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Optimal receptor-cluster size determined by intrinsic and extrinsic noise
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Biological cells sense external chemical stimuli in their environment using cell-surface receptors. To increase
the sensitivity of sensing, receptors often cluster. This process occurs most noticeably in bacterial chemotaxis,
a paradigm for sensing and signaling in general. While amplification of weak stimuli is useful in the absence
of noise, its usefulness is less clear in the presence of extrinsic input noise and intrinsic signaling noise.
Here, exemplified in a bacterial chemotaxis system, we combine the allosteric Monod-Wyman-Changeux model
for signal amplification by receptor complexes with calculations of noise to study their interconnectedness.
Importantly, we calculate the signal-to-noise ratio, describing the balance of beneficial and detrimental effects of
clustering for the cell. Interestingly, we find that there is no advantage for the cell to build receptor complexes for
noisy input stimuli in the absence of intrinsic signaling noise. However, with intrinsic noise, an optimal complex
size arises in line with estimates of the size of chemoreceptor complexes in bacteria and protein aggregates in
lipid rafts of eukaryotic cells.
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I. INTRODUCTION

Biological cells can sense and respond to various chemicals
in their environment. However, the precision with which a
cell can measure and internally evaluate the concentration of a
specific ligand molecule is negatively affected by many sources
of noise [1,2]. There is external input noise (extrinsic noise)
from the random arrival of ligand molecules at the cell-surface
receptors by diffusion [3–5], as well as various sources of
intracellular signaling noise (intrinsic noise) due, for example,
to receptor dynamics, adaptation, and signal transduction
[6], all relying on random chemical events. Nonetheless,
several biological examples exist in which measurements
are performed with surprisingly high sensitivity. In bacterial
chemotaxis, for instance, the bacterium Escherichia coli can
respond to changes in concentration as low as 3.2 nM [7],
corresponding to only three molecules in the cell volume. High
sensitivity is observed also in spatial sensing by single-cell
eukaryotic organisms, such as during aggregation of the social
amoeba Dictyostelium discoideum [8] and during mating of
Saccharomyces cerevisiae (budding yeast) [9]. Furthermore,
axon growth cones of neurons respond to an estimated change
in concentration of about one molecule in the volume of the
growth cone [10], and T cells of our immune system respond to
a single peptide-major histocompatibility complex on a target
cell [11]. How can this sensitivity be understood despite the
various sources of noise?

The best characterized signal-transduction pathway is the
bacterial chemotaxis pathway, allowing cells to swim to
sources of nutrients such as sugars and amino acids, and away
from toxins [12]. Cells are equipped with different receptor
types, with Tar among the most abundant receptors (hundreds
to thousands of copies per cell). Tar specifically binds aspartate
(or its nonmetabolizable analog MeAsp). An increase in ligand
concentration, as occurring, for example, when the cell swims
toward the source of an attractant, inhibits receptor signaling
activity and keeps the cell on course. In contrast, a decrease in
attractant concentration, as occurring, for example, when the
cell swims in the wrong direction, increases receptor signaling

activity. This enhances the probability for the cell to randomly
find a new and hopefully better direction of swimming. Cells
are further equipped with an adaptation mechanism, which
allows them to sense changes in ligand concentration over a
wide range of background concentration. Specifically, cells
adapt their signaling activity by receptor methylation and
demethylation. Methylation by enzyme CheR increases the
receptor signaling activity, while demethylation by enzyme
CheB decreases receptor activity.

Receptor clustering is well documented in bacterial chemo-
taxis [13] and is known to amplify tiny changes in ligand
concentration similar to an antenna. Experimental evidence
for clustering is based on structural approaches [14], imaging
by fluorescence microscopy [15], including photoactivated
localization microscopy (PALM) [16], as well as cryoelectron
microscopy [17,18]. Receptor clusters form predominantly
at the cell poles as illustrated in Fig. 1, possibly due to the
increased membrane curvature [19]. At a smaller scale, recep-
tor clusters are composed of smaller signaling complexes. The
notion of receptor complexes is supported by high-resolution
imaging with PALM [16], as well as by the extracted sensitivity
and cooperativity from dose-response curves (activity changes
in response to ligand stimuli) measured by in vivo fluorescence
resonance energy transfer (FRET). As an example, Fig. 2(a)
shows previously published dose-response curves of the
receptor activity from in vivo FRET experiments (see figure
caption and [20] for details). Briefly, cells were genetically
engineered to only express the Tar receptor. Different curves
correspond to different modification (adaptation) states of the
receptors.

To explain the dose-response data, the Monod-Wyman-
Changeux (MWC) model [21] was used to successfully
describe signaling by two-state receptor complexes [Fig. 1(a)]
[20,22–24]. The complex size, that is, the number of strongly
coupled receptors in a complex, was estimated to be about
10–20 receptors. Alternative receptor models, later found to
be inconsistent with the FRET data [25], are based on the Ising
lattice, where moderate receptor-receptor coupling provides a
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FIG. 1. (Color online) Schematic of bacterial cell with polar
receptor cluster. (a) Receptor clusters are composed of smaller
signaling complexes (here exemplified for N = 5 receptors), which
are either off (inactive) [blue (left)] or on (active) [red (right)].
Ligand molecules arrive at receptors by diffusion (with diffusion
constant D) and bind and unbind. Receptor complexes randomly
switch between the two states, from off to on with rate constant kf

and from on to off with rate constant kb. Additionally, receptors adapt
by receptor methylation (rate constant kR) and demethylation (rate
constant kB ). Diamonds (green) indicate methyl groups on receptors.
(b) Shown is a trajectory of a diffusing ligand molecule, which
comes on and off of the receptor cluster with NC = 9 complexes (and
hence NT = NCN = 45 receptors in total). The chemotaxis signaling
pathway ultimately regulates the flagellated rotary motors for cell
motility.

mechanism for signal amplification and integration [26,27].
Fits of the MWC model to the data are shown in Fig. 2(a),
which indicates an increase in complex size with receptor
methylation level and hence ligand concentration [Fig. 2(b)].
This result is consistent with the observed destabilization of
polar receptor clusters by receptor demethylation or addition
of attractant [19]. However, it is unknown what determines
complex size.

Complex size could be limited by an imperfect physical
clustering mechanism as proteins and lipids are soft materials,
undergoing substantial thermal motion. Furthermore, larger
complexes may not form due to the presence of other proteins

in the membrane, which may constitute impurities in the
receptor cluster. The dynamic aspect of receptors is supported
by experiments using fluorescence recovery after photobleach-
ing (FRAP). This indicates that receptor-cluster associated
proteins, as well as components of the motors, are relatively
dynamic [28,29]. Alternatively, complex size might be deter-
mined by engineering principles (functionality), and hence be
“optimal” for sensing. This work supports the latter view.

Figure 3 illustrates some of the advantages and disadvan-
tages of receptor clustering. On the one hand, more receptor
cooperativity, that is, larger complexes, amplify signals better
in the absence of input noise (top panels). On the other
hand, random fluctuations in ligand concentration also become
amplified by the complex (bottom panels). Furthermore, the
closer the proximity between receptors in a cluster, the larger
the fluctuations in ligand concentration for the cell, because
nearby receptor complexes measure previously bound ligand
molecules due to rebinding. Hence, clustering may render
complexes highly prone to noise and reduce the cell’s signal
processing capabilities. Indeed, sources of noise are ubiquitous
in biological sensing.

Extrinsic input noise arises from the random arrival of
ligand molecules at the cell-surface receptors, constituting
the fundamental physical limit on concentration sensing,
derived by Berg and Purcell in 1977 [3] and subsequently
by others [5,30–33]. Specifically, Bialek and Setayeshgar
applied the fluctuation-dissipation theorem (FDT) [34] to
derive the uncertainty in ligand sensing by receptors from the
fluctuations in receptor occupancy. Furthermore, if previously
bound ligand molecules are removed, the uncertainty is signif-
icantly decreased [5]. Such removal prevents ligand molecules
from rebinding the receptors, and hence overcounting of the
same ligand molecules by the cell. A potential mechanism
for ligand removal is receptor internalization, for exam-
ple, by endocytosis of ligand-bound receptors in eukaryotic
cells [35].

(  ) (  )

FIG. 2. (Color online) Data of chemotaxis signaling. (a) Dose-response curves as measured by in vivo FRET (symbols) and corresponding
fits by the MWC model (solid lines) for E. coli cells expressing only Tar receptors. Cell types include adapting (CheRB+) and nonadapting,
engineered cheRcheB mutants [QEEE, QEQE, QEQQ, and QQQQ with glutamate (E) or glutamine (Q) at four specific receptor modification
sites]. CheRB+ cells are adapted either to zero attractant (× symbols) or to 0.1 mM MeAsp (+ symbols). (b) Corresponding receptor complex
sizes with 95.4% confidence intervals, as extracted from the fitted MWC model. Inset: Same as the linear plot to resolve zero ambient curve.
Data and model curves, fitted with principal component analysis, are reproduced from [20].
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FIG. 3. (Color online) Schematic of dose-response curves of
receptor activity. (Top panels) Receptor cooperativity leads to steeper
curves and hence larger amplification �A of a small stimulus, given
by a change in ligand concentration �c. (Bottom panels) Noise in
the stimulus, δc, represented by a peaked distribution, is amplified by
receptor cooperativity as well, indicated by a fluctuation in activity
δA. Receptor clustering, a potential side effect of complex formation,
leads to a further increase in input noise, shown by a broader
distribution on the right.

In addition to extrinsic noise, there is intrinsic noise
in the signaling pathway, including the random receptor-
complex switching between the on (active) and off (inactive)
states (similar to flickering of ion channels), as well as
random receptor methylation and demethylation events [36].
Since the concentrations of methylation enzyme CheR and
demethylation enzyme CheB are low, that is, about 100 copies
per cell [37], the fluctuations in receptor methylation level
are expected to be significant [38]. To compensate for their
small numbers, enzymes were found to transiently tether to
the receptors. This allows them to act on groups of six to eight
receptors [39], reducing the noise in receptor methylation level
due to the larger number of available modification sites [40]. In
addition to these random biochemical events, there are further
downstream signaling events, ultimately the random switching
of the motors between its two rotational states.

How is signaling by receptor complexes affected by
extrinsic and intrinsic noise? In this work, we use the
well-characterized example of bacterial chemotaxis to com-
bine the allosteric MWC model for signaling by receptor
complexes [20,24] with calculations of noise to study their
interconnectedness. Using the FDT [30,34], we calculate
the uncertainty in ligand concentration sensing by the cell.
Specifically, we consider the effects of the random arrival of
ligand molecules at the receptors by diffusion and rebinding,
switching of the receptor complexes, and receptor methylation
and demethylation. While these effects have been described
individually before, we combine these to address signaling by
multiple receptor complexes in a cell. Based on a simplified
model, we then calculate the signal-to-noise ratio (SNR),
summarizing the balance of beneficial and detrimental effects
of clustering for the cell. Interestingly, we find that there is
no advantage for the cell to assemble receptor complexes
for noisy input stimuli in the absence of intrinsic signaling
noise. However, with such intrinsic noise included, an optimal

complex size arises in line with estimates of the sizes of
chemoreceptor complexes in bacteria and protein aggregates
in eukaryotic cells.

The paper is organized as follows: In Sec. II, we describe
amplification of stimuli and extrinsic noise by receptor
complexes. In Sec. III, we derive the uncertainty in ligand
concentration sensing by multiple receptor complexes in the
cell. In Sec. IV, we combine the information provided in
Secs. II and III to derive an optimal complex size, determined
by the balance between signal and noise amplification by
the receptor complexes. We conclude with final comments
and discussion in Sec. V. Furthermore, Appendix A provides
details on our model and, starting from the Master equation,
derives the noise terms using the van Kampen expansion.
Appendix B is devoted to summarizing the parameter values
used. In Appendix C, we examine the effect of receptor
distribution on the uncertainty of sensing.

II. STIMULUS AND NOISE AMPLIFICATION

Signaling in bacterial chemotaxis is quantitatively inter-
preted within the MWC model. In this model, receptors
form signaling complexes, believed to consist of about 10–20
receptors. Due to strong receptor-receptor coupling within a
complex, a complex is an effective two-state system with all
receptors either on or off together. Specifically, we consider
MeAsp binding to complexes of the Tar receptor in line with
recent experiments [20]. Since MeAsp binds more favorably
to the receptor off than to the receptor on state, the ligand
generally tends to turn the receptor activity off, whereas
receptor methylation favors the on state and so compensates
for ligand binding during adaptation.

In the MWC model, the probability that a receptor complex
is active, that is, the receptor activity, A, depends only on the
free-energy difference F (free energy from now on) between
its on and off states [20,24] and its formal expression is

A = 1

1 + eF
, (1)

with energies in units of thermal energy kBT . In this model,
for a complex size of N receptors, the complex free energy is
simply N times the free energy of a single receptor,

F = N

[
E + ln

(
1 + c

/
Koff

D

1 + c
/
Kon

D

)]
, (2)

with ligand concentration c and ligand dissociation constants
Kon

D and Koff
D for the on and off states, respectively. These

constants represent the ligand concentrations at which the
receptor in each state is occupied by the ligand with 50%
probability. In the absence of a ligand, the free energy of a
receptor is given by E = α − β m1, with m1 the methylation
level (methyl-group concentration) corresponding to a single
receptor, and parameters α and β recently determined for the
Tar receptor [20]. Equation (2) can be written in terms of the
total methylation level (concentration) of the whole complex
using m = Nm1, resulting in

F = Nα − βm + N ln

(
1 + c

/
Koff

D

1 + c
/
Kon

D

)
. (3)
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This model has been very successful in describing stimulus
amplification, precise adaptation to persistent stimulation, and
signal integration by mixed receptor types. For instance, the
MWC model is able to describe the dose-response curves in
Fig. 2 [20] and other data [24,25,41].

In cells adapted to average steady-state activity Ā, the
methylation level m̄ is determined by precise adaptation to
ligand concentration c̄ via

m̄ = 1

β

[
Nα − ln(1/Ā − 1) − N ln

(
1 + c̄

/
Kon

D

1 + c̄
/
Koff

D

)]
. (4)

The mechanism for the cell to achieve precise adaptation
was originally proposed by Barkai and Leibler [42] and was
later identified as integral feedback control [43]. Briefly, if
the dynamics of the methylation level are independent of the
available modification sites and external ligand concentration,
then the adapted steady-state activity only depends on cell-
specific parameters. Specifically, the dynamics of adaptation
were recently determined [44],

dm

dt
= kR(1 − A) − kBA3, (5)

where kR (kB) is the rate constant of methylation (demethy-
lation) by enzymes CheR (CheB). Equation (5) assumes
that CheR only methylates active receptors and CheB only
demethylates inactive receptors, in line with experimental
observation. Furthermore, for demethylation, CheB needs to
be activated by phosphorylation and may act cooperatively
with other CheB enzymes, explaining the A3 dependence in
Eq. (5) [44].

For initially adapted cells, signal amplification is obtained
by expanding the activity in terms of a small stimulus �c. In
the linear regime, the change in receptor-complex activity is
given by

�A =
(

∂A

∂F

)(
∂F

∂c

)
�c = −NĀ(1 − Ā)�n

�c

c̄
(6)

with ∂A/∂F = −Ā(1 − Ā), ∂F/∂c = N�n/c̄, and

�n = c̄

c̄ + Koff
D

− c̄

c̄ + Kon
D

(7)

the difference in receptor occupancy between its on and off
states. Hence, due to receptor cooperativity in the MWC
model, the response �A corresponds to an amplification of
small stimuli by complex size N . For larger stimuli, the
response �A saturates to zero or maximal activity (Fig. 3,
top panels), which occurs when the associated free-energy
change is comparable to the thermal energy (�F ≈ 1, see
Fig. 4). As a consequence, a proper investigation of signaling
by receptor complexes requires the full nonlinear expression
for the activity in Eq. (1).

Importantly, Eq. (6) also applies to amplification of ligand
noise, that is, δA ∝ Nδc, with δc describing a small fluctuation
in ligand concentration, indicating that receptor complex
formation and cooperativity also have a detrimental effect
(Fig. 3, bottom panels).

FIG. 4. (Color online) Activity of receptor complex A(F ) =
1/[1 + exp(F )] in green (light gray) and distribution of signaling
complexes as a function of complex free energy F (solid black line:
small changes �F1, dashed black line: large changes �F2). Free
energies in units of thermal energy kBT , indicated by top arrow.

III. UNCERTAINTY OF SENSING

The uncertainty in sensing ligand concentration stems
from extrinsic noise (random arrival of ligand molecules at
receptors by diffusion and their rebinding), as well as intrinsic
signaling noise (receptor complex switching and methylation
and demethylation), projected outside the cell in the form of
extrinsic noise in disguise. If we neglect cross correlations
(in this section for illustrative purposes), the uncertainty has
the form 〈(δc)2〉τ = ∑

k〈(δc)2〉kτ with contributions k and τ

an averaging time of the noise due to slower downstream
signaling. The aim of this section is to demonstrate how the
different contributions are affected by receptor complex size.
Specifically, we show which contributions are amplified and
which ones are not. This will help to classify noise sources
more effectively, and guide the investigation of the optimal
complex size in the next section.

Bialek and Setayeshgar recently calculated the uncertainty
in ligand concentration using a single MWC complex as a
biological measurement device [45]. In their model, the slow
(compared to ligand binding and unbinding) random switching
between the on and off states of the complex leads to a
release or uptake of several (N�n) ligand molecules, since
both states are characterized by different ligand dissociation
constants. Here, we first extend the model by Bialek and
Setayeshgar [45] to multiple MWC complexes of Tar recep-
tors. Subsequently, we apply the method to intrinsic methyla-
tion noise, and also discuss the other noise contributions to the
uncertainty.

The dependence of the activity on the switching of the
receptor complex is described by

dA(t)

dt
= kf [1 − A(t)] − kbA(t) (8)

with the forward and backward rate constants given by kf and
kb, respectively [cf. Fig. 1(a)]. The resulting steady-state value
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for the activity is given by

Ā = kf

kf + kb

= 1

1 + eF̄
(9)

with

eF̄ = kb

kf

. (10)

Now, we consider NC such receptor complexes, which, due to
a change in receptor occupancy from switching, couple to the
ligand diffusion equation

dAj (t)

dt
= kf [1 − Aj (t)] − kbAj (t), (11a)

∂c(�x,t)

∂t
= D∇2c(�x,t) + N�n

NC∑
l=1

δ(�x − �xl)
dAl(t)

dt
, (11b)

where Aj is the receptor-complex activity of the j th complex
at position �xj . Furthermore, in Eq. (11b), parameter D is the
diffusion constant and δ(· · ·) is the Dirac delta function to
describe the location of the complexes.

Following Refs. [30,31], we linearize Eqs. (11a) and
(11b) around the steady-state receptor-complex activity and
ligand concentration via δA = A(t) − Ā and δc(t) = c(t) − c̄,
respectively. We further linearize the rate constants δkf (t) =
kf (t) − k̄f and δkb(t) = kb(t) − k̄b, allowing us to apply the
FDT below [30]. Specifically, we replace the fluctuations in
rate constants by fluctuations in their conjugate variable, that
is, the receptor-complex free energy [30], by using

δF = δE + N�n
δc

c̄
= δkb

k̄b

− δkf

k̄f

, (12)

obtained by linearizing Eqs. (3) and (10).
Next, we Fourier transform the linearized equations

d(δAj )/dt and ∂(δc)/∂t into frequency and wave-vector
space, defined by G(�x,t) = ∫

dω
2π

dk3

(2π)3 exp{i(�k�x − ωt)}Ĝ(ω,�k)
for any integrable function G. This results in an equation for
frequency-dependent fluctuations in the activity of the j th
complex,

(k̄f + k̄b − iω)δÂj (ω) = −k̄bĀj

[
δÊj + N�n

δĉ(�xj ,ω)

c̄

]
,

(13)

and the wave vector and frequency-dependent variation in
ligand concentration,

δĉ(�k,ω) = −iωN�n

(Dk2 − iω)

NC∑
l=1

e−i�k�xl δÂl . (14)

To remove the �x dependence in Eq. (13), we invert the spatial
Fourier transform in Eq. (14), resulting in

δĉ(�xj ,ω) = −iωN�n

π2D

[
1

2a
δÂj (ω) + π

4

NC∑
l �=j

δÂl(ω)

|�xj − �xl|

]
,

(15)

where the receptor-complex dimension a was introduced
to regularize an integral. Equation (15) is valid for low
frequencies ω << D/a2, that is, we assume the time to read

out the receptor free energy to be long compared to the
correlation time between receptor-complex switching events
[45]. Inserting this equation into Eq. (13), we obtain[

k̄f + k̄b − iω

(
1 + k̄bĀ

N2�n2

2πDac̄

)]
δÂj (ω)

= iωk̄bĀ
N2�n2

4πDc̄

NC∑
l �=j

δÂl(ω)

|�xj − �xl| − k̄bĀδÊj (ω). (16)

Next, we sum over all receptor complexes using NCδÂ =∑NC

j=1 δÂj and δÊ = ∑NC

j=1 δÊj to obtain the total receptor
activity and free energy. Furthermore, we introduce the geo-
metric structure factor 
 = ∑NC

j �=1
1

|�x1−�xj | , valid for receptor-
complex distributions for which each receptor complex is
equivalent to all the other receptor complexes (ring or sphere
of receptors) [30]. With these quantities introduced, we obtain

NC

{
k̄f + k̄b − iω

[
1 + k̄bĀN2�n2

2πDc̄

(
1

a
+ 


2

)]}
δÂ

= −k̄bĀδÊ. (17)

Using the FDT, we calculate the noise power spectrum of the
receptor-complex activity, defined by 〈δÂ(ω)δÂ∗(ω)〉, from
the deterministic linear response to a small perturbation in the
receptor-complex free energy,

SA(ω) = 2

ω
Im

[
− δÂ

δÊ

]
(18a)

= 2k̄f (1 − Ā)(1 + �)

NC[(k̄f + k̄b)2 + ω2(1 + �)2]
(18b)

ω→0−→ 2k̄f (1 − Ā)(1 + �)

NC(k̄f + k̄b)2
, (18c)

with � = k̄bĀN2�n2

2πDc̄
(1/a + 
/2) and Eq. (18c) valid in the

zero-frequency limit. Note the minus sign in Eq. (18a) is
introduced since a positive δÊ leads to a negative δÂ [45].
From δA = −NĀ(1 − Ā)�nδc

c̄
[cf. Eq. (6)], we obtain for the

time-averaged variance of the ligand concentration

〈(δc)2〉τ =
[

c̄

N�nĀ(1 − Ā)

]2
SA(0)

τ
, (19)

with τ the averaging time determined by slow, downstream
signaling, and finally for the relative uncertainty in sensing,

〈(δc)2〉SR
τ

c̄2
= 2

NCN2�n2k̄f (1 − Ā)τ
+ 1

NCπDc̄τ

(
1

a
+ 


2

)
.

(20)

The first term on the right-hand side represents the uncertainty
in ligand concentration due to the release and uptake of
N�n ligand molecules induced by the randomly switching
receptor complexes (S). The second term is due to diffusion
and represents the additional uncertainly from rebinding of
previously bound ligand molecules (R). Due to this term,
the uncertainty depends on the spatial distribution of the
receptor complexes on the cell surface. Specifically, the term
proportional to 1/a describes the rebinding of ligand molecules
to the same receptor complex, while the term proportional to 


describes the rebinding to the other receptor complexes. This
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latter contribution becomes larger the smaller the proximity is
of the receptor complexes, for example, in the polar receptor
cluster (Appendix C). Fast ligand diffusion (or removal
of bound ligand molecules by an efficient cellular uptake
mechanism) reduces this term [35]. Furthermore, in Eq. (20)
the number of receptor complexes NC in the denominators
reduces the uncertainty by spatial averaging.

The FDT method can also be used to calculate the
uncertainty in ligand concentration from random receptor
methylation and demethylation events. The rate of change of
a small deviation of the receptor-complex activity δA due to a
change in total receptor methylation level δm is given by

d(δA)

dt
= ∂A

∂m

d(δm)

dt
, (21)

where dm/dt and d(δm)/dt are given by Eq. (5) and its
linearized version, respectively. Using

δF = δkR

Ā(k̄R + 3k̄BĀ2)
+ Ā2

1 − Ā

δkB

k̄R + 3k̄BĀ2
, (22)

linearization and Fourier transformation finally leads to the
relative uncertainty in ligand concentration,

〈(δc)2〉MR
τ

c̄2
= 2

NCU 2�n2k̄R(1 − Ā)τ
+ 1

NCπDc̄τ

(
1

a
+ 


2

)
,

(23)

where the first term on the right-hand side describes the contri-
bution from random receptor methylation and demethylation
events (M), respectively, leading to a release and take-up
of ligand molecules. This term is inversely proportional to
N2, and hence is not amplified by receptor cooperativity
[cf. Eq. (6)] in analogy to the intrinsic ligand noise arising
from random switching of the receptor complex in Eq. (20).
The second term in Eq. (23) is identical to Eq. (20) and
describes the contribution from diffusion (R), as released and
taken-up ligand molecules lead to additional uncertainty in
ligand concentration.

So far the contribution to the uncertainty from random
binding and unbinding of ligand molecules (L) to the receptor
complex is still missing. To avoid the complexity of different
rates for the on and off states, we assume diffusion-limited
binding to the receptor cluster and write for the additional
uncertainty [31,35]

〈(δc)2〉L
τ

c̄2
= 1

4πDRsc̄τ
, (24)

calculated from Poisson statistics and the diffusive flux to
an absorbing sphere of radius Rs , which represents the
dimension of the receptor cluster. Equation (24) is considered
the fundamental physical limit of sensing, as it cannot be
reduced by any intracellular sensing mechanism. This extrinsic
noise is amplified due to the absence of an N2 factor in the
denominator.

In summary, intrinsic and extrinsic noise affects the un-
certainty of sensing differently, that is, only extrinsic noise is
amplified. In the next section, we consider an integrative model
of extrinsic ligand noise and intrinsic noise from receptor
methylation and demethylation noise. The receptor-complex
switching noise is much smaller due to the large switching

rates, and hence is assumed to be averaged out. By using the
receptor activity of the whole cell as a read-out of signaling,
we are able to compare the properties of stimulus and noise
transmission.

IV. OPTIMAL RECEPTOR COMPLEX SIZE

What effects have stimulus and noise amplification on the
signaling capabilities of the whole cell, and specifically, is
there an optimal complex size? In the cell, we assume a
large receptor cluster of NT identical receptors divided into
NC smaller receptor signaling complexes of N Tar receptors
each [see Fig. 1(b)]. We now calculate the N -dependent SNR
for the total activity AT of the cell in response to a uniform,
nonsaturating stimulus �c ∝ c̄,

SNR = Signal

Noise
= 〈�AT〉2

N〈〈
δA2

T

〉〉
N

, (25)

where the Signal is defined by the squared-mean response of all
receptors in the cell 〈�AT〉2

N = 〈∑NT

i �Ai〉2 = (NT 〈�A〉)2 to
the stimulus, neglecting cross-correlations between the activi-
ties of different complexes. In contrast, the Noise is expressed
by the mean-square deviation of the independently fluctuat-
ing receptor complexes 〈〈δA2

T〉〉N = ∑NC

j 〈δA2
j 〉 = NC〈δA2〉.

Since measurements are not done instantaneously by the cell,
we use time-averaged activities 〈· · ·〉 = τ−1

∫ t+τ

t
· · · dt̃ . This

leads to the following general expressions for the Signal and
the Noise:

〈�AT〉2
N =

{
NT

τ

∫ t+τ

t

{A[F (c(t̃) + �c,m(t̃))]

−A[F (c(t̃),m(t̃))]} dt̃

}2

, (26)

〈〈
δA2

T

〉〉
N

= NC

τ

∫ t+τ

t

{N A[F (c(t̃),m(t̃))] − N Ā}2 dt̃

= NTN

τ

∫ t+τ

t

{A[F (c(t̃),m(t̃))] − Ā}2 dt̃, (27)

with A = A(F ) the receptor complex activity, depending on
ligand concentration c and methylation level m via the free
energy F = F (c,m). Both ligand concentration c = c(t̃) and
methylation level m = m(t̃) depend on time. Further note that
the factor N on the right-hand side of Eq. (27) appears as each
receptor in a complex has the same activity. Even though the
stimulus and noise (included below) are small, Eqs. (26) and
(27) allow for nonlinear effects in the activity for the large
complex sizes considered.

For computational feasibility, we exploit the ergodic hy-
pothesis, allowing us to replace the time averages by the
ensemble averages. This leads to the respective Signal and
Noise,

〈�AT〉2
N =

{
NT

∫
{A[F (c + �c,m)] − A[F (c,m)]}

× P (c,m) dc dm

}2

, (28)

〈〈
δA2

T

〉〉
N

= NTN

∫
{A[F (c,m)] − Ā}2P (c,m) dc dm.

(29)
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In the Signal, receptor complexes experience a stimulus
�c on top of a fluctuating ligand concentration, while in
the Noise, fluctuations in activity are measured relative to
the average activity. In Eqs. (28) and (29), we further use a
bivariate normal distribution to describe the joint probability
of the ligand concentration and methylation level at a receptor
complex, given by

P (c,m) = e
− 1

2(1−ρ2)
[ (c−c̄)2

〈(δc)2〉 +
(m−m̄)2

〈(δm)2〉 − 2ρ(c−c̄)(m−m̄)√
〈(δc)2〉

√
〈(δm)2〉

]

2π
√

〈(δc)2〉
√

〈(δm)2〉
√

1 − ρ2
.

(30)

In addition to the variances 〈(δc)2〉 and 〈(δm)2〉, Eq. (30) also
depends on covariance 〈(δc)(δm)〉, included in the correlation
coefficient ρ = 〈(δc)(δm)〉/[

√
〈(δc)2〉

√
〈(δm)2〉]. While the

methylation level can fluctuate due to random methylation and
demethylation events independent from fluctuations in ligand
concentration, fluctuations in ligand concentration can induce
fluctuations in the methylation level due to adaptation (via
parameter ρ).

To calculate the variances and covariance, we use a sim-
plified Master equation, describing how the receptor-complex
activity depends on external ligand concentration and receptor
methylation level. The ligand noise includes effects of the
random arrival of ligand molecules at the receptors and their
rebinding by diffusion, given by rate kd = D/a2. We then
apply the van Kampen expansion to obtain the second moments
of the joint distribution (see Appendix A for details).

A. Ligand noise

First, we only consider extrinsic ligand noise by setting
the methylation level m(t̃) equal to the constant adapted
value m̄. The distribution of the ligand concentration is
now effectively given by P (c) = 1/

√
2π〈(δc)2〉 exp{−(c −

c̄)2/[2〈(δc)2〉]}, assumed to be normal with average ligand
concentration c̄ and variance

〈(δc)2〉 = c̄

a3
(31)

(see Appendix A for more details).
Importantly, the Signal and Noise have characteristic N

dependencies, which need to be examined to answer the
question of the optimal complex size. We first consider the
linear regime of the activity, as this can be solved analytically.
In this case, Eqs. (28) and (29) reduce to

〈�AT〉2
N = N2

T

(
∂A

∂c

)2

�c2 ∝ N2 (32)

and

〈〈
δA2

T

〉〉
N

= NTN

(
∂A

∂c

)2

〈(δc)2〉 ∝ N3, (33)

using Eq. (6). As a result, the SNR scales as N−1 and hence
decreases for increasing complex size. This indicates that a
single receptor is better than a complex of multiple receptors
for signaling due to the more rapid increase of the Noise
with complex size than the Signal. Note also that the SNR
is proportional to the total number of receptors NT in a cell.

To consider the full nonlinear activity of the receptors,
we numerically integrate Eqs. (28) and (29) with m set to
m̄ and P (c) instead of P (c,m). Figure 5 shows contour plots
of the Signal, Noise, and SNR as a function of complex size
and ligand concentration. In Fig. 6, the scaling behavior is
confirmed by plotting the three quantities for three different
ligand concentrations as a function of complex size.

B. Ligand and methylation noise

Next, we include additional fluctuations in the recep-
tor methylation concentration, as explicitly described by
Eqs. (28), (29), and (30). The variance of the methylation
level is given by

〈(δm)2〉 = 1

β(3 − 2Ā)a3
+ kR(3 − 2Ā)(1 − Ā)(�nN)2

β[kd + kR(3 − 2Ā)(1 − Ā)β]ca3

(34)

with β = −∂F/∂m. The first term on the right-hand side of
Eq. (34) represents the intrinsic methylation noise, which is
independent of complex size consistent with the amplified
version of Eq. (23). The reason for this N independence is
that a large complex has more enzymes bound to the receptors
and hence suffers from larger noise than a small complex.
However, a large complex also has an increased relaxation
rate kR + 3kBĀ2, restoring the average methylation level more
quickly. The second term on the right-hand side of Eq. (34)
is the ligand-induced methylation noise with its characteristic
N2 dependence due to amplification by the receptors in the
complex.

Furthermore, the covariance between the ligand concentra-
tion and methylation level is given by

〈(δc)(δm)〉 = kR(3 − 2Ā)(1 − Ā)�nN

kd + kR(3 − 2Ā)(1 − Ā)β
. (35)

Together with the variances, this equation allows the calcula-
tion of the previously mentioned correlation coefficient ρ. Its
value is 0 if fluctuations in methylation level are independent
of fluctuations in ligand concentration, and 1 if there are no
ligand-independent fluctuations in the methylation level. In
our model, the correlation coefficient turns out to be rather
small, that is, no larger than 0.0001 for the parameter values
used.

To check the validity of the small-noise approximation, we
compare the intrinsic methylation noise from the analytical
calculation [first term on the right-hand side of Eq. (34)] with
simulations of the Master equation using the exact Gillespie
algorithm [46]. (Note that the methylation noise is significantly
larger than the ligand noise and hence is used for this test.)
Specifically, the algorithm requires two random numbers. The
first determines whether to methylate the complex with rate
kR[1 − A(M)] or whether to demethylate with rate kBA(M)3,
where M = a3m is the current methylation level (the depen-
dence on the constant external ligand concentration c̄ is not
shown). The second, R, is needed to correctly increment the
simulation time. R is chosen with a uniform probability on the
interval [0,1], and the time is increased according to δt =
1/({kR[1 − A(M)] + kBA(M)3} ln(1/R)). Using parameters
from Appendix B and concentrations ranging from 10−3 to
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FIG. 5. (Color online) Absence
of an optimal complex size for ex-
trinsic ligand noise. (a) Signal, (b)
Noise, and (c) SNR as a function of
MeAsp concentration and complex
size, that is, the number of Tar re-
ceptors in a complex. (d) There is no
maximum of the SNR for complex
sizes larger than one receptor. For
each MeAsp concentration, the same
nonsaturating MeAsp stimulus is ap-
plied to all complex sizes. Parameter
values are given in Appendix B. In-
tegration performed with the quadra-
ture method in MATLAB (Mathworks,
Natwick, MA).

1 mM, Fig. 7 shows indeed that the two approaches deliver
very similar distributions for the methylation level.

We next consider how the cell’s Signal and the Noise
scale with complex size. First, in the linear activity regime
the Signal is again given by Eq. (32). Analogous to
the case with ligand noise only, the receptor complex is
able to fully amplify the stimulus. (The only difference is
that the Signal is saturated by the stimulus or noise at smaller
complex sizes due to the Noise contribution from methylation
and demethylation.) In contrast, the Noise has a new regime
in the presence of additional noise from methylation and
demethylation,〈〈

δA2
T

〉〉
N

∝ N [〈(δA)2〉m+〈(δA)2〉c] ∝ N (const + N2). (36)

For small complex sizes, the ligand-induced N -dependent
activity noise can be neglected with respect to the constant
contribution from methylation and demethylation, leading to
scaling with N . For larger complex sizes, the Noise scales as
N3. The two regimes lead to an optimal complex size, since
the SNR, now given by

SNR ∝ NT
N

const + N2
, (37)

first increases proportional to N and then decreases as N−1.
Hence, the intrinsic noise from methylation and demethylation
introduces a noise floor, below which it is advantageous for
the cell to increase the complex size. However, once amplified
ligand noise becomes comparable to the noise floor for large
complexes, the Noise increases more rapidly than the Signal
with further increasing complex size.

To address the behavior for the nonlinear activity, Figs. 8
and 9 show the results from the numerical evaluation of

the double integrals in Eqs. (28) and (29), confirming our
analysis of the scaling. For large complex sizes, deviations
from the linear regime can be observed. The shape of
the optimal complex-size curve as a function of ligand
concentration is ultimately determined by the functional
dependence of �n on c̄ [Eq. (7)], which describes the
sensitivity of the receptor occupancy to changes in ligand
concentration.

C. Methylation noise

Finally, we consider the case of only intrinsic noise
from fluctuations in the methylation level. Equation (30)
effectively reduces to the normal distribution P (m) =
1/

√
2π〈(δm)2〉 exp{−(m − m̄)2/[2〈(δm)2〉]} with average

methylation level m̄ and variance

〈(δm)2〉 = 1

β(3 − 2Ā)a3
, (38)

corresponding to the first term in Eq. (34). In Eqs. (28) and
(29), the ligand concentration is set to the average value c̄.

Similar to the previous two cases, the Signal behaves as
Eq. (32), that is, it scales as N2 due to stimulus amplification
in the linear activity regime. (However, since the methylation
and demethylation noise is independent of complex size, only
the stimulus and not the noise can saturate the Signal for large
complex sizes.) The Noise scales as N from the prefactor
in Eq. (29) since the methylation and demethylation noise
is independent of complex size. As a result, the SNR is
proportional to the complex size. Hence, large complexes are
always better for signaling than small complexes (provided the
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FIG. 6. Numerical confirmation
of scaling behavior for extrinsic lig-
and noise. (a) Signal, (b) Noise, and
(c) SNR from Fig. 5 as a function
of complex size for three different
MeAsp concentrations 0.001, 0.01,
and 0.1 mM. Curves in each panel
are normalized by their maximal
value.

amplified stimulus is not saturating the Signal). This analysis
is confirmed by numerical integration in Figs. 10 and 11.

In summary, intrinsic and extrinsic noise have profoundly
different effects on sensing. Only in the presence of both does
an optimal complex size emerge. This result is intuitively clear.
Amplification of extrinsic noise is worse than amplification of
the stimulus, as receptor complexes behave incoherently for
noise amplification and become fewer in number for increasing
complex size. However, amplification of extrinsic noise is
acceptable as long as it stays below the intrinsic noise and
does not saturate receptor activity. Only when the amplified
extrinsic noise becomes larger than the intrinsic noise does its
effect become detrimental.

V. DISCUSSION

Here we investigated the conditions under which an
optimal receptor complex size emerges to provide a potential
explanation for the observed receptor cooperativity (Fig. 2)
and complexes sizes as imaged by high-resolution microscopy
[16]. Specifically, we considered the SNR, that is, the ratio
between the Signal in response to a small stimulus in ligand
concentration and the Noise from random fluctuations of the
activity, based on all the receptor complexes in a cell. Using
the MWC model for signaling by receptor complexes, we
include amplification of both stimulus and extrinsic ligand
noise, as well as the effects of intrinsic noise from random
receptor methylation and demethylation. Also included are
correlations between the ligand and methylation and demethy-
lation noise, since fluctuations in ligand concentration can
induce an adaptational response and hence fluctuations in
methylation level. Note, however, that very slow fluctua-

tions in ligand concentration are fully removed by perfect
adaptation.

By setting up the Master equation and applying the small-
noise approximation, we found that only including extrinsic
ligand noise leads to a decrease in SNR with complex size
as the Noise increases more rapidly with complex size than
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FIG. 7. (Color online) Comparison of the intrinsic methylation
noise from the small-noise approximation (van Kampen expansion)
with Gillespie simulations of the Master equation. Shown are
histograms of methylation level from simulations for external ligand
concentrations c = 0.01 mM (green/left), c = 0.1 mM (blue/middle),
and c = 1 mM (red/right). Also shown are corresponding Normal
distributions with variance given by Eq. (38), drawn with solid,
dashed, and dotted lines, respectively.
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FIG. 8. (Color online) Optimal
complex size in the presence of both
extrinsic ligand and intrinsic methy-
lation noise. (a) Signal, (b) Noise,
and (c) SNR as a function of ligand
concentration and complex size of
Tar receptors. (d) There is a maxi-
mum of the SNR at complex sizes
larger than one receptor. Parameter
values are given in Appendix B.

the Signal. When we consider only intrinsic noise instead,
there is no penalty for the cell to make larger and larger
complexes, and the SNR increases with increasing complex
size. However, including both noise sources introduces a
complex size-independent noise floor from the intrinsic noise.
Hence, an increase in complex size is beneficial until the
amplified and hence size-dependent extrinsic noise increases
beyond the noise floor. An optimal complex size for com-
plexes with more than one receptor is the consequence
(Figs. 8 and 9).

Extrinsic ligand noise results from the random bind-
ing, as well as rebinding of previously measured ligand
molecules. Importantly, the latter contribution depends on
the distribution of the receptors. In particular, the smaller the
complex-complex proximity in clusters, the larger is the
increase in uncertainty in sensing ligand concentration. For
ligand diffusion in aqueous solution, the effect of rebinding
is generally negligible (Appendix C). A ligand molecule just
released from a receptor is quickly removed by diffusion, hence
preventing it from rebinding. However, diffusion can be much
slower in biologically relevant circumstances. For instance,
in E. coli, chemoreceptors are localized in the inner mem-
brane, which is surrounded by the dense, viscous periplasm
separating the inner and outer cell membranes. Here, the
ligand diffusion constant can be a thousand times smaller [47],
and rebinding of previously bound ligand molecules could be
significant.

As demonstrated recently, the detrimental effect of ligand
rebinding can be reduced by internalization of ligand-bound
receptors, such as frequently occurs in eukaryotic cells [35].
Receptor internalization effectively turns the cell into an
absorber of ligand molecules, which increases the accuracy

of sensing [5,35]. While chemoreceptors in bacteria are not
internalized, transporters for uptake of sugars and amino acids
could colocalize with the receptors to simulate the effect of
internalization. Specifically, the uptake of sugars and amino
acids is mainly conducted by periplasmic permeases, which
are ABC-like transporters [48]. The best studied permease
is the maltose system in E. coli. Maltose enters the outer
membrane through the LamB pores. Subsequently, it is sensed
by either directly binding the Tar receptor, or maltose-binding
protein MalE, which is then either bound by the Tar receptor
for sensing or by the permease for transport of maltose
into the cell. Additional work will be required to better
understand the role of the periplasm in the accuracy of
sensing.

While our model is able to explain the observed complex
sizes from FRET data, there are a number of simplifying model
assumptions. First, we calculated the Signal and Noise at the
receptor level, neglecting downstream signaling events such as
phosphorylation and dephosphorylation reactions. However,
such reactions are known to be very fast, 50 − 1000 s−1 [44],
and hence their noise is quickly averaged out by the motor.
Second, for our calculation of the noise to be computationally
feasible, we assume diffusion-limited binding to avoid diffi-
culties with the two different receptor complex states. Third,
fast intrinsic noise from random receptor switching between
its two activity states is assumed to be averaged out and hence
is also neglected.

A remaining question is if optimization principles hold
for cellular subsystems (here receptor sensing). There might
be tradeoffs, potentially leading to suboptimal solutions for
parts of the cell. Furthermore, receptor sensing is not the
final cell’s output (here swimming) on which natural selection
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FIG. 9. Numerical confirmation
of scaling behavior in the presence
of both extrinsic ligand and intrin-
sic methylation noise. (a) Signal,
(b) Noise, and (c) SNR from Fig. 8
as a function of complex size for
three different MeAsp concentra-
tions 0.001, 0.01, and 0.1 mM.
Curves in each panel are normalized
by their maximal value.

may operate. However, as receptors enable cells to gather
information about their environment, and information can only
be lost, not gained, during signal transduction, it appears to
be a reasonable assumption to conserve this information as
much as possible (if energy and resources are not limiting).
To instead optimize chemotaxis signaling at the level of cell
swimming, not only swimming up typical gradients but also
staying on top of gradients (at the maximum concentration)
[49] and the dynamics of gradients [50] would need to be
considered.

Our model can readily be extended from Tar-only receptor
complexes to mixed complexes of multiple receptor types [24].
If the ligand binds specifically to one receptor type only, the
receptor fraction of each type in a mixed complex should
be optimal in size with specifics depending on the ligand
dissociation constants only. Furthermore, our work may be
applicable to other receptors as well. While receptor clustering
may be restricted to receptors with high sensing accuracy,
most well-characterized sensory receptors are believed to
cluster (or to oligomerize). These include the eukaryotic
B-cell, T-cell, Fcγ , synaptic, as well as G-protein-coupled
and ryanodine receptors [51]. Specifically, T-cell receptors
form microclusters of 7–30 receptors [52]. Such receptor
aggregates are often associated with lipid rafts, which are
islands of specific lipids with particular affinity for certain
membrane proteins. Interestingly, lipid rafts were found to
be small, containing mostly about 6–12 proteins [53], and
were recently even observed in bacteria [54]. Our work may
indicate that this number represents an optimal size for signal

amplification, where size is restricted by extrinsic and intrinsic
noise.
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APPENDIX A: DERIVATION OF NOISE TERMS
USING � EXPANSION

In this appendix, we set up the Master equation of the
simplified problem of a receptor complex, whose activity is
determined by the external ligand concentration and receptor
methylation level. The dynamics of the latter are determined
by adaptation. To solve for the first and second moments of
the joint probability distribution from the Master equation,
we apply van Kampen’s � expansion, where � is the
reaction volume, allowing one to introduce a large expansion
parameter [55]. We neglect fast processes such as receptor-
complex switching between different activity states and ligand-
receptor binding and unbinding. Note that we use a slightly
different notation in this appendix, more suitable for stochastic
processes.
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FIG. 10. (Color online) Ab-
sence of optimal complex size for
intrinsic methylation noise only. (a)
Signal, (b) Noise, and (c) SNR as a
function of ligand concentration and
complex size of Tar receptors. (d)
There is no maximum of the SNR
since the SNR keeps increasing for
increasing complex size. Parameter
values are given in Appendix B.

As shown in Fig. 12, we consider a system composed
of two parts. The cell external volume �L contains the
number of ligand molecules L in the vicinity of the receptor
complex, which increases from L → L + 1 with rate kd�Lc̄

and decreases from L → L − 1 with rate kdL. The cell internal
volume �M contains the methyl groups on the receptor, which
increase from M → M + 1 with rate kR�M [1 − A(L,M)] and
decrease from M → M − 1 with rate kB�M [A(L,M)]3 [cf.
macroscopic Eq. (5)]. The corresponding Master equation for
these one-step processes is given by

∂P (L,M,t)

∂t
= kd�LcP (L − 1,M,t) + kd (L + 1)

×P (L + 1,M,t) + kR[1 − A(L,M − 1)]

×P (L,M − 1,t) + kB[A(L,M + 1)]3

×P (L,M + 1,t) − {kd (L + �Lc) + kR

× [1 − A(L,M)] + kB[A(L,M)]3}P (L,M,t).

(A1)

We now define the following separation of L and M into
macroscopic parts c and m of respective sizes �L and �M ,
and fluctuating parts ζ and η of respective sizes �

1/2
L and

�
1/2
M ,

L(t) = �Lc(t) + �
1/2
L ζ (t), (A2a)

M(t) = �Mm(t) + �
1/2
M η(t). (A2b)

We also define the step operators

E+1
L f (L) = f (L + 1), (A3a)

E−1
L f (L) = f (L − 1), (A3b)

E+1
M f (M) = f (M + 1), (A3c)

E−1
M f (M) = f (M − 1) (A3d)

for any arbitrary function f (· · ·). Using Eqs. (A2a) and (A2b),
in the limits of large �L and �M , the step operators adopt the
differential form [55]

E±1
L = 1 ± �

−1/2
L

∂

∂ζ
+ 1

2
�−1

L

∂2

∂ζ 2
± . . . , (A4a)

E±1
M = 1 ± �

−1/2
M

∂

∂η
+ 1

2
�−1

L

∂2

∂η2
± . . . (A4b)

with higher-order terms neglected. Transforming from the old
variables L and M to the new variables ζ and η, we have the
relations

P (L,M,t) → �(ζ,η,t), (A5a)

�
1/2
L

∂

∂L
P (L,M,t) = ∂

∂ζ
�(ζ,η,t), (A5b)

�
1/2
M

∂

∂M
P (L,M,t) = ∂

∂η
�(ζ,η,t). (A5c)

With the above relations, we transform the Master equation,
now written with step operators,

∂P (L,M,t)

∂t
= kd�Lc(E−1

L − 1)P (L,M,t) + kd

(
E+1

L − 1
)

×LP (L,M,t) + kR�M

(
E−1

M − 1
)

× [1 − A(L,M)]P (L,M,t) + kB�M

× (
E+1

M − 1
)
[A(L,M)]3P (L,M,t) (A6)
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FIG. 11. Numerical confirma-
tion of scaling behavior for intrinsic
methylation noise. (a) Signal, (b)
Noise, and (c) SNR from Fig. 10
as a function of complex size for
three different MeAsp concentra-
tions 0.001, 0.01, and 0.1 mM.
Curves in each panel are normalized
by their maximal value.

into

∂�

∂t
− �

1/2
L

dc

dt

∂�

∂ζ
− �

1/2
M

dm

dt

∂�

∂η

= kd�
1/2
L c

[
− ∂

∂ζ
+ 1

2
�

−1/2
L

∂2

∂ζ 2

]
�(ζ,η,t) + kd�

1/2
L

×
[

∂

∂ζ
+ 1

2
�

−1/2
L

∂2

∂ζ 2

](
c + �

−1/2
L ζ

)
�(ζ,η,t) + kR�

1/2
M

×
[

− ∂

∂η
+ 1

2
�

−1/2
M

∂2

∂η2

]
[1 − A(c,ζ,m,η)]�(ζ,η,t)

+ kB�
1/2
M

[
∂

∂η
+ 1

2
�

−1/2
M

∂2

∂η2

]
[A(c,ζ,m,η)]3�(ζ,η,t).

(A7)

Next we expand the receptor activity to extract its � depen-
dencies using (A + δA)3 = A3 + 3A2δA + O(δA2) with δA

a small deviation from activity A, and

A(c,ζ,m,η) ≈ A(c,m) + ∂A

∂m
�

−1/2
M η + ∂A

∂c
�

−1/2
L ζ + · · · .

(A8)

Putting everything together, the terms proportional to �
1/2
L

produce the macroscopic equation dc/dt = 0, which indicates
that the ligand concentration c is already at steady state, and
the terms proportional to �

1/2
M produce dm/dt = kR(1 − A) −

kBA3 [cf. Eq. (5)].
Importantly, from Eq. (A7) it is possible to derive equations

for the mean value of the fluctuations as well as for the
correlations of these fluctuations. Assuming �L = �M = �,

we first collect all the terms proportional to �0 in Eq. (A7),
which yields

∂�

∂t
= kd

[
c

∂2

∂ζ 2
+ ∂

∂ζ
ζ

]
�

+ 1

2
{kR[1 − A(c,m)] + kB[A(c,m)]3}∂

2�

∂η2

+ kR

{
∂A

∂m
+

[
∂A

∂c
ζ + ∂A

∂m
η

]
∂

∂η

}
�

+ 3kB [A(c,m)]2

{
∂A

∂m
+

[
∂A

∂c
ζ + ∂A

∂m
η

]
∂

∂η

}
�.

(A9)

Next, multiplying by ζ and integrating over ζ and η (using
integration by parts) produces

∂〈ζ 〉
∂t

= −kd〈ζ 〉. (A10)

The analogous procedure for η produces

∂〈η〉
∂t

= −(kR + 3kBA2)

[
∂A

∂m
〈η〉 + ∂A

∂c
〈ζ 〉

]
. (A11)

Furthermore, multiplying Eq. (A9) by ζ 2, η2, and ζη with
subsequent integration yields, respectively,

∂〈ζ 2〉
∂t

= −2kd〈ζ 2〉 + 2kdc, (A12)

∂〈η2〉
∂t

= kR(1 − A) + kBA3 − 2(kR + 3kBA2)
∂A

∂m
〈η2〉

− 2(kR + 3kBA2)
∂A

∂c
〈ζη〉, (A13)
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FIG. 12. (Color online) Simple model of receptor-complex activ-
ity A(L,M) with its dependence on ligand molecules L in its vicinity
(volume �L) and receptor-methylation level M (in volume �M ). Rate
constants kd , kR , and kB describe ligand diffusion with average ligand
concentration c, methylation, and demethylation, respectively.

∂〈ζη〉
∂t

= −
[
kd + (kR + 3kBA2)

∂A

∂m

]
〈ζη〉 − (kR + 3kBA2)

× ∂A

∂c
〈ζ 2〉. (A14)

At steady state, we finally obtain

〈ζ 2〉s = c, (A15)

〈η2〉s = 1

β(3 − 2Ā)
+ kR(3 − 2Ā)(1 − Ā)(�nN )2

[kd + kR(3 − 2Ā)(1 − Ā)β]cβ
,

(A16)

〈ζη〉s = kR(3 − 2Ā)(1 − Ā)�nN

kd + kR(3 − 2Ā)(1 − Ā)β
(A17)

with their characteristic N dependencies, Ā the adapted
steady-state activity, and �n and β defined in Sec. II. The
corresponding quantities expressed in the original variables,
that is, 〈(δL)2〉, 〈(δM)2〉, and 〈(δL)(δM)〉, are produced by
multiplication of Eqs. (A15)–(A17) with �. For instance,
〈(δL)2〉 = 〈L〉, or 〈(δc)2〉 = c/� ∼ c/(a3), with a the dimen-
sion of volume �, is indicative of a simple Poisson process
and describes the instantaneous, total fluctuations in ligand
concentration.

APPENDIX B: PARAMETER VALUES

Here we provide the parameter values used for the results
from Sec. IV, presented in Figs. 5–11: a = 100 nm (dimension

of receptor complex) [17,18], β = a3/2 (energy contribution
per methyl group to receptor free energy) [20], kRa3 =
0.1 s−1 and kBa3 = 2.2 s−1 (methylation and demethylation
rates) [40,44], Ā = 1/3 (resulting adapted complex activity),
kf = 103 s−1 and kb = 2 × 103 s−1 (rates for complex switch-
ing) [56], D = 300 μm2/s (diffusion constant for molecules
in aqueous solution) [5], NT = 3000 (number of receptors
per cell) [57], and Kon

D = 0.5 mM and Koff
D = 0.02 mM

(MeAsp dissociation constants for Tar in the on and off
states) [24].

APPENDIX C: EFFECT OF RECEPTOR DISTRIBUTION
ON UNCERTAINTY

To estimate the magnitude of the structure factor 
 in
Eqs. (20) and (23), and hence the importance of ligand
rebinding to the uncertainty of sensing ligand concentration,
we apply the following algorithm for uniformly distributing
NC points (complexes) on a sphere. The algorithm divides the
sphere in NC parallels and places a point on each parallel
at positions given by the following equations in spherical
coordinates [58]:

hk = −1 + 2(k − 1)/(NC − 1), 1 � k � NC, (C1a)

θk = arccos hk, (C1b)

φk =
(

φk−1 + 3.6√
NC

1√
1 − hk

)
(mod 2π ). (C1c)

The number 3.6 in the algorithm can, in principle, be adjusted
appropriately for the application at hand but derives essentially
from best-packing algorithms. The simple algorithm adopted
here distributes the points spirally around the sphere and
gives a good result, in accordance with more sophisticated
algorithms based on energy minimization between point
charges on the sphere or best-packing criteria, as long as
NC > 100 and NC < 12 000.

To represent the polar receptor cluster, we choose a small
sphere of radius RS = 75 nm [18]. As a result, the structure
factor for the small sphere is given by 
S = 4.77 × 109 m−1.
In contrast, to represent receptor complexes evenly distributed
over the cell surface, we use a large sphere of radius RL =
1.2 μm, which leads to a smaller structure factor given
by 
L = 5.73 × 108 m−1. Compared to rebinding to the
same receptor, which is proportional to 1/a = 107 m−1 in
Eq. (20), the polar receptor cluster can significantly worsen the
uncertainty of sensing. However, for fast ligand diffusion in
aqueous solution, the rebinding terms are negligible compared
to the other contributions to the uncertainty.
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[54] D. López and R. Kolter, Genes Dev. 24, 1893 (2010).
[55] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry, 3rd ed. (Elsevier, Amsterdam, 2007).
[56] P. Sharma, R. Varma, R. C. Sarasij, Ira, K. Gousset,

G. Krishnamoorthy, M. Rao, and S. Mayor, Cell 116, 577
(2004).

[57] G. L. Hazelbauer, J. J. Falke, and J. S. Parkinson, Trends
Biochem. Sci. 33, 9 (2008).

[58] E. B. Saff and A. B. J. Kuijlaars, Math. Intell. 19, 5 (1997).

021914-15

http://dx.doi.org/10.1016/S1074-7613(00)80483-5
http://dx.doi.org/10.1063/1.882934
http://dx.doi.org/10.1016/j.tim.2004.10.003
http://dx.doi.org/10.1073/pnas.092071899
http://dx.doi.org/10.1073/pnas.092071899
http://dx.doi.org/10.1038/sj.emboj.7601610
http://dx.doi.org/10.1371/journal.pbio.1000137
http://dx.doi.org/10.1371/journal.pbio.1000137
http://dx.doi.org/10.1111/j.1365-2958.2008.06219.x
http://dx.doi.org/10.1128/JB.00640-08
http://dx.doi.org/10.1128/JB.00640-08
http://dx.doi.org/10.1016/j.bpj.2008.10.021
http://dx.doi.org/10.1038/msb.2008.49
http://dx.doi.org/10.1016/S0022-2836(65)80285-6
http://dx.doi.org/10.1016/S0022-2836(65)80285-6
http://dx.doi.org/10.1038/nature02406
http://dx.doi.org/10.1073/pnas.0506961102
http://dx.doi.org/10.1073/pnas.0506961102
http://dx.doi.org/10.1073/pnas.0507438103
http://dx.doi.org/10.1529/biophysj.105.079905
http://dx.doi.org/10.1529/biophysj.105.079905
http://dx.doi.org/10.1073/pnas.96.18.10104
http://dx.doi.org/10.1073/pnas.96.18.10104
http://dx.doi.org/10.1073/pnas.1330839100
http://dx.doi.org/10.1073/pnas.1330839100
http://dx.doi.org/10.1073/pnas.0710611105
http://dx.doi.org/10.1111/j.1365-2958.2008.06573.x
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1016/j.pbiomolbio.2009.06.002
http://dx.doi.org/10.1016/j.pbiomolbio.2009.06.002
http://dx.doi.org/10.1103/PhysRevLett.103.158101
http://dx.doi.org/10.1103/PhysRevLett.103.158101
http://dx.doi.org/10.1103/PhysRevLett.100.228101
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1103/PhysRevE.81.021909
http://dx.doi.org/10.1371/journal.pone.0011224
http://dx.doi.org/10.1128/JB.186.12.3687-3694.2004
http://dx.doi.org/10.1038/nature02404
http://dx.doi.org/10.1111/j.1365-2958.2005.04641.x
http://dx.doi.org/10.1073/pnas.0603101103
http://dx.doi.org/10.1073/pnas.0603101103
http://dx.doi.org/10.1371/journal.pcbi.0030150
http://dx.doi.org/10.1371/journal.pcbi.0030150
http://dx.doi.org/10.1038/43199
http://dx.doi.org/10.1073/pnas.97.9.4649
http://dx.doi.org/10.1073/pnas.97.9.4649
http://dx.doi.org/10.1371/journal.pcbi.1000784
http://dx.doi.org/10.1103/PhysRevLett.100.258101
http://dx.doi.org/10.1103/PhysRevLett.100.258101
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1073/pnas.0407659102
http://dx.doi.org/10.1073/pnas.0407659102
http://dx.doi.org/10.1073/pnas.0909673107
http://dx.doi.org/10.1073/pnas.0909673107
http://dx.doi.org/10.1242/jcs.061739
http://dx.doi.org/10.1242/jcs.061739
http://dx.doi.org/10.1038/ni.1832
http://dx.doi.org/10.1038/ni.1832
http://dx.doi.org/10.1371/journal.pone.0006148
http://dx.doi.org/10.1371/journal.pone.0006148
http://dx.doi.org/10.1101/gad.1945010
http://dx.doi.org/10.1016/S0092-8674(04)00167-9
http://dx.doi.org/10.1016/S0092-8674(04)00167-9
http://dx.doi.org/10.1016/j.tibs.2007.09.014
http://dx.doi.org/10.1016/j.tibs.2007.09.014
http://dx.doi.org/10.1007/BF03024331

