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Efficient and coherent excitation transfer across disordered molecular networks
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We show that finite-size, disordered molecular networks can mediate highly efficient, coherent excitation
transfer which is robust against ambient dephasing and associated with strong multisite entanglement. Such
optimal, random molecular conformations may explain efficient energy transfer in the photosynthetic Fenna-
Matthews-Olson complex.
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I. INTRODUCTION

Recently, a vivid debate arose on the physical mecha-
nisms underlying efficient transport in organic molecules.
In particular, the excitation transfer from the photoreceptor
to the chemical reaction center in photosynthetic light har-
vesting complexes succeeds with astonishingly high transfer
efficiency. Since many of these biological systems exhibit
disorder and are coupled to noisy environments, arguably
all models [1,2] so far build on the fundamental hypothesis
that disorder induces destructive interference in the coherent
quantum evolution. The latter, in turn, hinders transport [3,4],
what can only be overcome by added noise, such as to restore
the classically diffusive behavior. However, this hypothesis
is valid only in the thermodynamic limit, i.e., for very large
molecular structures, while coherent transport across finite-size
disordered samples is characterized by large fluctuations
under configurational variations [3,4]. The photosynthetic
Fenna-Matthews-Olson (FMO) complex, as one of the most
carefully studied examples [5], is clearly a very finite molecular
complex, far from the thermodynamic limit. New experimental
data additionally provide clear evidence that excitation transfer
is predominantly coherent even at room temperature [6–8], on
transient time scales (100 fs) much shorter than—or at least
comparable to—the typical environment-induced decoherence
times [9]. Hence, the cause of the observed transport efficiency
must be rooted in general properties of coherent quantum
dynamics on finite molecular networks, on time scales shorter
than those on which environmental decoherence fully develops
its detrimental influence [10–12]. As we will show, rare
incidences of constructive rather than destructive interference
of transition amplitudes from the photoreceptor to the reaction
center indeed do provide a possible explanation for these
observations, and enable strictly coherent transport efficiencies
up to 100%.

II. THEORETICAL DESCRIPTION

With some physical abstraction, a light harvesting complex
can be viewed as a fully connected, disordered finite graph
with N vertices. Under the assumption of purely coherent
transport, it is the spatial distribution of these which fully
controls the relative phases of the transition amplitudes,
which need to be added coherently to infer the transport
efficiency from the input to the output site. Optimal transport
efficiency is then equivalent to molecular conformations with

strictly constructive interference of all these amplitudes—just
conversely as in the case of disorder-induced destructive
interference which dominates in the thermodynamic limit. On
a finite molecular network, this represents an optimization
problem which can be solved by evolution, and suggests a
statistical analysis, as follows.

Coherent transport of a single excitation across a sample of
molecular sites is generated by the Hamiltonian

H =
N∑

i �=j=1

vi,j σ
(j )
+ σ

(i)
− , (1)

where σ
(j )
+ and σ

(i)
− mediate excitations and deexcitations of

sites j and i from the local electronic ground state to the
local excited state and vice versa, respectively. The excitation
transfer σ

(j )
+ σ

(i)
− from site i to site j has a strength vi,j = vj,i

which depends on the specific nature of the intersite coupling
and that we assume to be of resonant (isotropic) dipole type,
vi,j = α/r3

i,j , with ri,j = |�ri − �rj | and �rj the position vectors
of individual sites. Input and output sites define the poles of a
sphere of diameter d which, via the coupling constant vin,out =
α/d3, sets the natural time scale of the dynamics induced by H .
The positions of the remaining molecular sites are randomly
(uniformly) chosen within this sphere, what induces a random
distribution of the remaining vi,j .

To assess the probability for complete and rapid transfer
of an excitation from the input to the output site we sample
different spatial configurations. Our figure of merit is the
maximum probability—henceforth “transport efficiency”—

p
(T )
out = max

t∈[0,T ]
|〈out|ψ(t)〉|2, (2)

that an excitation injected at input is received at output after
times no longer than T = 0.1π/(2|vin,out|). This is one-tenth
of the time span the full excitation transfer would require if no
intermediate sites were present. Note that this specific choice
of T is immaterial for our subsequent discussion, provided
T is sufficiently small as compared to the time scale set by
vin,out, and long enough to allow maximum values of p

(T )
out close

to unity. This also implies (and is confirmed by inspection
of the underlying numerical data) that large values of the
transport efficiency as defined in Eq. (2) imply large values
of the time average of |〈out|ψ(t)〉|2 over [0,T ] (an efficiency
quantifier used elsewhere [1]), and vice versa. Only on time
scales which are long with respect to T could both quantifiers
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FIG. 1. (a) Fluctuation of the transfer efficiency p
(T )
out from input to output, for 500 different random conformations of N = 7 sites (•).

Horizontal lines indicate the transfer efficiency of the experimentally inferred [13] FMO Hamiltonian, as well as that of the optimal configuration
FMO* compatible with the experimental error margin. (b) Probability densities P (p(T )

out ) of the transfer efficiency p
(T )
out for 2.5 × 108 different

conformations. For fully coherent dynamics (black line) the mean value of p
(T )
out amounts to 4.9%, and only 4.5 out of 106 configurations provide

efficiencies larger than 90%. Under local dephasing (gray line), the mean efficiency drops to 3.9%. (c) Gains (•) and losses (◦) of the transfer
efficiency with dephasing.

lead to different predictions. On such time scales, however,
coherent effects will fade out.

III. STATISTICS OF TRANSPORT EFFICIENCY

Figure 1(a) shows the variation of the transport efficiency
p

(T )
out for a sample of 500 different random distributions of

N = 7 sites as in the FMO complex [9]. p
(T )
out fluctuates

wildly for different random configurations, as anticipated
in our motivation above. Remarkably, very high transport
efficiencies can be achieved as evident from Fig. 1(b), where
the probability density of p

(T )
out obtained for a sample of 2.5 ×

108 realizations is shown in black. Efficiencies above 90% are
achieved for approximately five configurations out of a million,
despite the fact that the average efficiency is only 4.5%.
Therefore, evolution can choose from truly exceptional, albeit
statistically unlikely molecular conformations with excellent
transport properties. Such a configuration is depicted in Fig. 2,
where—in contrast to the random choice of conformations in
Fig. 1—we have maximized p

(T )
out by iterative optimization of

the sites’ positions. Thereby, we find certain conformations
which achieve even 100% transport efficiency. The example
shown in Fig. 2(a) spells out that optimal arrangements
are asymmetric and nonperiodic, hence far from trivial
(e.g., latticelike, collinear) structures.
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FIG. 2. (Color online) (a) Optimal spatial configuration of N =
7 sites offering fast, robust, and complete transport from input to
output. (b) Time evolution of the on-site probabilities |〈i|ψ(t)〉|2
generated by the Hamiltonian defined by (a). i is either the input site
(green solid line), the output node (red dashed), or an intermediate
site (black thin). At time T ′, only the output site is populated. At
intermediate times t < T ′, the excitation is spread over several sites,
leading to high values of the bipartite (dash-dotted) and quadripartite
(dash-dash-dotted) entanglement (see text).

To assess the efficiency of the actual FMO complex, in
comparison to our present results, we employ an approximate
Hamiltonian [13] inferred from experimental data, and obtain
a transport efficiency of only 5.7% in a time window of 1.6 ×
10−13 s, hence close to the average value of our random model.
The time window was here defined by the coupling strength
between chromophores 1 and 3, T = 0.1π/(2|v1,3|). However,
variation of the off-diagonal (diagonal) matrix elements by at
most 3.2 × 1011h s−1 (17 × 1011h s−1) —what is the absolute
error margin deduced from the experimental data [13]—is
compatible with an alternative, optimal configuration (FMO*)
with a transport efficiency of 43.1% [see Fig. 1(a)] (h is
Planck’s constant). Furthermore, much as the optimal con-
figuration depicted in Fig. 2(a), this configuration’s efficiency
is robust under statistical variations with a spread of 1011h s−1

(5.4 × 1011h s−1) on the FMO* Hamiltonian’s off-diagonal
(diagonal) elements, in the sense that such variation yields
a Gaussian distribution 43.1 ± 5% of the transport efficiency
around the optimum.

IV. EFFICIENCY AND DEPHASING

Let us now consider the same transport problem in the
presence of environmental noise. Figure 1(c) shows the
efficiencies p

(T )
out for the same statistical sample as in Fig. 1(a),

under local dephasing with a strong rate γ = 2/T . Cases in
which p

(T )
out is decreased by dephasing are indicated as open

circles, whereas cases of enhancement of transport efficiency
are depicted as black filled circles. The plot very neatly spells
out a clearly dichotomous impact of the environment:

(i) Whenever constructive quantum interference enhances
transport in the absence of environment coupling, the noise
reduces the transport efficiency p

(T )
out very considerably.

(ii) In contrast, if quantum coherence suppresses transport
in the strictly coherent case, dephasing will enhance p

(T )
out ,

though only very marginally so.
(iii) Notwithstanding, even in the presence of the rather

strong dephasing chosen for our simulation, those rare molec-
ular conformations which provide efficient excitation transfer
maintain this characteristic property under environmental
coupling, just at reduced levels, and are still clearly distinct
from those conformations which hinder transport.
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The crossing of the probability densities obtained with
and without noise [see Fig. 1(b)], identifies a level of 7.6%
as the demarcation line between transport efficiencies which
are strongly reduced (p(T )

out > 7.6%) or marginally enhanced
(p(T )

out < 7.6%) by added noise. This is again in qualitative
accord with the reported data on the FMO Hamiltonian, as well
as with its efficient variant FMO* introduced above: While the
FMO efficiency increases from 5.7 to 12.3 percent, the FMO*
efficiency is reduced from 43.1 to 21.5%, in the presence of
noise.

Note that such dichotomous behavior as identified here for
finite systems on transient time scales is absent in the ther-
modynamic limit of infinite systems and/or sufficiently long
transport times, where noise completely destroys quantum
coherences and tends to induce near-classical, diffusionlike
behavior. It is well known that noise then enhances transport
by suppressing destructive quantum interference [1,10–12],
though, in general, cannot compete with the transport efficien-
cies brought about by constructive quantum interference—
even when the environment coupling strengths are
optimized [2].

V. EFFICIENCY AND ENTANGLEMENT

Efficient quantum transport as already observed relies on
the constructive interference of a large number of (input to
output) transition amplitudes, reminiscent of efficient quan-
tum algorithms. Therefore, let us now address the question
of whether multisite entanglement is of similar relevance
for the molecular transport problem as it is for quantum
computation—an issue of much recent interest [5,14,15].
In our present problem, precisely one excitation propagates
from input to output, so that the transporting states are
close relatives of the W states [16]—a well-known class of
entangled states of multipartite systems that are known to be
particularly robust against decoherence induced by dephasing
or spontaneous decay [17]. These states also provide a clear
relation between the excitation’s localization and the system’s
entanglement properties: The latter can be characterized in
terms of a hierarchy of quantities {cν(ψ)}ν=2,...,N which are
strictly positive if entanglement in |ψ〉 is shared by at least
ν sites, and vanish otherwise. In particular, each cν(ψ) is a
function of the statistical moments Mk(ψ) = ∑N

j=1 |〈j |ψ〉|2k ,

where {|j 〉}j=1,...,N is the canonical site basis. In terms
of the second moment M2(ψ) —which is nothing but the
inverse participation ratio [4] frequently used in statistical
descriptions of complex quantum systems— c2(ψ) (which
is a multipartite generalization [18] of a standard bipartite
entanglement measure [19]) reads

c2(ψ) =
√

1

1 − 1/N
[1 − M2(ψ)] . (3a)

Higher order cν(ψ) are analogous functions of the moments
M1(ψ) = 1 to Mν(ψ). For instance, the quadripartite measure
reads

c4(ψ) =
(

1 − 6M2 + 8M3 + 3M2
2 − 6M4

1 − 6/N + 11/N2 − 6/N3

)1/4

. (3b)

Under purely coherent dynamics, multipartite entanglement
thus encodes the detailed localization properties of the exci-
tonic wave function.

With these tools at hand, we can now correlate the transport
efficiency with the multisite entanglement which is generated
during the transport process. Figures 3(a) and 3(b) show the
probability density of the transport efficiency, P (p(T )

out |c(T ′)
2 )

and P (p(T )
out |c(T ′)

4 ), conditioned on the maximal bi- and quadri-

partite entanglement, c(T ′)
2 and c

(T ′)
4 , which is generated during

the exciton propagation from input to output:

c(T ′)
ν = max

t∈[0,T ′]
cν(ψ(t)). (4)

T ′ � T is the time at which the maximum output probability
p

(T )
out is reached [see Fig. 2(b)]. Clearly, efficient transport

necessarily requires strong entanglement. This is most promi-
nently spelled out in Fig. 3(a), where high transport efficiency
(e.g., p

(T )
out > 0.5) is only reached at high values of the entan-

glement (c(T ′)
2 > 0.8) shared between at least two sites. Note

the kink in the distribution visible at c
(T ′)
2 = √

7/12 
 0.76,
which corresponds to maximal entanglement between exactly
two of the N = 7 sites. Here, transport is inhibited since the
excitation may be trapped in a singlet state between two sites
which are accidentally placed very close to each other.

The correlation between transport and entanglement visible
in Fig. 3(a) prevails for higher orders of the c(T ′)

ν , but is less
pronounced for increasing ν, as evident from the exemplary
case of c

(T ′)
4 in Fig. 3(b). Here, although moderate transport
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FIG. 3. (a) Contour plot of the conditional probability density P (p(T )
out |c(T ′)

2 ), i.e., the probability distribution of the transport efficiency

p
(T )
out across seven sites, given the generation of a certain maximal level c

(T ′)
2 of at least bipartite entanglement, during the transfer time T ′.

(b) Same as (a), but for quadripartite entanglement c
(T ′)
4 . (c) Same conditional probability distribution as in (a), when all sites are locally

coupled to a dephasing environment, with dephasing rate γ = 2/T . In all three cases, large transport efficiencies require a minimum amount
of entanglement.
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efficiencies such as p
(T )
out 
 0.2 are possible at very small values

of c
(T ′)
4 , higher transport efficiency still requires a certain

amount of entanglement (i.e., c
(T ′)
4 > 0.5) between at least

four sites.
Finally, to gauge the robustness of the observed correlation

under decoherence, Fig. 3(c) shows the conditional probability
density P (p(T )

out |c(T ′)
2 ) estimated for mixed states [20] when the

individual molecular sites are locally coupled to dephasing
environments, with the same decay rate γ = 2/T as in
Fig. 1(c). Fully consistent with our discussion of Fig. 1,
the correlation between entanglement and transport efficiency
remains qualitatively unaffected, however with smaller trans-
port efficiencies and entanglement levels than in the strictly
coherent case. This correlation is particularly remarkable
here, since the above equivalence of multisite coherence and
multisite entanglement cannot be established anymore under
open system dynamics.

VI. CONCLUSION

We have seen that very well-defined molecular con-
figurations, which can be found by iterative optimization,

mediate highly efficient and robust transport across molecular
networks alike the FMO energy harvesting complex. Even
in the presence of rather strong dephasing does efficient
excitation transfer due to constructive quantum interference
remain a distinctive feature of these conformations. Efficient
transport is furthermore conditioned on the buildup of strong
intersite entanglement in the course of the exciton transfer.
This is clear evidence of the functional role of multisite
entanglement on the level of biomolecular (quantum) dy-
namics. Whether, beyond that, biology has ways to harvest
the statistical, nonlocal quantum correlations between single
excitation events at different sites of W -like states on FMO-like
functional units remains an intriguing question for future
research.
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