematical essence
of the dynamical behavior is clarified and the biological
significance of the contemplative behavior is discussed within
the context of the mathematics of nonlinear dynamics.
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FIG. 1. Photographs of plasmodia migrating down an agar lane.
(a) Plasmodium migrating under homogeneous conditions. (b) Plas-
modium splitting into two fronts under inhomogeneous conditions
[see Fig. 3(b) for details]. The placement of quinine on the agar plate
is indicated by the dotted square.

II. EXPERIMENTAL STUDY

A. Organism and preparation

The plasmodium of Physarum polycephalum (strain HU195
× HU200) was fed oat flakes (Quaker Oats Co.) on 1%
agar gel (Wako Pure Chemicals Inc.) at 25 ◦C in the dark.
In this study, we performed two types of experiments. First,
we investigated the locomotion activity of the leading edge of
the plasmodium. Second, we examined the avoidance behavior
exhibited by the Physarum plasmodium in a limited space. In
all experiments, a fixed amount (100 mg) of the leading edge
of a large plasmodium in a culture trough (25 cm × 35 cm)
was cut off and placed at the end of a narrow agar lane (1.5%),
which was 1 cm in width and 30 cm in length. The plasmodium
then began to migrate directly toward the other end of the lane
over a period of 30–60 min [for example, see Fig. 1(a)]. The
entire organism, except for the frontal tip, showed coherent
rhythmic contraction with a period of ∼2 min.

The experiments were carried out at 25 ◦C in the dark.
The movement of the plasmodia was observed as described
previously [2]. The plasmodia were illuminated from below
using an infrared light source (λ ∼ 950 nm), and observed
from above using a charge-coupled device (CCD) camera with
a resolution of 640 × 480 pixels, in 8-bit grayscale. Images
were stored directly on a personal computer at intervals of 6 s.
The thickness of the plasmodium was estimated according
to the Beer-Lambert law: h ∼ − log I/I0, where h is the
thickness, and I and I0 are the transmitted and incident light
intensities, respectively. Calibration was performed by placing
the plasmodium between an agar plate and a cover glass with
a small tilt angle.

B. Locomotion of frontal tip separated from main body

The plasmodium migrating down the lane was separated
into a frontal tip and a main body using a knife (feather surgical
blade #10), as shown in Fig. 2. After removal of the main body,
only the frontal tip remained in the lane (at about 33 min in
Fig. 2). Nevertheless, the frontal tip continued to migrate for
10 min at almost the same velocity as before amputation. The
extension gradually slowed as the frontal tip became thinner
(at approximately 50 min). Finally, migration stopped. This
result suggests that migration of the front of the plasmodium
is driven by a process localized at the tip, but that a supply
of protoplasm from the rear part is necessary for maintaining
locomotion over longer periods of time.
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FIG. 2. Effect of amputation of the frontal tip. Thickness profiles
(arbitrary units) as a function of position along the agar lane x are
plotted. The origin of x and t is defined arbitrarily. Amputation
was performed at about 8 h after preparation. A plasmodium of
∼9 cm in length migrated toward the right; after 33 min a cut
was made at 2.5 mm from the front and the main body was
removed.

C. Behavior upon encountering quinine

We next studied the behavior of the plasmodium when
it encountered a repellent, quinine. The repellent region,
of fixed length 10 mm, consisted of a block of agar gel
containing quinine embedded in the middle of the lane.
The plasmodium was forced to face the repellent due to
the limited space in the lane, as shown in Fig. 1(b). The
effects of quinine concentrations of 4, 6, and 8 mM were
examined.

The plasmodia exhibited three distinct types of cell behavior
depending on the concentration of quinine, as shown by the
time traces of the thickness profiles in Fig. 3. In all three cases,
the plasmodium stopped migrating at the repellent region
for a period of several hours; the duration differed between
experiments. The plasmodium then suddenly began to move
again, in a manner that depended on the quinine concentration.
When the concentration was low (4 mM), the plasmodium
migrated through the repellent region after stopping for about
6 h [Fig. 3(a)]. When the concentration was high (8 mM),
the plasmodium reversed direction after stopping for about
15 h [Fig. 3(c)]. At the intermediate quinine concentration
(6 mM), the plasmodium exhibited both types of behavior
simultaneously; that is, part of the plasmodium moved through
the repellent region and the other part reversed direction,
after stopping for about 8 h [Fig. 3(b); see also Fig. 1(b)].
In other words, the plasmodium split into two fronts migrating
in opposite directions.

Here, the following points should be noted. First, the
splitting behavior was not exclusively observed at the in-
termediate repellent concentration; penetration and rebound
behavior were also observed on a case-by-case basis. Second,
the period of stopping differed on a case-by-case basis even
under identical conditions.
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FIG. 3. Three different types of behavior exhibited by Physarum plasmodia upon encountering the repellent. Thickness profiles are plotted
in the same manner as in Fig. 2. The plasmodia exhibited (a) penetration, (b) splitting, and (c) rebound behavior at quinine concentrations of
4, 6, and 8 mM , respectively.

III. MODEL

Let us now derive a model equation describing the cell
propagation in a one-dimensional domain. A schematic picture
of the cell cross section along the axis of migration is shown in
Fig. 4. The organism consists of an endoplasmic sol layer and
an ectoplasmic gel layer. The gel is composed of actomyosin
filaments. The sol layer is covered by the gel layer. The
streaming of protoplasmic sol is driven by a pressure gradient

u v

s

w

s

AU

supply

SG

diffusion

pressure
gradient p=p(s,s,w,v)

u v

s
porus
media

diffusion

supply

diffusion

decay, leak

agar gel

ectoplasm
(gel layer)

endoplasm
(sol layer)

propagating direction

FIG. 4. (Color online) Schematic illustration of the proposed
model, showing a cross section of the organism along the axis of
propagation. Chemical reactions that generate the leading edge can
be considered as autocatalytic reactions (AU) between u and v. The
thicknesses of the gel and sol layers are w and s̄, respectively. The
thickness of the gel changes with time due to sol-gel transformation
(SG). The pressure of the sol is described by a function of s, s̄, w,
and v. The solation factors and regulation factors are supplied by the
sol. Because the edge of the organism is a porous medium, the supply
rates of u and v from the sol at the leading edge are taken to be larger
than those in the main body.

generated by contraction of the actomyosin filaments in the
gel layer. Thus, we use a two-layer model.

In essence, the locomotion of Physarum polycephalum is
established by the following three steps (Fig. 5). (i) In order to
generate a leading edge, the organism decreases the stiffness
of the gel at the boundary edge by means of chemical reactions
that take place there. As the stiffness of the gel at the frontal
part of the plasmodium decreases, the pressure of the sol
at the frontal part decreases concomitantly. (ii) The sol is
transported from the rear part to the leading edge due to the
pressure gradient generated by process (i). (iii) The sol at
the leading edge, transported from the rear part by process
(ii), is transformed into gel. Thus, a fresh gel layer is newly
generated at the frontal part. It is essential to describe the
dynamics involved in each process (i)–(iii): the dynamics of
the chemical reaction that generates a spatial pressure gradient
in the sol layer, the protoplasmic sol streaming, and the sol-gel
transformation.

transformation 
from sol to gel

chemical reaction
(i)

(ii)

(iii)

actomyosin contraction

FIG. 5. (Color online) Schematic representation of cell locomo-
tion. See the main text for explanation.
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Modeling studies of the dynamics of the intracellular
protoplasmic sol have been reported in Refs. [7–9], and a di-
mensionless model equation has been proposed by Kobayashi
et al. [8]. Our model is based on the model derived in Ref. [8],
but it uses a more detailed setting in order to formulate an
equation for the protoplasmic sol streaming, as described in
Sec. III A. In Secs. III B and III C, the dynamics of sol-gel
transformations and chemical reactions in the gel layer are
incorporated into the model derived in Sec. III A.

A. Dynamics of protoplasmic sol streaming:
Conventional model

The mass of sol is described by s(x,t), where x ∈ [0,L]
and t � 0 are the variables representing space and time,
respectively. The flow of sol is governed by Darcy’s law:

st = (sMpx)x, (1)

where M is the mobility coefficient. The organism has a basal
thickness of the sol layer, sb(x,t), like the natural length of a
Hookian spring. We assume that the dynamics of the pressure
of the sol, p(x,t), is governed by the following equation:

p = βf

(
s − sb

s̄

)
, (2)

where s̄ = s̄(x,t) is the thickness of the sol layer. We assume
that the elastic force is determined by the displacement of
contraction from the basal thickness sb per unit thickness. It
has been experimentally observed that s̄(x,·) increases as the
amount of sol at position x increases. Therefore, we assume
that s̄ is determined by the quantity of s averaged over time τs̄ .
The dynamics of s̄ is described as follows:

τs̄ s̄t = Ds̄s̄xx + s − s̄, (3)

where Ds̄ is a diffusion coefficient. Equation (3) makes s̄ a
weighted running average of s over a time scale of order τs̄ .
The diffusion term in (3) is introduced for a smoothing effect,
which comes from the elastic property of protoplasm (see
Ref. [8] for details).

We assume that sb varies periodically in time, which
corresponds to actomyosin contraction. Here we assume that
the periodic oscillation can be simply described by a sine
function. In addition, because the amplitude of the actomyosin
contraction increases as the actomyosin bundles mature, the
amplitude of the oscillation should be a function of the
thickness of the gel, w(x,t). Thus, we assume that sb(x,t)
is described as follows:

sb = s̄ − w[a0 + a1 sin(ωt)], (4)

where ω is the angular velocity. For simplicity, we assume that
the phase of the oscillation of sb is independent of x.

Because the actomyosin system produces a stronger force in
the contraction phase than in the relaxation phase, the function
f is given by the following formulation (see Fig. 6):

f (ξ ) =
{

ξ for ξ > 0,

ξ (1 − ξ/c)−1 otherwise.
(5)

The parameter β represents the pressure when s is increased
from s̄b by s̄, because f (1) = 1. That is, β corresponds to the
stiffness of the gel.
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FIG. 6. Profiles of functions f (ξ ), H (w), and β(v).

B. Sol-gel transformation

Because the transformations from gel to sol and from sol to
gel take place bidirectionally in the organism, we assume that
the thickness of the gel layer tends to approach an equilibrium
value that depends on the amount of sol (i.e., s/w → γ2 as
t → ∞, where γ2 is a positive constant). Thus, the dynamics
of w is described as follows:

wt = Dwwxx + γ1(s − γ2w), (6)

where Dw is a diffusion coefficient. Because the total mass of
the organism is conserved, s + w is conserved over the entire
space. Thus, the equation for s is modified with respect to (1),
and we obtain the following:

st = (sMpx)x + γ1(γ2w − s). (7)

C. Localized concentration pattern of solation factors

It is experimentally observed that the gel at the frontal
part of the plasmodium is softer than that in the rear part.
The stiffness of the gel depends on the aggregation state of
the actomyosin filaments. For example, the strength of the gel
increases as the bundles thicken, the cross links become denser,
and the arrangement of the bundles becomes more regular. The
gel state can be converted to the sol state in response to solation
factors.

It has also been experimentally observed that when the
leading edge migrates, structures containing high concentra-
tions of adenosine triphosphate (ATP) [10,11], Ca2+ [12,13],
and Fragmin [14,15] are present in the gel layer at the leading
edge. The migration stops when these localized concentration
patterns disappear, indicating that such patterns are essential
for the cell to maintain migration. Experimental studies have
suggested that the chemicals involved are solation factors
(e.g., Fragmin [14], Ca2+ [13,16,17], and ATP [18]). The
chemical reactions that control the stiffness of the gel are
then responsible for generating the leading edge. These
considerations imply that the localized concentration patterns
are generated by the diffusion of solation factors and regulation
factors of the solation factors, and by chemical reactions
among them (i.e., a reaction-diffusion process).
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Let us now derive model equations for the reaction-
diffusion process that takes place in the gel layer. We first
propose a model equation for the situation in which the
organism is uniformly spread throughout the space available.
The reaction-diffusion process is described by

τut = (Duux)x − F (u,v) − ruu + σu(u0 − u),
(8)

τvt = (Dvvx)x + F (u,v) − rvv + σv(v0 − v),

where v and u represent the concentrations of the solation
factors and of the regulation factors of the solation factors,
respectively. The first term on the right-hand side of Eqs. (8)
represents the diffusion processes for u and v. The second
term represents autocatalytic chemical reactions between
the solation factors and the regulation factors. The third
term represents decay and leakage processes involving these
chemicals. The fourth term represents the supply rate of
the chemicals from the sol layer, where u0 and v0 are the
concentrations of the regulation factors and solation factors in
the sol layer. Because the diffusion rate of chemical substances
in the sol layer is relatively large compared to that in the gel
layer, we simply take u0 and v0 to be constant values.

We assume that the autocatalytic chemical reactions are
described by Hill’s law, which is a typical model used to
describe such reactions in biochemical processes:

F (u,v) = uv2

k1 + k2v2
, (9)

where k1 and k2 are positive constants.
The chemical reaction network in the organism is complex.

It has been found that many chemicals including H+, Ca2+,
K+, ATP, and adenosine diphosphate (ADP) are involved in
the reaction network [10,12,18–20]. Details of these chemical
reactions are currently unclear. Therefore, we adopt a simple
reaction term (9) to describe the fundamental dynamics of
the reactions. However, this does not mean that the reactions
are limited to the form described by (9). For example, the
behavior shown in Fig. 3 can be qualitatively reproduced by
F (u,v) = uv3/(k1 + k2v

3) and F (u,v) = u2v2/(k1 + k2v
2).

During locomotion, gel is generated in the anterior part
of the organism and is transformed into sol in the posterior
part. Such a process may induce topological changes of the
organism; for example, the organism can divide itself into two
parts by splitting (see Fig. 3). Such topological changes require
us to define the region of existence of the organism. In order to
describe the existence region of the gel, we employ the phase
field function

H (w) = {1 + tanh[γ (w − w0)]}/2, (10)

where w0 is a small constant that corresponds to the threshold
thickness of the organism. The boundary of the organism is
represented by the sharp layer of the function. The position
of the transition layer is taken to be the point at which w =
w0; H ≈ 1 for w > w0 + δ (δ is a small positive constant)
and H (w) ≈ 0 for w < w0 − δ when γ is sufficiently large
(Fig. 6). Here, we fix γ = 100. For convenience, we refer to
the region {x|H (w(x,·)) ∈ [0.9,1.0]} as the interior part, the
region {x|H (w(x,·)) ∈ [0.1,0.9)} as the boundary edge, and
the region {x|H (w(x,·)) ∈ [0.0,0.1)} as the exterior part.

We assume that the diffusion process obeys the first term
of (8) in the interior part (Du and Dv are constants), and that the
chemicals do not diffuse in the exterior part (Du = Dv = 0).
Using H , we formulate the diffusion coefficients as continuous
functions of w:

Du(w) = H (w)D̄u,
(11)

Dv(w) = H (w)D̄v,

where D̄u and D̄v are the diffusion coefficients in the interior
part.

We assume that the autocatalytic chemical reactions occur
in a region where gel exists. Therefore, we replace F (u,v)
in (8) by H (w)F (u,v).

Experimental observations have shown that the properties
of the structure of the organism at the boundary edge are
different from those in the interior part. In particular, the
following have been reported:

(i) Slime-containing vesicles, which are transported from
the posterior part to the anterior part in the sol layer, are
exposed at the boundary edge and reconstruction of the
membrane occurs [21].

(ii) The leading edge is a porous medium, thus the tube
structure at the leading edge is not mature.

The event in (i) perhaps increases the concentrations of
solation factors and regulation factors temporarily. Given the
observation in (ii), it is reasonable to assume that the supply
rates of u and v at the boundary edge (σu and σv , respectively)
are higher than in the interior part, because the porous medium
enables the sol to easily permeate into the gel layer. In addition,
the supply rates should be expressed as functions of s, because
they should be 0 at the place where s = 0. We assume that σu

and σv take the following forms:

σ∗ = σ∗(s) =

⎧⎪⎨
⎪⎩

σ i
∗g(s) in the interiorpart,

σ b
∗ g(s) at the boundaryedge,

0 in the exteriorpart.

(12)

Here, ∗ = {u,v}; σ i
∗ and σb

∗ are positive constants. The quantity
g(s) is a monotonically increasing function of s:

g(s) =
{

s
s0

for s < s0,

1
s0

(
s−s0

1+k3(s−s0)

) + 1 for s � s0,
(13)

where k3 is a positive constant. We note that g(s) satisfies
g(0) = 0 and g(+∞) = 1 + 1/s0k3. As a result, Eqs. (8) are
modified as follows:

τut = [Du(w)ux]x−H (w)F (u,v)−ruu+σu(s)(u0 − u),
(14)

τvt = [Dv(w)vx]x+H (w)F (u,v)−rvv+σv(s)(v0 − v).

Finally, we describe the stiffness of the gel as a function of
the solation factors, v. We take β in (2) to be a monotonically
decreasing function of v as follows:

β(v) = β1 + (β2 − β1) exp(−β3v), (15)

where β1, β2, and β3 are positive constants.
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IV. RESULTS

A. Locomotion in homogeneous media

We first describe the mechanism by which one-way propa-
gation of the organism occurs in homogeneous media. We will
then reproduce the contemplative behavior observed when the
organism encounters a chemical repellent.

In our numerical simulations, the Neumann boundary
condition was used. The values of the parameters used in
the numerical simulations are set to L = 6, M = 0.2, τs̄ =
0.2, Ds̄ = 1.0, c = 0.1, a0 = 0.35, a1 = 0.45, ω = 2π/1.08,
Dw = 0.01, γ1 = 10.0, γ2 = 1.0, k1 = 10.0, k2 = 3.0, γ =
100, w0 = 0.0175, D̄u = 1.0 × 10−5, D̄v = 1.0 × 10−4, σ i

u =
0.0, σb

u = 0.15, σ i
v = 0.015, σb

v = 0.02, u0 = 10.0, v0 = 1.0,
k3 = 10.0, s0 = 0.02, ru = 0.01, rv = 0.23, β1 = 0.1, β2 =
5.0, and β3 = 3.0.

As an initial datum, a localized sol was placed near
the left-hand boundary wall. The total sum of s(x,0) over
x ∈ [0,L] is 5.0. We take rv as a control parameter and observe
the migration behavior. When rv is sufficiently large, the
system described by (14) enters the refractory state and the
organism does not begin to migrate. If a smaller value of rv

is taken, the system enters an activated state and a localized
concentration pattern of v is observed near the right-hand edge
of the organism [Fig. 7(a)]. Furthermore, a localized pattern
of s is simultaneously generated. The spatial profile of s is
similar to that of v.

At the leading edge, a type of positive feedback between
the activity expressed by (14) and the sol transportation
is observed. Because more solation factors (v) are supplied
as s is increased, the activity of the system described by (14)
is sustained near the leading edge. The motility force becomes
higher in the posterior part than in the anterior part because
the pressure in the latter decreases due to the activity of the
system. Thus, the position of the entire organism moves toward
the leading edge and the localized concentration patterns of
v and s are sustained. This positive feedback loop results
in the observation of a one-way propagating localized con-
centration pattern. Such migration dynamics can be observed
for rv � 0.27.

B. Reproduction of locomotion behavior after amputation

It was found experimentally that the leading edge of the
organism propagated for a certain time after amputation of
the main body. This indicates that the leading edge can prop-
agate regardless of the oscillatory contractile force generated
in the main body. In our numerical simulations, amputation
was expressed by abruptly setting the variables u, v, and s to
0 for x � x0 at t = t0, where x0 is the amputation position. It
was observed experimentally that the contraction oscillation
disappears for a certain period of time after amputation; thus,
we set the parameters a0 and a1 in (4) to 0 for t � t0 and
x � x0. We set x0 = 1.44 and t0 = 36.

As shown in Fig. 7(b), the propagation of the leading
edge continues for a certain time after amputation because
the activity of the autocatalytic reaction described in (14) can
be sustained as long as a sufficient quantity of s remains at
the leading edge. However, the amount of s at the leading
edge gradually decreases after amputation, and propagation
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FIG. 7. (a) Migration in homogeneous media. (b) Behavior after
amputation. The frontal tip is divided from the main body at t = t0 =
36. For x � x0 = 1.44, the variables u, v, and s were abruptly set
to 0 at t = t0, and the parameters a0 and a1 were set to 0 for t � t0.
(c) [(d)] The term sin(ωt) in (4) is changed to −1 [+1] for t � t0 and
x � x0.

finally stops [Fig. 7(b)]. Such locomotion behavior is in good
agreement with the experimental results presented in Fig. 3.
The numerical results shown in Figs. 7(a) and 7(b) indicate
that, in order to maintain the migrating process, enough amount
of the sol must be transported to the leading edge.

We remark on the effect of the oscillatory motion on the
locomotion. Suppose that the oscillatory phase θ = ωt is fixed
at the relaxation phase (i.e., θ ≡ −π/2) for t � t0 and x � x0,
but no abrupt changes for a0, a1, u, v, and s are supposed.
Then the migrating process stops at finite time [Fig. 7(c)]
since the pressure at the main body is low. On the other
hand, if the oscillatory phase is fixed at the contraction phase
(i.e., θ ≡ π/2) for t � t0 and x � x0, the migrating process
can be maintained after amputation [Fig. 7(d)]. Although the
oscillatory motion, which is observed in the actual organism,
seems indispensable to realize the shuttle streaming of sol and
the locomotion in one direction, more careful numerical and
experimental studies are needed to conclude that the oscillatory
motion is a necessary condition for the migrating process in
view of the numerical results in Fig. 7.
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FIG. 8. Three types of response of the leading edge to encountering a repellent area. The dashed square indicates the repellent area.

C. Reproduction of responses to chemical repellent

In the experimental results shown in Fig. 3, the migration
of the plasmodium suddenly decreases when the leading
edge encounters a chemical repellent, and the organism stops
migrating for a certain time. Such a change in activity can
be reproduced in our simulations by abruptly and locally
changing parameters in the system described by (14). One
possible parameter that has a large influence on the activity of
the frontal edge is the removal rate of the solation factors, rv .
We express the presence of the chemical repellent by taking rv

to be a function of x; specifically, we replace rv by r̃v , which
is a function of x (Fig. 8):

r̃v(x) = rv + h

{
1

1 + eγ3[(x−L/2)−d/2]

+ 1

1 + e−γ3[(x−L/2)+d/2]
− 1

}
,

where d is the width of the region containing a chemical
repellent of concentration h. The chemical repellent was
placed at the center of the domain. We set d = 0.12 and
γ3 = 200/3.

The output obtained after the plasmodium encounters the
repellent area depends on the value of h. As expected, when
h is sufficiently small, the migration speed does not decrease
and the leading edge progresses through the area containing
the repellent. In contrast, the localized concentration pattern
of solation factors disappears for large h and the organism
stops migrating. The refractory state is not a final state
due to the conserved mass (s + w). The system described
by (14) can be reactivated at locations other than the area
containing the repellent, and the organism begins to move
again. However, the position of the frontal edge, which is
reformed after disappearing, and the migration direction both
change depending on h. Three different types of output are
qualitatively observed as h is increased.

For h = 0.04, after the leading edge touches the area
containing the repellent, the activity of the system described
by (14) gradually decreases and the leading edge stops
migrating near the repellent area [Fig. 8(a)]. In this case, a
small quantity of sol and gel can overcome the effect of the
repellent area; the activity of the system then recovers on
the right-hand side of the repellent area and the localized
concentration structure of solation factors is created again
on the right-hand side of the organism. As a result, the
propagation direction is preserved, which corresponds to
penetration behavior [Fig. 3(a)].

For h = 0.07, the leading edge cannot pass through the
repellent area and the leading edge stops migrating [Fig. 8(c)].
In this case, the activity of the system described by (14) cannot
recover on the right-hand side of the organism, which implies
that further migration to the right-hand side of the repellent
area cannot occur. When the amount of sol (s) at the rear
edge recovers, the activity of the system once again increases
on the left-hand side of the repellent area and a localized
concentration pattern of solation factors is newly created near
the rear edge. This localized pattern then propagates to the left;
that is, rebound behavior is observed.

When an intermediate value of h is taken (h = 0.05), both
types of dynamics are observed. The system described by (14)
is activated at both edges after the organism encounters the
chemical repellent. The organism is then divided into two
bodies; that is, splitting behavior is observed [Fig. 8(b)].

In our numerical simulations, we find that migration occurs
when a localized pattern of v appears at the leading edge. This
localized pattern can appear when a sufficient quantity of s

is present. The transition between the refractory and activated
states of the leading edge that takes place during avoidance of
the toxic region is due to the saddle structure of the kinetics
part of (14). That is, the on-off switching of chemical reactivity
is sensitive to s at the locations where a new leading edge
appears.
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V. DISCUSSION

We have found numerically that the transient dynamics be-
tween the active locomotion and quiescent states, as observed
experimentally (Fig. 3), can be described as transient dynamics
between the activated and refractory states of the autocatalytic
chemical reaction taking place in the gel layer. Such transient
dynamics is not sensitive to the choice of parameters in
the kinetics parts of (14). However, the three experimentally
observed types of transient dynamics (penetration, rebound,
and splitting) can be reproduced when other parameters such
as k1, which control the activity of the autocatalytic reaction,
are used as control parameters instead of rv .

It has been reported that the three types of output shown
in Fig. 8 can be observed in some activator-substrate-type
reaction-diffusion systems. A typical example is the Gray-
Scott model [2,22]. However, the on-off switching of chemical
reactivity cannot be observed in either the Gray-Scott model or
our conventional model proposed in Ref. [2]. Because no inter-
action is assumed between the chemical reactions that generate
the leading edge and the protoplasmic sol in the conventional
model, the regeneration of the localized concentration pattern
shown in Fig. 3 is not observed; the solution converges to
the trivial background state once the localized pattern has
disappeared. In our new model, this regeneration process was
successfully reproduced by incorporating interaction between
the system described by (14) and the protoplasmic sol.

We have represented the autocatalytic chemical reaction
that regulates the stiffness of the frontal part of the organism
by a simple reaction-diffusion system. It is plausible that the
chemical reaction controlling the gel stiffness can be repre-
sented by a localized pulse in the reaction-diffusion system
because, as reported in Refs. [10–15], the concentrations of
some chemicals such as Fragmin, Ca2+, and ATP have been
found to be locally high at leading edges. Furthermore, it
has been experimentally observed that migration only occurs
when the localized concentration pattern is present [23]. These

experimental results suggest that the interaction between the
two types of dynamics, that is, the protoplasmic streaming of
the sol and the chemical reaction that takes place at the leading
edge, is critical for maintaining the migration process. This is
supported by the observation that, as shown in Fig. 7(b), when
the quantity of sol at the leading edge is decreased by ampu-
tation of the main body, migration stops after a finite distance.
An appropriate coupling of these two effects is thus necessary
to reproduce the experimentally observed locomotion.

The contemplative behavior found in Physarum might
be generalized to the behavior of higher animals. Cognitive
behavior in humans is found within a given context. A typical
example may be found in Shakespeare’s tragedy “Hamlet.”
When Hamlet encounters a psychological problem (doubt as
to whether or not his uncle, the present king, assassinated
his father, the former king), he delays taking clear action for
a long time because he cannot decide on a suitable course
of action. However, Hamlet suddenly acts after choosing his
path. Activity in the quiescent state (state of inaction) contrasts
strongly with vigorous action, and the duration of the quiescent
state differs from case to case and is difficult to predict. This
parallels the contemplative behavior observed in Physarum.
Insofar as the behavior of an organism represents the final
output of information processing, the analysis of complex
behavior can provide a basis for considering the common
characteristics of living systems over a wide area of the
evolutionary phylogenetic tree.
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