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Response of Morris-Lecar neurons to various stimuli
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We studied the responses of three classes of Morris-Lecar neurons to sinusoidal inputs and synaptic pulselike
stimuli with deterministic and random interspike intervals (ISIs). It was found that the responses of the output
frequency of class 1 and 2 neurons showed similar evolution properties by varying input amplitudes and
frequencies, whereas class 3 neuron exhibited substantially different properties. Specifically, class 1 and 2
neurons display complicated phase locking (p : q, p > q, denoting output action potentials per input spikes)
in low-frequency sinusoidal input area when the input amplitude is above their threshold, but a class 3 neuron
does not fire action potentials in this area even if the amplitude is much higher. In the case of the deterministic
ISI synaptic injection, all the three classes of neurons oscillate spikes with an arbitrary small frequency. When
increasing the input frequency (both sinusoidal and deterministic ISI synaptic inputs), all neurons display 1 : 1
phase locking, whereas the response frequency decreases even fall to zero in the high-frequency input area.
When the random ISI synaptic pulselike stimuli are injected into the neurons, one can clearly see the low-pass
filter behaviors from the return map. The output ISI distribution depends on the mean ISI of input train as well
as the ISI variation. Such different responses of three classes of neurons result from their distinct dynamical
mechanisms of action potential initiation. It was suggested that the intrinsic dynamical cellular properties are
very important to neuron information processing.
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I. INTRODUCTION

Under certain forms of external stimulus, neurons can fire
action potentials (spikes), which are known to be responsible
for transmitting information in the nervous system [1,2]. The
ability of neurons to encode and decode the characteristics of
presynaptic stimuli enables the flow of information within
our brains. For decades, many influential coding schemes
were proposed, such as rate coding (the average number of
spikes per unit time), temporal coding (the precise timing of
single spike), and population coding (encoding information
by the joint activities of a large number of neurons) [3–5].
There is now a consensus that different neural systems may
resort to different coding strategies. Moreover, recent studies
also suggested the possibility of dual or multiple coding
mechanisms [6,7]. What kinds of coding schemes are used
in nervous systems is a topic of intense debate within the
neuroscience community. On the other hand, neurons exist in
many different shapes and sizes and can be classified by their
morphology and function [8]. Different neurons play different
roles in information processing and transmission. While the
precise coding recipe in the nervous system is uncertain, the
responses of various classes of neurons to different stimuli
are fundamental to understanding information transfer in the
nervous system.

From the electrophysiological characteristics of neurons,
Hodgkin identified three basic classes of neurons distinguished
by their frequency-current (f -I ) relationship [9–13]. Class 1
neurons generate action potentials with an arbitrary low
frequency in response to weak stimulation with a continuous
f -I curve. Class 2 neurons fire spikes within a certain
frequency band with a discontinuous f -I curve. Class 3
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neurons, however, fail to spike repetitively, and typically spike
only one time at the onset of stimulation.

However, knowing the f -I relationship is not enough to
predict neuronal responses to time-varying inputs. Recently,
numerous studies have been carried out in the area of class
1 or 2 neurons under a stimuli with the form of a constant
direct current plus a sinusoidal term. With the variation in the
amplitude or the frequency of the input stimuli, the neuronal
response produces complex phase-locking and chaotic behav-
iors [14–17]. It was also reported that these behaviors were
observed in cortical neurons in vivo [18]. When interneurons
or pyramidal neurons were subjected to sinusoidal stimulation,
the firing threshold rises sharply at a high value of input
frequency, showing bandpass-filter behavior [19]. Numerical
studies also shown that various bifurcations including inverse
flip period doubling and saddle-node bifurcations form the
boundaries of complicated mode-locking structures [20]. The
response of a Hodgkin-Huxley neuron (class 2 neuron) to a
high-frequency input is irregular, and the output interspike
interval histogram undergoes a sharp transition [21].

In spite of the wealth of the studies on firing properties
of neurons, the discussions of former works were limited to
class 1 (Integrate-and-Fire Model) or class 2 (Hodgkin-Huxley
model) neurons, and there have been few discussions about
the differences between the two neuron classes. Class 3
neurons and the different properties among the three classes
of neurons have never been discussed in this respect. In our
present work, using a modified Morris-Lecar (ML) model,
we numerically investigated the response of three kinds of
Hodgkin-classified neurons with different time-varying inputs.
This modified ML model could exhibit all three excitabilities.
We not only discuss the responses of the three classes of
neurons to those different types of inputs, but also analyze the
difference of the response properties among the three classes.
First, an external stimulus was set to be sinusoidal in form.
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Then a simulated synaptic input with deterministic interspike
intervals (ISIs) was chosen as an external stimulus. Finally,
we employed a synaptic input with a random ISI distribution.
Our results revealed that the output frequencies of class 1 and
2 neurons show similar evolution properties, but that of class 3
neurons exhibit different behaviors. Neurons show interesting
phase-locking behaviors, and their response frequency can
increase or decrease as the stimulus frequency increases. The
output of the ISI distribution depends on the mean ISIs of
inputs as well as their variations.

Our paper is organized as follows. In Sec. II, we give a
simple description of the neuron model with three kinds of
responses. In Sec. III, we show the result of response of three
classes of neurons to sinusoidal input, time-dependent synaptic
input, and random synaptic input. The conclusion is given in
Sec. IV.

II. MODEL

In our numerical study, we utilize a modified ML model
[12]. Varying a single parameter, this model exhibits all
three excitabilities. This system is described by the following
equations:

CdV/dt = −gfastm(V )(V − ENa) − gslowW (V − EK )

−gleak(V − Eleak) + Iext, (1)

dW/dt = φ
W∞(V ) − W

τ (V )
, (2)

m(V ) = 0.5

[
1 + tanh

(
V − βm

γw

)]
, (3)

W∞(V ) =
[

1 + tanh

(
V − βw

γw

)]
, (4)

τ (V ) = 1/ cosh

(
V − βw

2γw

)
. (5)
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FIG. 1. Frequency-current (f -I ) curves of three classes of ex-
citabilities computed by Eqs. (1)–(5) with sustained external injecting
direct currents Iext of varying amplitude. Class 1 neurons have a
continuous f -I curve (upper), whereas the curve of class 2 neurons
is discontinuous (middle). Here the frequency of class 3 neurons is
zero, because the measurement of firing rate requires at least two
spikes (bottom).
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FIG. 2. (Color online) Phase planes of the membrane potential V

plotted against the slower recovery variable W . The intersection
points of V nullcline (subthreshold stimuli, black solid; upper thresh-
old, stimuli black dash) and W nullcline (red dash-dot) represent
stable(black arrowhead) or unstable fixed points (red arrowhead).
Upper-threshold DC stimulus shifts the V nullcline upward (black
dash), destroying or displacing the former fixed points, thereby
allowing the neuron to spike. The direction of trajectories (blue solid)
is indicated by black arrows. The two pink dotted lines in the bottom
panel present quasiseparatrixes, and the asterisk denotes the head of
the quasiseparatrix.

Here V is the membrane potential, and W is a slower
recovery variable. The term −gfastm(V )(V − EmNa) denotes
a fast Na+ current, −gslowW (V − EK ) denotes a slow K+
current, and −gleak(V − Eleak) is a leak current. The parameter
values are ENa = 50 mV, EK = −100 mV, Eleak = −70 mV,
gfast = 20 mS/cm2, gslow = 20 mS/cm2, gleak = 2 mS/cm2,
φ = 0.15, C = 2μ F/cm2, βm = −1.2 mV, γm = 18 mV, and
γw = 10 mV. Hereβw is identified as a varying parameter. In
our study, we chose βw = 0 mV (class 1 excitability), −13 mV
(class 2 excitability), and −23 mV (class 3 excitability). Iext

is the external input current with different forms in our work.
Figure 1 shows the f -I curve of each of the three excitabilities.
Note that the frequency of class 3 neurons is undefined, for
the measurement of firing rate requires at least two spikes, and
class 3 neurons fire at most once.

As stated in Ref. [12], the spike-initiating dynamics
of the three excitabilities represent different outcomes in
nonlinear competition between oppositely directed kinetically
mismatched currents. Class 1 excitability occurs through a
saddle-node bifurcation, class 2 excitability occurs through
a Hopf bifurcation, and class 3 excitability occurs through a
quasiseparatrix crossing. Figure 2 gives the phase planes of
three classes of neurons excited by a suprathreshold direct
current (DC).

III. SIMULATION RESULTS AND DISCUSSIONS

A. Sinusoidal input

First, we focus on the response of ML neurons to sinusoidal
external inputs. The sinusoidal input Iext is given by

Iext = Ain sin(2πfint), (6)
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FIG. 3. (Color online) The average output frequency fout of the three classes of neurons as a function of the sinusoidal input frequency fin

and amplitude Ain. Dotted curves in bottom panels denote k = fout/fin.

where Ain is input amplitude and fin is input frequency. Ain

and fin are set as free parameters.
The average output frequency in the form of a color map

as a function of the input frequency and amplitude is shown
in Fig. 3 (top panels). The color marks the average output
firing frequency fout of the neurons during our stimulation
(not less than 10 s). The output frequency patterns of class
1 and 2 neurons are similar, whereas class 3 neurons show
a different pattern. In the case of high input frequency, a
higher input amplitude is needed to activate the neurons.
That is to say, the threshold of three classes of neurons
increases with the increasing of input frequency. In the
low-frequency stimuli area, the output firing rate of class 1 and
2 neurons is discontinuous as the input frequency increases.
The low-frequency parameter space of class 1 and 2 neurons
was divided into many sector areas. The ratio of the output
frequency to input frequency is the same in the same sector
area. Class 3 neurons do not respond to the low-frequency
input even if the input amplitude is very high.

To show the details of the response behaviors of three
classes of neurons to sinusoidal stimuli, the evolution of
output frequency fout with the input frequency fin is plotted
in the bottom panels of Fig. 3. Here dotted curves denote k =
fout/fin. Under slow sine-wave stimuli, class 1 and 2 neurons
have a higher output frequency than their input frequency, and
fout increases with different slopes (dotted line) by changing
fin. Class 1 and 2 neurons display p : q (p > q) phase locking
(bursting, Fig. 4) behaviors, and the phase-locking firing
patterns transform frequently in the low-input-frequency area.

Class 3 neurons require inputs with higher amplitude and
frequency to fire action potentials. When fin increases, fout

of all neurons produce 1 : 1 phase locking. When further
increasing fin, all the neurons exhibit subthreshold oscillation,
and the action potential vanishes. As the amplitude of the input
sine wave increases, the range of 1 : 1 phase-locking state is
extended for all three classes.

Neurons display different behaviors due to their dynamical
mechanisms of action potential initiation. The sinusoidal input
has a rising phase (mainly contributing to depolarization
effect) and falling phase (mainly contributing to polarization
or the hyperpolarization effect). Under periodic stimuli, the
fixed points in the quiescent state are destroyed, and the
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FIG. 4. (Color online) The bursting behaviors of class 1 and 2
neurons. The dashed red line denotes the input current, and the solid
blue line denotes membrane potential.
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membrane potential begins to oscillate. When a low-frequency
sinusoidal current is injected into class 1 and 2 neurons, the two
excitabilities are triggered through the saddle-node bifurcation
and Hopf bifurcation, respectively, for the rising phase of
the input pass the threshold. After firing several spikes, the
following falling phase drives the system into hyperpolarized
state, whereby the neurons exhibit bursting behaviors (Fig. 4).
However, the low-frequency sinusoidal input cannot drive
class 3 neurons to displace the quasiseparatrix instantaneously
for the slow rising phase. So the system emerges subthreshold
oscillations. It is revealed that the class 3 neurons are more
sensitive to the rising rate (slope) of the input. When the input
frequency increases, one input cycle fires only one spike for
three classes of neurons. Because there is not enough time to
trigger more spikes for the depolarized segment, the coming
hyperpolarization suppresses the membrane potential below
the threshold. For the high-frequency stimuli, all the neurons
produce subthreshold oscillations; thus, the output frequency
falls to zero.

B. Synaptic input with determinate interspike
interval distribution

In this subsection, we use the synaptic current described
by the α function [14]. This α function synaptic input is close
to physiological recordings of the postsynaptic response. The
synaptic input equation is

Iext = gsyn

∑
n

α(t − ti,n)(Va − Es). (7)

Here gsyn is the conductance of the synapse controlling the
synaptic input amplitude, and ti,n represents the start time of

the nth presynaptic input pulse. The synaptic time delay is ne-
glected. Va = 30 mV is the maximal postsynaptic membrane
potential, and Es = −50 mV is the reversal potential of the
synapse. The alpha function α(t) is defined by

α(t) = (t/τ ) e−t/τ θ (t), (8)

where τ is the time constant relevant to synapse conduction
and θ is the Heaviside step function. Note that this synaptic
input here is essentially an α-shaped injection current with
fixed amplitude, because the term [Va − E(s)] in Eq. (7) is
constant. Although this form of input spike train is not what
happens at a real synapse, it is convenient to modify the ISI of
the input train. The ISI of input is given by

Ti = ti,n+1 − ti,n, (9)

where ti,0 = 0. The ISI of the synaptic input, in this subsection,
is set to be deterministic, Ti = Tconst. The input frequency is
calculated by fin = 1/Tconst, and fin and gsyn are set as free
parameters.

Figure 5 (top panels) shows fout as the function of fin

and gsyn in the form of a color map. The average output
frequency fout of class 1 and 2 neurons has nearly the
same evolution properties driven by the synaptic stimuli with
deterministic ISI inputs as varying synaptic conductivity gsyn

and input frequency fin, whereas class 3 neurons have a more
complicated pattern. The output frequency fout of all neurons
increases with the input frequency fin, and it appears to be 1 : 1
phase locked in a large parameter region. Here fout decreases
when fin is larger than a certain value for a fixed gsyn. It is clear
that a boundary separates the increasing area and decreasing
area in Fig. 5 (top panels). In the high-input-frequency area,
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FIG. 5. (Color online) The average output frequency fout of three classes of neurons driven by synaptic stimuli with dependent ISI inputs.
Dotted curves in the bottom panels denote k = fout/fin.
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the threshold (minimum conductivity leading neurons to fire
action potentials) of class 1 and 2 neurons decreases, but for
class 3 neurons, it increases.

The bottom panels in Fig. 5 show fout ∼ fin curves. All
response frequencies are not larger than the input frequency.
This means that all neurons do not exhibit bursting behaviors
under dependent ISI synaptic input. When the conductivity
gsyn is above the threshold, fout increases linearly with fin. For
high-frequency synaptic inputs, fout begins to decrease, and
the decreasing ratio is slow, unlike the case of high-frequency
sinusoidal stimuli.

Here the postsynaptic current is more pulselike, and it is
assumed that the α function has a high positive slope of rising
phase and a slowly falling phase in a single-input pulse. When
a low-frequency current is injected into the neurons and the
synaptic conductivity is large enough, class 1 and 2 neurons
were driven through the saddle-node bifurcation and Hopf
bifurcation, respectively. These neurons exhibited only one
action potential because the time of the input pulse duration
was short. As for class 3 neurons, the system was driven
through quasiseparatrix instantaneously and fires a spike, for
the synaptic input with a high positive slope during the rising
phase. Note that class 3 neurons are more sensitive to the
slope of the input current to fire than the other two classes.
For the refractory of the neurons, the higher the frequency of
inputs, the more input pulses are filtered. On the other hand,
high-frequency synaptic inputs easily drive the class 1 and 2
neurons across their bifurcations to initiate action potential
spikes, thereby decreasing their thresholds. For class 3
neurons, a higher input amplitude is needed to drive the
system to fire action potentials, or else the system will initiate
a subthreshold oscillation. Therefore the threshold of class 3
neurons increases with the high-frequency input.

C. Synaptic inputs with random ISI distribution

In this subsection, the ISI of synaptic spike inputs Ti in
Eq. (9) is assumed to be independent random variables with a
Poisson distribution given by

Pp(x) = e−λλx/x! (x = 0,1, . . .). (10)

Here x represents the random variables. Our calculations are
performed by changing the mean ISIs, which is controlled
by λ.

Figure 6 plots the ISI histogram of the neurons excited by a
spike train with Poisson ISI distribution (gsyn = 3.0 mS/cm2,
λ = 3.5 ms). Similarly, all neurons can filter the low ISIs. The
output ISIs from three classes of neurons are no less than
5 ms, and the output ISIs of class 3 neurons are distributed in
the largest region. One can clearly observe the low-pass filter
behavior from the corresponding return maps in Fig. 7. Under
low mean ISI input stimulation, class 3 neurons miss much
more spikes than the other two classes; thus class 3 neurons
have a much stronger ability to filter small-input ISIs. By
increasing the mean ISIs, the output ISI histogram is similar to
that of the input. This means that neurons fire synchronously
with the input stimuli of a large value of mean ISIs.

It is helpful to use the information entropy to make clear
the output ISI distribution property. For each spike train, we
employ the normalized distribution of ISIs PISI(
t), which
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FIG. 6. The interspike intervals histogram of (a) synaptic input
and output response of class 1 neuron (b), class 2 neuron (c),
and class 3 neuron (d). Synaptic conductivity gsyn = 3.0 mS/cm2,
λ = 3.5 ms. Inset of (d) is an enlarged view for the output ISI
distribution in the insert.

denotes the probability of ISIs distributed between t and t +

t . The entropy is defined as [22–24]

H = −
∑

observe
t

PISI(
t) ln [PISI(
t)] . (11)

The entropy here not only indicates the amount of information,
but also illustrates the properties of ISI distributions.

In Fig. 8 we plotted the information entropy against the
mean input ISIs λ. Under low λ, the response ISIs of class 3
neurons have the highest entropy. The entropies of class 1 and
2 neurons are both less than the entropy of the input spike
train. As λ increases, the entropies of class 1 and 2 neurons
increase, whereas the entropy of class 3 decreases then below
the entropy of class 1. For λ above 7 ms, the entropy of class 3
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FIG. 7. ISI return maps of (a) synaptic input and output response
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(d). Synaptic conductivity gsyn = 3.0 mS/cm2, λ = 3.5 ms.
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FIG. 8. (Color online) Information entropy of the spike-train
inputs and the response spike trains of three classes of neurons
against the mean values of input ISIs. The synaptic conductivity
gsyn = 3.5 mS/cm2.

neurons begin to increase with λ. Eventually the entropies of
three classes of neurons get close to the input ISI entropy.
This means that the output ISIs have the same distribution
properties with input ISIs, when the high mean ISI λ input is
injected into neurons.

The value of entropy is related to the form of the ISI
distribution. A more concentrated distribution leads to a very
low entropy; e.g. if PISI(
t) = 1 for a regular ISI distribution,
then the entropy H = 0. When the mean input ISI is low,
class 3 neurons expand the ISI distribution in a large region,
while filtering the ISIs lower than 5 ms (see Fig. 6). Class
1 and 2 neurons filter more ISIs but hardly an expanded ISI
distribution. Thus class 3 neurons have the highest entropy, and
the entropies of class 1 and 2 neurons are less than the entropy
of inputs. On the one hand, as the value of mean input ISIs
increases, the number of low ISIs in the input train gets smaller;
thereby all three classes of neurons filter a small amount of
input ISIs, and the output ISI distribution become more similar
to the input train. Thus, the entropy of three classes of neurons
is close to the input entropy. Moreover, by increasing the mean
input ISIs, the variance of input ISIs increases; thus the entropy
of the input train as well as the entropies of three classes of
neurons increases.

In order to separate the effects of mean and variance of
random ISIs, we performed the simulation using input ISIs
with a Gamma distribution. The Gamma probability density
function is given by

Pg(x) = xα−1e−x/β

βακ(x)
(x > 0). (12)

Here, the mean value of input ISIs μi = αβ, and variance
of input ISIs cvi = αββ.

Figure 9 shown the information entropies changing with
mean input ISIs. As μi is increasing, the entropies of three
classes of neurons show evolutionary behaviors similar to
that of Poisson distribution. In the case of low μi , the entropies
of all classes are different. Increasing μi , the entropies
of all three classes of neurons get close to the input ISI
entropy.
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FIG. 9. (Color online) Information entropy of the spike-train
inputs (red square) and the response spike trains of three classes
of neurons (class 1: blue circle; class 2: magenta asterisk; class 3:
green triangle) against the mean values of input ISIs. The synap-
tic conductivity gsyn = 5 mS/cm2, variance of input spike train
cvi = 1.2.

With the same-input mean ISIs, the larger input variance
yields larger output entropy. Figure 10 shows the entropies
against the input variance cvi with μi = 3.3 ms, 11.1 ms. In
the left panel of Fig. 10, the entropy of class 3 is largest and that
of class 1 is lowest. With increasing cvi , the entropies increase.
For μi = 11.1 ms all the output entropies of three classes of
neurons are close to each other. As the input variance increases,
the output entropies of all neurons increase sharply.

The output ISI distribution of three classes of neurons
depends on the mean ISIs of the input train as well as
their variance. This result is consistent with the outcome
of Ref. [14], which focused only on class 2 neurons (HH
model). Here we not only show the entropy of the neurons,
but also reveal the properties of their output ISI distribution.
All three classes of neurons fail to respond to all amounts of
information of the low mean ISI inputs, class 3 with a higher
entropy and classes 1 and 2 with a lower entropy than the
inputs. For assembly of class 3 to class 1 or 2 neurons in
a network would require full information of the input. This
entropy evolution property reveals a potential useful coding
mechanism for information transmission.
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FIG. 10. (Color online) The entropies against variance cvi for
inputs with Gamma distribution ISI with the mean value μi = 3.3 ms
(left panel) and 11.1 ms (right panel).
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IV. CONCLUSION

In this paper the responses of three classes of neurons to
various types of inputs have been numerically investigated. We
not only discussed the response of three classes of neurons to
different types of inputs, but also analyzed the difference of the
response properties among three classes. It was found, varying
the input frequency and amplitude, that the output frequency
responses of class 1 and 2 neurons show similar properties,
whereas class 3 neurons display more complicated response
behaviors.

Under sinusoidal stimuli, class 1 and 2 neurons show
bursting behaviors in the low-input-frequency area, whereas
class 3 neurons do not fire action potential in this input
area even if the input amplitude is very high. This result is
consistent with experimental evidence. Auditory brain stem
neurons exhibit typical class 3 excitability and do not respond
to a low-frequency sinusoidal current [25] and a slow-rising
ramp current [26–28]. By increasing the input frequency,
all neuron classes exhibit 1 : 1 phase-locking behavior. This
phase-locking behavior produces an accurate firing response
[19]. With increasing input frequency, the output frequency
of three classes of neurons reduces to zero (subthreshold
oscillation). The similar phase-locking behaviors are also
observed in the case of deterministic ISI synaptic puleslike
input. These increasing and decreasing behaviors of response
frequency are consistent with the series of experiments of

extracellular recordings [29]. In addition, the class 3 neuron is
more sensitive to the slope of the input current than the other
two classes. Recently, it has been reported that neurons encode
the magnitude of input slope rather than input amplitude [30].
Previous experiments observed a similar result, where some
cortex neurons are able to detect the slope of sensory signals
[31,32].

Where mean ISI of random input is low, all three classes
of neurons exhibit low-pass filter behavior. As mean ISI of
random input increases, the output ISI histograms are more
and more similar to that of the input. Clearly, in both the cases
of Poisson and Gamma distribution ISI input, all three classes
of neurons fail to respond to full information in the case of
low mean ISI inputs. However, assembling class 3 to class 1
or 2 neurons in a network, it would be possible to respond
to the full input information. Thus, we conjecture that this
entropy property reveals a potential useful coding mechanism
for information transmission.
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