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Topological phonon modes in filamentary structures
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This work describes a class of topological phonon modes, that is, mechanical vibrations localized at the edges
of special structures that are robust against the deformations of the structures. A class of topological phonons was
recently found in two-dimensional structures similar to that of microtubules. The present work introduces another
class of topological phonons, this time occurring in quasi-one-dimensional filamentary structures with inversion
symmetry. The phenomenon is exemplified using a structure inspired from that of actin microfilaments, present
in most live cells. The system discussed here is probably the simplest structure that supports topological phonon
modes, a fact that allows detailed analysis in both time and frequency domains. We advance the hypothesis that
the topological phonon modes are ubiquitous in the biological world and that living organisms make use of them
during various processes.
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I. INTRODUCTION

Condensed-matter research has been profoundly marked by
the discovery of a new phase of matter called the topological
insulating phase [1–4], which has already generated a plethora
of amazing applications and changed the way we understand
condensed matter [5,6]. The hallmark of a topological insulator
is the emergence of electronic states along any edge cut into
a sample of such material. Although insulators when probed
deep inside the bulk, these materials conduct electricity along
their edges without any resistance. This property cannot be
destroyed by any chemical or mechanical treatment of the
edge [7,8]. The phenomenon is not restricted only to electronic
systems. Electromagnetic waves can display similar effects
and it was shown that specially designed photonic crystals can
support similarly robust electromagnetic wave modes along
their edges [9,10]. Likewise, specially designed mechanical
lattices can support topological phonon modes [11].

Edge and surface phonon modes are not rare occurrences
in hard matter systems. However, most of these modes are
very sensitive to the deformations of the systems and they
can be easily suppressed by various treatments of the edges or
surfaces. There is a special effect that occurs in the presence of
a magnetic field, the phonon Hall effect [12,13], where robust
vibrational edge modes can be observed very much like the
edge electronic states in the quantum Hall effect. The effect
was recently proposed to have a topological nature [14], by
following an analysis similar to that of Ref. [11]. As opposed
to the phonon Hall effect, the emergence of the topological
phonon modes described in the present work (and in Ref. [11])
does not require any external field and is a consequence of the
special intrinsic properties of the structures.

The lattice presented in Ref. [11], exhibiting topological
phonon modes, was inspired from the structure of microtubules
[15], a biomaterial synthesized by all living cells. Microtubules
display a phenomenon known as dynamic instability (DI)
[16–19], in which they randomly grow and shrink in length, a
process that is essential for their normal functioning. Most of
today’s chemotherapies against cancer target microtubules in
an attempt to inhibit their DI [20]. For this reason, understand-
ing the mechanism of DI is one of the most active research areas
in biomedical research. Reference [11] showed that the phonon

spectrum of the dimer lattice of microtubules displays Dirac
cones like electrons do in graphene. It also showed that these
Dirac cones can be split, leading to topological phonon modes,
which were indeed observed in explicit calculations for ribbon
geometries. It was then hypothesized that the topological edge
modes play a major role in the DI.

Topological phonon modes may also be relevant to the
dynamics of microfilaments, which control cell motility by
applying force on the cell membrane [18,21]. They are made
of the protein actin, arranged in a double-helical formation
[22]. A pool of ATP-actin (ATP = Adenosine Triphosphate)
monomers is present in the cell, and actin polymerization
draws on this pool. The ATP monomers collide and bond with
the ends of the existing filament branches, elongating them.
The bound ATP-actin hydrolyzes into ADP-actin (ADP =
Adenosine Diphosphate) almost instantly, releasing quanta of
about 12 kT energy [23]. At the same time, ADP-actin at the
other end of the microfilament network depolymerizes and
returns to the pool as ATP-actin. Eventually capping proteins
stop the growth of the branches [21].

One unexplained issue is the way in which the microfil-
aments continue to grow while their ends push against the
cell membrane, as is the case when they generate the motile
force [21]. It is difficult to explain how the ATP monomers
from the solution are still able to collide with the ends of the
filaments. According to the elastic Brownian ratchet model
[21,24], the microfilaments vibrate as springlike wires and the
edges adjacent to the cell membrane bend laterally, exposing
the ends to the pool of ATP-actin. This allows additional
actin monomers to squeeze in and attach themselves to the
ends of branches, as illustrated in Fig. 1. The restoring force
straightens the microfilament, which pushes against the cell
wall generating the motile force.

We hypothesize that the bending of the microfilaments is
caused by topological edge modes, powered by the 12 kTs
released during hydrolysis of the ATP-actin. The present
work demonstrates the existence of such modes in filamentary
structures similar to that of the microfilaments. As we shall
see through explicit simulations, such edge modes do not
allow the energy to dissipate into the bulk of the filaments
and could indeed lead to a vigorous shakeup of the ends
of the structures, even when excited with weak stimuli. The

021913-11539-3755/2011/83(2)/021913(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.021913


NINA BERG, KIRA JOEL, MIRIAM KOOLYK, AND EMIL PRODAN PHYSICAL REVIEW E 83, 021913 (2011)

(
^

^

(

^

^

(
^

^

Cell Membrane

Pool of ATP-Actin 
Monomers

Microfilament

FIG. 1. (Color online) The ends of the microfilaments oscillate
while pushing against the membrane, exposing their ends to the pool
of available ATP-actin. The ATP-actin is then able to attach to the
exposed ends and continue the filament’s polymerization.

phonon modes discussed in this work are of a different type
from those previously found in microtubules, which required a
two-dimensional structure and special interactions. We do not
exclude that newly found modes may exist in microtubules.

The paper gives a general classification of filamentary
structures with inversion symmetry and provides a simple
and direct criterion to identify those structures supporting
topological phonon modes. The paper also presents an explicit
mechanical lattice that displays this new phenomenon, which
is investigated through analytic calculations and computer
simulations in both time and frequency domains.

II. A Z2 TOPOLOGICAL CLASSIFICATION OF THE
STRUCTURES WITH INVERSION SYMMETRY

The topological classification of the electronic systems with
inversion symmetry was recently discussed in Refs. [25,26].
Here we adopt the one-dimensional (1D) discussion presented
in Ref. [25] to the context of mechanical waves. Consider a
periodic 1D harmonic lattice, with K degrees of freedom ξ per
repeating cell, governed by the following equations of motion:

ξ̈ α
n = −∑

m,βtmαβξ
β
n+m, (1)

where t’s are coefficients specific to each structure [see for
example Eqs. (23) and (24)]. The equations of motion for
any periodic system slightly perturbed from its equilibrium
configuration can be cast into the form shown in Eq. (1). The
ansatz of traveling waves,

ξα
n (t) = Re[Aα(k)ei(ωt−kn)], k ∈ [−π,π ], (2)

leads to the usual normal modes equation:

[M̂(k) − ω2] �A(k) = 0, (3)

where M(k)α,β = ∑
m tmαβe−ikm and �A(k) is the K dimensional

vector encoding the amplitudes Aα(k). Let ωs(k) and �As(k),
s = 1, . . . ,K be the solutions to Eq. (3). The solutions at k =
±π are identical. Also, �As(k) are assumed to be normalized
to one: �A∗

s (k) · �As(k) = 1, for all s = 1, . . . ,K .
One essential requirement is the existence of a gap in the

vibrational spectrum of the system, that is, an interval [ω−,ω+]
empty of normal frequencies: ωs(k) < ω− for s = 1, . . . ,S and

ωs(k) > ω+ for s = S + 1, . . . ,K , with ω+ strictly larger than
ω−. We refer to the interval [ω,ω+] as the spectral gap.

For each k, the K normal modes �As(k) generate a
K-dimensional complex space CK . The S modes with frequen-
cies below the spectral gap generate a S-dimensional subspace
S, which we should view as an S-dimensional hyperplane of
the K-dimensional complex space. When the k number is
changed, this hyperplane twists, much as a Möbius band will
in real three-dimensional space. Our task is to classify the
twists of the S-dimensional hyperplane.

A. General arguments

We assume that the 1D harmonic lattice has inversion
symmetry, which implies the existence of a k-independent
matrix P such that

PM̂(k)P−1 = M̂(−k), (4)

where P is an unitary matrix that squares to indentity:

PP† = Î , PP = Î . (5)

The inversion symmetry and the matrix P are discussed
in great detail for our explicit example. In the following,
we demonstrate that the harmonic lattices with inversion
symmetry fall into at least two topological classes.

The following analysis is standard in quantum mechanics
[27], but is definitely not common for the present context. We
need to define a parallel transport, that is, a rule that tells us how
to change a vector in the hyperplane S when k is modified so
that it stays parallel. The construction of the parallel transport
is not unique; however, the emerging topological classification
is independent of how the parallel transport is defined [28]. Let
P̂ (k) denote the projector onto the S-dimensional hyperplane
generated by the normal modes with frequencies below the
spectral gap:

[P̂ (k)]αβ = ∑S
s=1[ �As(k)]α[ �As(k)∗]β. (6)

This is a K × K matrix and the S-dimensional hyperplane S
is then simply given by P̂ (k)CK . A parallel transport can be
defined by the so-called monodromy Û (k,k0), defined as the
unique solution to the equation

∂kÛ (k,k0) = [P̂ (k),∂kP̂ (k)]Û (k,k0), (7)

with the initial condition Û (k0,k0) = P̂ (k0). Once we compute
this Û (k,k0) for each k ∈ [−π,π ], we can define the parallel
transport as the map that takes an initial vector �A(k0) =∑S

s=1 cs
�As(k0) of the hyperplane at k0 into the vector �A(k) =

Û (k,k0) �A(k0) of the hyperplane at k. Physically, this parallel
transport gives the change in a vibrational state of the system
when the frequency is adiabatically changed.

Since the normal modes at k = ±π are identical, we can
identify these two k points and think that k is defined on a circle
as in Fig. 2. If we do so, then we see that Û (π, − π ) takes the
hyperplane P̂ (−π )CK into itself, becoming an unitary matrix
that we will call Ûγ , to relate it to the paths shown in Fig. 2.
It is known from non-Euclidean geometry that the parallel
transport along a closed path will not necessarily return a
vector into itself. Something similar happens here; that is, the
map Ûγ does not return a vector into itself.

021913-2



TOPOLOGICAL PHONON MODES IN FILAMENTARY. . . PHYSICAL REVIEW E 83, 021913 (2011)

′

FIG. 2. (Color online) The adiabatic transport is carried over the
paths γ and γ ′.

The monodromy Ûγ has special properties when the
inversion symmetry is present. Indeed, assuming k0 = −π ,
a conjugation of Eq. (7) with P gives

∂k{PÛ (k,−π )P−1} = [P̂ (−k),∂kP̂ (−k)]PÛ (k, − π )P−1,

(8)

with the initial condition PÛ (−π, − π )P−1 = P̂ (π ). This
is just the equation for Û (−k,π ), which simply shows that
PÛ (k, − π )P−1 coincides with Û (−k,π ). Equivalently, we
can think that P sends the path γ into the path γ ′ of Fig. 2.
Now obviously Ûγ Ûγ ′ equals identity; therefore,

det{ÛγPÛγP−1} = 1. (9)

Using the elementary properties of the determinant,

det{AB} = det{A} det{B}, det{P−1} = det{P}−1, (10)

we conclude that det {Ûγ }2 = 1. Consequently, the determi-
nant can take only two values:

det{Ûγ } = ±1. (11)

This is one of our main conclusions. It shows that the
set of matrices M̂(k) satisfying Eq. (4) can be split into
two categories C±, the criterion being the value of det{Ûγ }
for the corresponding monodromy. A matrix M̂(k) that was
placed in one category cannot be morphed into a matrix
from the second category by a continuous deformation that
keeps the spectral gap open. Indeed, under such deformation,
Ûγ will change smoothly and, consequently, its determinant
must change smoothly. Hence, it cannot make sudden jumps
between +1 and −1. If the spectral gap closes, then P̂ (k)
becomes ill defined and the monodromy Ûγ can no longer
be defined. If the gap opens again, the monodromy Ûγ can
emerge with a different determinant.

In the following, we describe how one can determine the
signature of det{Ûγ } through an elementary calculation. We
have successively

det{Ûγ } = det{Û (π,0)Û (0, − π )}
= det{Û (π,0)PÛ (0,π )P−1}. (12)

Taking into account that P−1 = P and inserting the appropri-
ate projectors, we obtain

det{Ûγ } = det{P̂ (π )Û (π,0)P̂ (0)PP̂ (0)Û (0,π )P̂ (π )P}. (13)

Using again the elementary properties of the determinant and
the fact that Û (π,0)Û (0,π ) = I , we obtain

det{Ûγ } = det{P̂ (0)PP̂ (0)}det{P̂ (π )PP̂ (π )}. (14)

In other words, all we need is to compute the action of inversion
symmetry operation P at the special points k = 0 and k = π .
As we shall see, for concrete examples this can be accomplish
through straightforward calculations.

B. Existence of the edge modes

We show here that the systems with det{Ûγ } = −1 are
likely to display edge phonon modes. For this, we imagine the
following experiment. We take the infinitely long chain and
we synchronously weaken the interactions between the 0th
and the 1st cell, between the N th and (N + 1)th cell, and so
on, such that when these interactions are set to zero, we obtain
decoupled finite chain pieces of length N . We call the action
we just described the decoupling process. During decoupling,
we assume that the inversion symmetry is preserved.

At any moment of the decoupling process, we can see the
altered chain as a new periodic chain whose repeating cell
contains N cells of the original chain. Therefore, the whole
discussion of the last section still applies. If one computes the
monodromy matrix Ûγ and its determinant for the new chain,
one will find the following. At the beginning of the decoupling
process, with the interactions untouched, det{Ûγ } = ±1 for
chains belonging to C± categories, respectively. At the end
of the decoupling process, M̂(k) becomes independent of k

and consequently either Ûγ = P̂ (−π ) and det{Ûγ } = 1 or
Ûγ cannot be defined because the system becomes gapless.
For a system in the C− category, both scenarios imply
that the spectral gap closes during the decoupling. Thus, at
least one pair of phonon bands must emerge in the spectral
gap, one band coming from the upper and and one from the
lower edge of the spectral gap. These two bands must move
toward each other until they touch. In very special instances,
which we were actually never able to observe, these two bands
may continue to move until they disappear from the spectral
gap. However, in general, the bands end up inside the spectral
gap at the end of the decoupling process, on top of each other.
The bands become dispersionless, that is, completely flat, and
the modes corresponding to these flat bands represent vibra-
tional modes localized at the two ends of each finite piece
of chain. This is in striking contrast with the case of simple
harmonic lattices, that is, periodic arrays of harmonically
interacting (pointlike) bodies without internal structure, where
it was concluded in Ref. [29] that vibrational modes localized
at the edges are very unlikely to occur in 1D structures.

The vibrational modes discussed above are robust in the
sense that, no matter how the decoupling is done, these edge
modes will always emerge during the decoupling process. For
example, a real lattice might become strongly distorted near
the edges when a finite piece is being cut out but, even in this
case, we still expect to see edge phonon modes for a system in
the C− category.
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FIG. 3. (Color online) The structure consists of a periodic array
of dimers, connected by four different springs. The diagram depicts
the system at equilibrium.

III. EXAMPLE OF A TOPOLOGICAL STRING

In this section we introduce our example. It is the structure
shown in Fig. 3, made of an array of dimers, consisting of two
masses M linked by a rigid and massless arm of length 2d. The
adjacent dimers are connected by four different ideal springs.
We allow only two degrees of freedom per dimer: a horizontal
motion of the center of mass, whose position will be marked
by xn (yn will be constrained to 0), and a pivotal motion of
the dimer in the plane of the structure and around the center
of mass, described by the angle φn. We assign the labels ± to
the masses on the upper and lower rows of the structure. Using
these labels, the springs between two dimers can be uniquely
labeled by αβ, depending on which masses are connected by
it. The corresponding spring constants will be denoted by Kαβ .

Let us point out that if we chose K++ = K−−, then the
system is symmetric to the operations described in Fig. 4.
These operations define the inversion symmetry of our system.

A. The equations of motion

We decided to discuss the equations of motion for the
system in detail, in order to assist those who want to explore
beyond what is presented here. With the notations introduced
in Fig. 5, the positions of two masses of the nth dimer can be
conveniently written as

xα
n = xn − αd sin(φn); yα

n = αd cos(φn). (15)

The equations of motion for the nth dimer are

2Mẍn = Fn,x, 2Md2φ̈n = τn, (16)

where Fn,x and τn represent the net horizontal force and the
net torque on the nth dimer. They are given by

Fn,x = ∑
α,β

[
F

αβ
n,x − F

βα

n−1,x

]
(17)

and

τn =
∑
α,β

[(
xα

n − xn

)(
Fαβ

n,y − F
βα

n−1,y

)
− yα

n

(
Fαβ

n,x − F
βα

n−1,x

)]
(18)

FIG. 4. (Color online) If K++ = K−−, the structure is mapped
into itself by the symmetry operations shown in this diagram.

φn−1 φn φn+1

l++
n

l+−
nl−++

n

↪ l−−
n

xn−1 xn+1xn

FIG. 5. (Color online) The diagram introduces the notations used
in the text. The array of dimers is shown at the equilibrium (faded)
and at some arbitrary snapshot in time. xn represents the position of
the center of mass of the nth dimer and φn represents the angle of
rotation of the nth dimer relative to the vertical axis. In the equilibrium
configuration, all φn are equal to φ0.

where F
αβ

n,x/y are the horizontal and vertical components of
the forces generated by the springs at the right side of the
nth dimer:

Fαβ
n,x = Kαβ

(
1 − l

αβ

0 /lαβ
n

)(
x

β

n+1 − xα
n

)
,

(19)
Fαβ

n,y = Kαβ

(
1 − l

αβ

0 /lαβ
n

)(
y

β

n+1 − yα
n

)
,

with

lαβ
n =

√(
x

β

n+1 − xα
n

)2 + (
y

β

n+1 − yα
n

)2
(20)

being the distance between the α and β masses of the nth and
n + 1th dimers and l

αβ

0 being the unstretched length of the
αβ spring.

The above equations of motion have been implemented
numerically and the time evolution of the structure has been
investigated using a fourth-order Runge-Kutta time propaga-
tor. The results are presented below. In all our calculations, we
used length and time units so that M = 1, l++

0 = l−−
0 = 1, and

d was set to 1.

B. The small oscillations

To explain and understand the features seen in our time
domain simulations, it is useful to compute first the phonon
spectrum of our structure, that is, the relation between the
frequency and the wave number of the wave propagating
modes. Let us introduce the notation

ξ 1
n = xn − xeq

n , ξ 2
n = dφn. (21)

In the linear regime, that is, when the dimers are only slightly
perturbed from their equilibrium configurations, we have

xα
n = xeq

n + ξ 1
n − α cos(φ0)ξ 2

n , yα
n = −α cos(φ0)ξ 2

n . (22)

Plugging these expressions into Eq. (16) and retaining only
the linear terms in ξ 1 and ξ 2, after tedious but otherwise
straightforward calculations, we obtained the linearized form
of the equations of motion:

−ξ̈ 1
n = −1

2

∑
αβ

�xx
αβ

(
ξ 1
n+1 − 2ξ 1

n + ξ 1
n−1

)
−

∑
α

α
[
�xx

αα cos φ0 + �xy
αα sin φ0

]
ξ 2
n

+ 1

2

∑
αβ

α
[
�xx

αβ cos φ0 + �
xy

αβ sin φ0
](

βξ 2
n+1 + ξ 2

n−1

)
(23)
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and

−ξ̈ 2
n = −

∑
α

α
[
�xx

αα cos φ0 + �xy
αα sin φ0

]
ξ 1
n

+ 1

2

∑
α

α
[
�xx

αβ cos φ0 + �
xy

αβ sin φ0
](

ξ 1
n+1 + βx1

n−1

)
+

∑
αβ

{[
�xx

αβ cos2 φ0 + �
yy

αβ sin2 φ0
] + α

2d

× [(
Fαβ

n,y−F
βα

n−1,y

)
cos φ0−

(
Fαβ

n,x − F
βα

n−1,x

)
sin φ0

]}
ξ 2
n

−
∑
αβ

β
[
�xx

αβ cos2 φ0 + �
yy

αβ sin2 φ0
](

ξ 2
n+1 + ξ 2

n−1

)
.

(24)

The coefficients have the following explicit expressions:

�xx
αβ = Kαβ

M

{
1 − l

αβ

0

l
αβ
n

[
1 −

(
�xαβ

l
αβ
n

)2
]}

, (25)

�
yy

αβ = Kαβ

M

{
1 − l

αβ

0

l
αβ
n

[
1 −

(
�yαβ

l
αβ
n

)2
]}

, (26)

and

�
xy

αβ = �
yx

αβ = Kαβ

M

l
αβ

0

l
αβ
n

�xαβ�yαβ(
l
αβ
n

)2 , (27)

with �xαβ = xα
n+1 − x

β
n and �yαβ = yα

n+1 − y
β
n . The dimers

are assumed to be in their equilibrium configuration in these
last two equations.

To simplify the equations, we assume from now on that
none of the springs are under tension at the equilibrium
configuration and that the l

αβ

0 are chosen such that φ0 = 0.
The ansatz ξ i

n = Re{Aie
i(ωt−kn)} leads to the normal modes

equation M̂(k) �A = ω2 �A, with

M̂(k) =
[ ∑

αβ

Kxx
αβ−

∑
α

Kxx
αα cos k

]
Î− σ̂1(1 − cos k)

∑
α

αKxx
αα

+ σ̂2 sin k
∑

α

αKxx
α−α− σ̂3 cos k

∑
α

αKxx
α−α, (28)

where σ̂i’s are the Pauli’s matrices

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i

−i 0

)
, σ̂1 =

(
1 0
0 −1

)
. (29)

The normal modes equation has two solutions: ω1,2(k) and
�A1,2(k).

Let us start the discussion of these solutions from the special
case when K++ = K−− and K+− = K−+. In this case, the
normal modes equation becomes(

ε1 0
0 ε2

)(
A1

A2

)
= ω2

(
A1

A2

)
, (30)

with

ε1 =
∑
αβ

�xx
αβ[1 − cos k],

(31)
ε2 =

∑
αβ

�xx
αβ[1 − αβ cos k].
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FIG. 6. The phonon bands for (a) K−− = K++ = 0.5 and K−+ =
K+− = 2 and (b) K−− = K++ = 0.5 and K−+ = K+− = 4.

The phonon modes decouple into a mode (corresponding
to ε1) that involves displacements of the centers of mass but
no pivotal motion and a mode (corresponding to ε2) which
involves pivotal motion and no displacements of the centers of
mass.

Depending on the common values given to K++ and K−−
and to K+− and K−+, the phonon bands can assume two
distinct behaviors, as shown in Fig. 6. We are primarily
interested in the case (b) because, as exemplified in Fig. 7,
when the bands cross each other in that way, a small mismatch
between K+− and K−+ or between K++ and K−− will open a
gap in the spectrum, thus realizing the last requirement of our
general theory.

C. The edge spectrum

As already mentioned, if we set K++ = K−−, the system
becomes symmetric to the inversion operation shown in Fig. 4
and the M̂(k) matrix becomes

M̂(k) =
[ ∑

αβ

Kxx
αβ −

∑
α

Kxx
αα cos k

]
Î + σ̂2 sin k

×
∑

α

αKxx
α−α − σ̂3 cos k

∑
α

αKxx
α−α. (32)

In the k space, the inversion symmetry is implemented by
P = σ3 and one can explicitly verify that

σ̂3M̂(k)σ̂3 = M̂(−k). (33)

Moreover, the projectors at the special points k = 0 and π can
be computed explicitly. Assuming

∑
α αKxx

α−α < 0, they are

P̂ (0) = 1
2 (Î − σ̂3), P̂ (π ) = 1

2 (Î + σ̂3). (34)
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FIG. 7. The spectral gap opening for (a) K−− = K++ = 0.5,
K−+ = 3, and K+− = 5 and (b) K−− = 0.3, K++ = 0.7, and K−+ =
K+− = 4.
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If
∑

α αKxx
α−α > 0, the expressions will be switched. In both

cases, we can explicitly verify that

det{P̂ (0)PP̂ (0)}det{P̂ (π )PP̂ (π )} = −1, (35)

and consequently the system is topologically nontrivial and
we should observe edge modes. Note that when computing
the determinants in Eq. (35), one needs to discard the null
eigenvalues.

If we keep K−+ = K+− and consider a difference between
K−− and K++, the system still has an inversion symmetry but
in this case the symmetry is implemented in the k space by the
identity matrix. Hence,

det{P̂ (0)PP̂ (0)}det{P̂ (π )PP̂ (π )} = +1. (36)

Consequently, the system is trivial and we should not observe
robust edge modes.

To verify these predictions, we performed the following
numerical experiment. We considered a chain of 100 dimers
linked in a circle configuration (the radius of the circle is very
large so any physical bending of the structure can be ignored).
In our theoretical argument of Sec. II A we used a gedanken
experiment involving an infinite chain which was gradually
sectioned in finite equal pieces. In practice, we cannot simulate
such an infinite chain, but we can still start from a configuration
with no edges (to avoid unwanted phonon reflections), which
is precisely the circle configuration mentioned above. Then we
slowly weakened all four spring constants between two dimers
by making the substitution K → wK with w continuously
varying from 1 to 0. When w = 0, the circle is fully opened
in a finite piece with two separated edges, exactly like in
the gedanken experiment. If topological phonon modes are

K++=0.5, K--=0.5
K+-=3.0, K-+=5.0

K++=0.3, K--=0.7
K+-=4.0, K-+=4.0

w w

S
pe

ct
ru

m

1 0 01

FIG. 8. Each vertical sequence of dots represent the frequencies
of the normal modes of a chain made of 100 dimers arranged in a
circle. The spring constants K of the springs connecting two dimers
were gradually weakened by making the substitution K → wK and
letting w vary from 1 to 0. The frequencies were recomputed for
many w values. Panel (a) refers to the topological case, and panel
(b) to the nontopological case.

present, we expect to see them gradually emerging from the
bulk spectrum as described in Sec. II B.

For each w we have computed all 200 normal modes
and we placed their frequencies on a vertical axes. Figure 8
shows the results of these calculations, which illustrate how
the frequencies of the normal modes change as w is varied
from 1 to 0. In the topological case K−− = K++ = 0.5,
K+− = 3, and K−+ = 5 one can observe two solitary normal
frequencies separating from the bulk spectrum and moving
toward each other. When the two edges are completely formed
at w = 0, the two frequencies meet near the middle of the
gap (the oscillatory motion of these modes is discussed in
the next section). In contradistinction, no such modes are
observed for the nontopological case K−− = 0.7, K++ = 0.3
and K−+ = K+− = 0.5. This explicit calculation confirms our
general theoretical predictions.

D. Time domain analysis

As already mentioned, the (nonlinear) equations of motion
have been implemented numerically and the motion of the
dimmers has been studied in real time [30]. Here we discuss
the manifestation of the edge modes in the real time dynamics
of the dimer chain. For this, we considered a chain containing
N = 100 dimers plus two additional “edge” dimers. We fixed
the very left dimer to the upward position while forcing the
very right dimer into the following motion:

xN+1 = A1 sin ωt, φN+1 = A2 sin ωt. (37)

The rest of the N dimers were released from the equilibrium
with zero velocities (see Fig. 9).

The resulting motion of the dimers has been plotted every
�t = 3, and movies were generated for various pulsations ω.
For a more complete representation, we chose to look at
(1) the actual dimer positions, (2) only at the horizontal
displacement xn(t) of each center of mass, and (3) only the
angular displacement φn(t) of the dimers as functions of
time. In the following, we make reference to the wave modes
discussed in Sec. III C. The movies [30] reveal that, indeed,
if ω is below approximately 1.4 (see Fig. 6), only the wave
propagating mode that involves the translation of the dimers
is excited, even though A2 was given the same value of 0.03
as A1. Above 1.4 and below the edge of the spectral gap we
see both wave modes being excited. Similar behaviors are
observed above the spectral gap. What really interests us is
what happens when ω takes values inside the spectral gap.
In order to generate a meaningful plot, we let the movies
progress without erasing the images already played out. The
resulting plots show the trajectories followed by each dimer
and, in particular, they reveal the amplitudes of the oscillating
motion for each dimer at the time when the movie was
stopped. In Fig. 9, the last dimer was forced into the motion
described in Eq. (37), with A1 = A2 = 0.03 and ω = 1.6
chosen to be in the middle of the spectral gap. The movie
was allowed to run for three time intervals: 500, 1000, 2000.

The left panels in Fig. 9 simulate the situation illustrated
in Fig. 8(a). This is the topological case, for which the
spring constants were set to K−− = K++ = 0.5, K+− = 3,
and K−+ = 5 and an edge resonance is expected. As one
can see, only the amplitudes of the dimers close to the right
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FIG. 9. (Color online) (Top diagram) Representation of the dimer
chain and the forced motion of the rightmost dimer. (Main panel) The
trajectories covered by the dimers after t = 500, 1000, and 2000. Each
subpanel contains three plots, representing, from the top to bottom,
the actual trajectories of the dimers, the trajectories of the horizontal
displacements xn(t), and of the angular displacements φn(t). Plots (a),
(b), and (c) represent the behavior of the dimers in the topological case
where K−− = K++ = 0.5, K+− = 3, and K−+ = 5. Plots (a′), (b′),
and (c′) represent the behavior of the dimers in the nontopological
case where K−− = 0.7, K++ = 0.3, and K−+ = K+− = 4.

edge reach appreciable values and the amplitudes are seen
to decay exponentially away from the edge, demonstrating
that we are indeed dealing with an edge mode. Furthermore,
one can see the amplitudes increasing as time progresses,
the angular displacement of the second right dimer reaching
an amplitude of approximately 0.4 after t = 2000, more
than 10 times the amplitude of the forced oscillation imposed
on the first dimer. This reveals an important property of the
edge resonance, namely, the ability to absorb and store energy
in the proximity of the edge of the structure.

The right panels in Fig. 9 simulate the nontopological case
presented in Fig. 8(b), where the spring constants were set to
K−− = 0.7, K++ = 0.3, and K−+ = K+− = 4.0. In this case

we do not expect an edge mode and indeed the amplitudes of
the dimers near the edge remain practically zero at all times.

There is a small artifact in the plots of Fig. 9. Due to
a nonstationary effect comming from the relatively large
amplitude used for shaking the end dimer, the average positions
of the centers of the dimers slowly drift to the left in time.
Because of the way we generate Fig. 9, this drift may give the
impression of a finite oscillation amplitude for dimers away
from the edges. We prompt the reader to watch the movie,
where one can clearly see that the oscillation amplitudes of
the dimers away from the edges are practically zero (the slow
drifting motion is also visible).

IV. CONCLUSIONS

Using a monodromy argument, we have demonstrated
that the filamentary structures with inversion symmetry fall
into at least two topologically distinct classes. We have
argued that one of the two classes contains systems that
should display robust topological edge modes. The general
theoretical predictions were verified using an explicit ex-
ample of a mechanical structure that display robust edge
modes.

The structure was inspired from that of actin microfil-
aments. We hypothesized that the energy from the ATP
hydrolysis in microfilaments is stored in these robust vibrations
and is then used to drive the motion described in the elastic
Brownian ratchet model. This opens an interesting research
direction, which is worthwhile pursuing because we believe
that, with the present technology, well designed and focused
experiments can reveal whether or not the microfilaments have
edge modes.

Although not very accurate, the model allowed us to present
the concept of topological phonon modes in a very explicit and
detailed exposition, without being derailed by unnecessary
complications. The simplicity of the structure allows detailed
analyses of other interesting questions, such as what happens
when defects are present throughout the bulk of the chain,
how is the edge excited by the hydrolysis of GTP actin or
tubulin, how is damping effecting the picture, etc. The structure
presented here can become a very useful pedagogical tool
to introduce the concept of topological phonon modes in an
accessible and explicit way via computer simulations or real
laboratory observations.
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