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Mechanical model of the ultrafast underwater trap of Utricularia
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The underwater traps of the carnivorous plants of the Utricularia species catch their prey through the repetition
of an “active slow deflation followed by passive fast suction” sequence. In this paper, we propose a mechanical
model that describes both phases and strongly supports the hypothesis that the trap door acts as a flexible valve
that buckles under the combined effects of pressure forces and the mechanical stimulation of trigger hairs, and
not as a panel articulated on hinges. This model combines two different approaches, namely (i) the description of
thin membranes as triangle meshes with strain and curvature energy, and (ii) the molecular dynamics approach,
which consists of computing the time evolution of the position of each vertex of the mesh according to Langevin
equations. The only free parameter in the expression of the elastic energy is the Young’s modulus E of the
membranes. The values for this parameter are unequivocally obtained by requiring that the trap model fires, like
real traps, when the pressure difference between the outside and the inside of the trap reaches about 15 kPa.
Among other results, our simulations show that, for a pressure difference slightly larger than the critical one, the
door buckles, slides on the threshold, and finally swings wide open, in excellent agreement with the sequence
observed in high-speed videos.
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I. INTRODUCTION

There exist more than 600 species of carnivorous plants,
which are the result of adaptation to poor environments in
terms of nutriments and/or sunshine [1]. The various methods
used by these plants to catch animals may be divided into two
main categories, namely active and passive traps, depending
on whether the capture of a prey does or does not involve
any motion of the plant itself. Plants of the genus Nepenthes
are typical examples of carnivorous plants with passive traps.
Their catching mechanism relies mostly on the shape of the
pitcherlike sleeves and the high viscoelasticity of the digestive
fluid [2]. In contrast, the closure of the Venus flytrap leaf in
about 100 ms following mechanical stimulation of trigger hairs
is a well-known example of an active trap [3].

Of the various active traps, none has, however, intrigued
botanists more than those of the about 215 species of
Utricularia [4–14]. These traps are aquatic, millimeter-sized,
lenticular bladderlike organs [15,16] [see Fig. 1(a)]. They have
an entrance, which remains closed by a door most of the time
[see Figs. 1(b) and 1(c). Firing of the Utricularia trap is a
two-step mechanism. During the first, slow step, the door
is indeed closed and particular glands actively pump water
out of the trap interior. This has two consequences. First, the
hydrostatic pressure inside the trap drops below that outside
the trap by about 10–20 kPa [11,13]. Moreover, the concave
wall curvature due to the lower internal pressure results in
elastic energy being stored in the walls. We will show in the
next section that this deflation step is an essentially exponential
process with a time constant of about 1 h. The second, ultrafast
step starts when a potential prey touches one of the trigger hairs
attached close to the center of the door. Then the door opens,
and water (and the prey) is engulfed while the walls of the
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trap release the stored energy and relax to their equilibrium
position. When the pressures inside and outside the trap are
leveled, the door closes again autonomously.

We recently used a combination of high-speed video
imaging, scanning electron microscopy, light-sheet fluores-
cence microscopy, particle tracking, and molecular dynamics
simulations, to visualize the motion of the door and propose
a plausible mechanism. In particular, we observed that the
time span of suction is smaller than 1 ms, that is, substantially
shorter than previously estimated [4]. We also measured a
maximum liquid velocity of about 1.5 m s−1 and a maximum
acceleration of 600 g, which leaves little escape chances to
small prey. More importantly, our high-speed video recordings
(up to about 10 000 frames per second), in combination with
light-sheet microscopy, reveal that the opening of the door is
preceded by the inversion of its curvature, and not the opposite
as was previously assumed [8]. After excitation of the trigger
hairs, the (initially convex) door indeed bulges inside and
becomes concave, starting at the area of trigger hair insertion.
It is only when this inversion of curvature has spread over the
whole door surface that the door opens and swings inside very
rapidly. These videos, which are available as supplemental
material of a separate article [17], therefore suggest that the
extremely fast opening of the door is similar to the buckling of
a flexible valve [18] rather than the rotation of an almost rigid
panel articulated on hinges.

Most parts of these experimental results are published in a
biology journal [17]. The purpose of the present complemen-
tary paper is to show that the hypothesis of door buckling
is confirmed by molecular dynamics simulations based on
the description of the body and the door of the trap as thin
membranes with Young’s moduli in the range 2–10 MPa. We
will provide a complete description of the model and the results
obtained therewith.

We actually first show in Sec. II that important information
can be extracted from experimental results by using a very
simple model, which consists of two parallel disks connected
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by a spring. The remainder of the paper is then devoted to the
description of the membrane model and the discussion of the
results obtained therewith. For the sake of faster calculations,
we separated simulations concerning the body of the trap from
those concerning the door and developed two different models,
which, however, share many ingredients. The ingredients
that are common to both models, that is, the expressions of
the potential energy of the membrane and the equations of
evolution, are presented in Sec. III. The model for the trap body
is then discussed in Sec. IV and that for the door in Sec. V.

II. A FIRST APPROACH: DISKS-AND-SPRING MODEL

In this section, we show that a very simple, scalar model
enables us to extract important information from experimental
data.

A. Setting of the trap (deflation phase)

The model consists of describing the body of a trap as
two parallel disks of diameter L separated by a distance e
and connected by a spring of constant k. It is assumed that
the geometry of the trap remains that of a cylinder, that is,
an impermeable and highly extensible membrane closes the
volume between the two disks. e represents the thickness of
the trap. Experimentally, the traps are viewed from above (that
is, along the x axis of Fig. 1) and their thickness e is measured
close to the center of the body, as is shown in the inset in
the top plot of Fig. 2. A typical curve for the time evolution
of e during setting (deflation) of an Utricularia inflata trap is
shown in Fig. 2 on linear (top plot) and logarithmic (bottom
plot) scales. The trap is fired manually and measurement of
e starts immediately after the ultrafast opening and closing
of the door. The thickness of the trap is therefore maximum

(a) (b)

(c)

x

yz

x

y

door

body

x

y
500 µm 500 µm 

FIG. 1. (a) Stereo microscopy view of an Utricularia inflata trap.
The door and the trigger hairs face the right edge of the picture.
The other two pictures show lateral views of the door in closed
(b) and open (c) positions, which were obtained with an ultrafast
camera. The black shadow at the upper right edge of the pictures is
the lever, which is used to manually excite trigger hairs and fire the trap
mechanism.
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FIG. 2. (Color online) Deflation of the trap body. The plots show
the evolution of the thickness e of the trap (expressed in mm) as
a function of time (expressed in minutes) on linear (top plot) and
logarithmic (bottom plot) scales. The trap is fired manually at time
t = 0 and measurement of e starts immediately after the ultrafast
closing of the door. The insert in the top plot shows a trap close
to maximum deflation viewed from above and indicates where the
thickness e is measured. The door of the trap faces the right edge
of the figure. The dot-dashed line in the bottom plot shows the result
of the least square adjustment with τpump = 53 min.

at t = 0. Figure 2 indicates that e evolves exponentially with
time, according to

e(t) = emin + (emax − emin) exp

(
− t

τpump

)
, (2.1)

where emax is the thickness of the trap at rest (completely
inflated), emin is its thickness when it is completely deflated
and ready to fire, and τpump is the characteristic time for
pumping. For the trap and the deflation event shown in
Fig. 2, we measured emax ≈ 0.80 mm, emin ≈ 0.37 mm, and
τpump ≈ 53 min. Successive experiments performed with this
same trap led to values of τpump that varied by less than the
uncertainty of the fit, that is, a few minutes. In contrast,
measurements performed with different traps led to rather
different values of τpump, which ranged from 28 to 53 min.
This large scattering in the values of τpump is certainly due,
in part, to differences in the size of the investigated traps, but
it may also result from different efficiencies of the respective
sets of pumping glands. We also note in passing that the large
value of the characteristic time for pumping obliged us to wait
several hours between two successive experiments performed
on the same trap, in order for the trap to be always in the same
(almost) steady state when fired.
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The maximum pumping rate Q0, that is, the pumping rate
at t = 0, can furthermore be estimated from

Q0 = −
(

dV

dt

)
t=0

= π

4
L2 emax − emin

τpump
, (2.2)

where V is the volume comprised between the two disks. When
plugging in Eq. (2.2) the value L = 1.5 mm, as well as those
derived above for emin, emax, and τpump, one obtains Q0 ≈
0.86 mm3 h−1, which compares well with the value reported
in Ref. [13], that is, Q0 ≈ 1.26 mm3 h−1. An upper limit for the
hydraulic permeability of the trap walls, κh, can furthermore
be estimated by assuming that the pumping rate is constant
and equal to Q0, and that transfers of liquid between the inside
and the outside of the trap arise uniquely from the porosity of
the walls. Then

κh = ηQ0h

2S�pmax
= 2ηQ0h

πL2�pmax
, (2.3)

where η is the viscosity of the fluid (η ≈ 10−3 Pas), h is the
thickness of the wall, S is the surface of each disk, and �pmax

is the steady-state pressure difference between the inside and
the outside of the trap. When plugging h ≈ 100 μm and
�pmax ≈ 15 kPa [11,13] in Eq. (2.3), one gets κh ≈ 45 Å

2
.

At last, the constant k of the spring is such that pressure forces
2S�p and the spring elastic force k(emax − emin) cancel at
maximum deflation, that is, when �p = �pmax and e = emin.
One therefore has

k = 2S�p

emax − emin
= πL2�p

2(emax − emin)
, (2.4)

which leads to k = 120 J m−2. The elastic energy stored in
the membrane during the deflation phase, k

2 (emax − emin)2, is
consequently close to 11 μJ.

B. Firing of the trap (inflation phase)

Let us now consider the inflation of the trap once it is
manually triggered and the door opens. A typical curve for
the time evolution of e during the suction phase (inflation) of
an Utricularia inflata trap is shown in Fig. 3 on linear (top
plot) and logarithmic (bottom plot) scales. Figure 3 indicates
that the time evolution of e is not monoexponential, but most
of the gap to maximum thickness (or volume) is nevertheless
bridged with a time constant of the order of 1 ms. Moreover,
the maximum speed of the walls of the trap can be estimated
by taking the numerical derivative of the curve in the top plot
of Fig. 3. One obtains (de/dt)max ≈ 0.14 m s−1. The variation
of e can be related to the average speed u of the fluid entering
the trap by considering that the door is a disk of radius r =
300 μm. Conservation of volume then implies that

dV

dt
= πr2u, (2.5)

which can be rewritten in the form

u =
(

L

2r

)2
de

dt
. (2.6)

The maximum value of u deduced from the plots in Fig. 3
is therefore umax ≈ 0.9 m s−1. One thereby recovers in a
comparatively simpler way the result obtained by tracking
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FIG. 3. (Color online) Inflation of the trap body after triggering.
The plots show the evolution of the thickness e of the trap (expressed
in mm) as a function of time (expressed in ms) on linear (top plot)
and logarithmic (bottom plot) scales. The origin of the time scale is
somewhat arbitrary. The dot-dashed line in the bottom plot shows the
evolution of an exponential process with time constant τ = 1.3 ms.

the motion of hollow glass beads of density 1.1 and diameter
6–20 μm initially dispersed in the fluid. The motion of
these tracers during the suction phase was recorded using a
high-speed Phantom Miro 4 camera (up to 8100 frames per
second for images with 256×256 pixels) placed on the side
of the traps, that is, along the z axis. These more elaborate
experiments lead to a maximum speed of the fluid of about
1.5 m s−1 [17]. They additionally indicate that the acceleration
of the fluid reaches the impressive value of 600 g.

The maximum Reynolds number along the flow, Re, writes

Re = 2rumax

ν
, (2.7)

where ν = 10−6 m2 s−1 is the kinematic viscosity of water.
One obtains Re ≈ 540, which indicates that the flow entering
the trap is strongly inertial but still remains laminar, since fully
developed turbulence arises only for Reynolds numbers larger
than 2000 [19].

At last, one may estimate the characteristic inertial time for
trap inflation, τi , by considering that it is equal to one-fourth
of the oscillation period of a mass m (equal to the mass of
one disk) attached to a spring with the constant k determined
above, that is,

τi = π

2

√
m

k
. (2.8)
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The inertia of an object is larger in a liquid than in air,
because of the mass of the liquid that is displaced during the
motion of the object. Therefore m can be estimated as the mass
of the liquid that is displaced by each disk during inflation
and deflation, that is, m = 1

2ρS(emax − emin), where ρ is the
density of water. One obtains m ≈ 0.4 mg, and consequently
τi ≈ 0.2 ms. This estimate of τi is one order of magnitude
smaller than the time it actually takes for the trap to inflate (see
Fig. 3). This indicates that friction plays a crucial dynamical
role in slowing down the inflation motion from the 0.1-ms time
scale to the 1-ms one. We will come back later to this point.

The very simple disks-and-spring model therefore enables
one to estimate some of the principal characteristics of the
trap, namely the maximum pumping rate (about 1 mm3 h−1),
the characteristic pumping time (about 1 h), the hydraulic
permeability of the membrane (a few tens of Å

2
), and the

average elastic energy stored in the membrane (in the μJ
range). Moreover, it leads to the correct value for the maximum
velocity of the fluid (about 1 m s−1), and suggests that the
observed time scale of the dynamics (a few ms) is imposed
by the frictions with the surrounding liquid and not by the
inertia of the trap body itself. However, this model provides no
indication concerning the actual mechanisms that enable such
astounding catching performances. This is essentially due to
the fact that it describes the body of the trap but completely
disregards the door, which is certainly the most intriguing
part of this plant. We therefore developed a more elaborate
membrane model, in order to get a better understanding of the
dynamics of the trap.

III. MEMBRANE MODEL

The remainder of this paper is devoted to the description of
the three-dimensional membrane model and the discussion of
the results obtained therewith. For the sake of faster calcula-
tions, we separated simulations concerning the body of the trap
from those concerning its door and developed two different
models, which, however, share many ingredients. We describe
in the present section the ingredients that are common to both
models, that is, the expressions of the potential energy and the
equations of evolution, as well as the discretization procedure.
We postpone the complete presentation of the model for the
trap body to Sec. IV, and that for the door to Sec. V.

Both the trap body and the door are modeled as thin
membranes of thickness h, which are made of an isotropic,
homogeneous, and incompressible material with Young’s
modulus E and Poisson ratio ν = 1

2 . Note, however, that the
Young’s moduli of the body and the trap are not necessarily
identical, because they are made of cells with different thick-
ness and different spatial organization. The elastic potential
energy stored in the deformation of the membrane Epot can
be written as the sum of a strain contribution Estrain and a
curvature contribution Ecurv, according to [20,21]

Epot = Estrain + Ecurv,

Estrain = Eh

2(1 − ν2)

∫
S

{(1 − ν)Tr(ε2) + ν[Tr(ε)]2} dS,

Ecurv = Eh3

24(1 − ν2)

∫
S

{[Tr(b)]2 − 2(1 − ν)Det(b)} dS,

(3.1)

where S is the area of the membrane, ε is the two-dimensional
Cauchy-Green local strain tensor [22], and b is the difference
between the local curvature tensors of the strained membrane
and the reference geometry (see below). For numerical
purposes, all membranes are described as triangle meshes with
M triangles (facets) and N ≈ M/2 vertices. Denoting by δSn

the area of facet n, the elementary area δAj associated to
vertex j is

δAj = 1

3

∑
n∈V1(j )

δSn, (3.2)

where n ∈ V1(j ) means that the sum runs over all the facets
n that contain vertex j. Each vertex j is also associated with
a mass mj , which is derived from the reference geometry
according to

mj = ρhδAj , (3.3)

where ρ is the density of the membrane. We used ρ =
1 kg dm−3, because the cells that form the membrane are filled
with water and the trap itself is very close to the floating limit.
Use of a different value for ρ would only modify the kinetic
energy proportionally and would not change qualitatively the
results presented below. The mass mj of each vertex is then
kept constant during the simulations, while area elements δSn

and δAj may vary. Estrain is discretized in the form

Estrain = Eh

2(1 − ν2)

M∑
n=1

{
(1 − ν)Tr

(
ε2

n

) + ν[Tr(εn)]2
}
δSn,

(3.4)

where the Cauchy-Green strain tensor [22] for facet n, εn,
writes

εn = 1
2

[
Fn · (

F0
n

)−1 − I
]
. (3.5)

In this equation, I denotes the 2×2 identity matrix, while
Fn and F0

n are the Gram matrices for facet n in the strained
geometry and the reference one, that is,

Fn =
(

(rn2 − rn1) · (rn2 − rn1) (rn2 − rn1) · (rn3 − rn1)

(rn2 − rn1) · (rn3 − rn1) (rn3 − rn1) · (rn3 − rn1)

)

(3.6)

where rn1, rn2, and rn3 describe the positions of the three
vertices of the facet.

The contribution to energy arising from curvature, Ecurv,
is more difficult to evaluate. The terms containing Tr(b) and
Det(b) in Eq. (3.1) are known as the mean curvature energy
and the Gaussian curvature energy, respectively. They can be
rewritten in the more explicit form

Ecurv = Emean + EGauss,

Emean = Eh3

24(1 − ν2)

∫
S

(
c1 + c2 − c0

1 − c0
2

)2
dS,

EGauss = − Eh3

12(1 + ν)

∫
S

[(
c1 − c0

1

)(
c2 − c0

2

)
(3.7)

− sin2 θ
(
c0

1 − c0
2

)
(c1 − c2)

]
dS,

where the ck and c0
k (k = 1,2) are the local principal curvatures

of the strained membrane and those of the reference geometry,
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respectively, and θ is the angle by which the local principal
directions of the membrane have rotated with respect to those
of the reference geometry. The mean curvature energy is rather
straightforwardly discretized according to

Emean = Eh3

6(1 − ν2)

N∑
j=1

(
κj − κ0

j

)2
δAj . (3.8)

In this equation, κj and κ0
j represent the mean curvature

κ = (c1 + c2)/2 at vertex j for the strained membrane and
the reference geometry, respectively. They are estimated from
[23,24]

κj = 1

4δAj

∥∥∥∥∥∥
∑

k∈N1(j )

(cot αjk + cot βjk)(rk − rj )

∥∥∥∥∥∥ , (3.9)

where k ∈ N1(j ) means that the sum runs over the vertices k
that are directly connected to vertex j. rj and rk denote the
positions of vertices j and k, and αjk and βjk are the angles of
the corners opposite to bond (jk) in the two facets that share this
bond. The problem actually arises from the Gaussian curvature
energy, because it is difficult to estimate θ correctly in the
course of a simulation. We consequently used an approximate
expression for EGauss, namely

EGauss ≈ − Eh3

12(1 + ν)

∫
S

(
c1c2 − c0

1c
0
2 − 1

2

(
c0

1 + c0
2

)
× (

c1 + c2 − c0
1 − c0

2

))
dS. (3.10)

Note that it is sufficient that c0
1 − c0

2 be equal to zero
everywhere on the membrane for the expressions for EGauss

in Eqs. (3.7) and (3.10) to be equivalent. This is the case, in
particular, if the membrane has no spontaneous curvature (c0

1 =
c0

2 = 0 everywhere) or if the reference geometry is a sphere
of radius R (c0

1 = c0
2 = 1/R everywhere). Equation (3.10)

is finally discretized according to

EGauss ≈ − Eh3

12(1 + ν)

N∑
j=1

[
Gj − G0

j − 2κ0
j

(
κj − κ0

j

)]
δAj .

(3.11)

In Eq. (3.11), Gj and G0
j represent the Gaussian curvature

G = c1c2 at vertex j for the strained membrane and the
reference geometry, respectively, which we estimate from [25]

Gj = 1

δAj

⎛
⎝2π −

∑
n∈V1(j )

γnj

⎞
⎠ , (3.12)

where γnj denotes the angle at vertex j in facet n.
At that point, the important question that arises is what are

the reference geometries, that is, those for which the Gram
matrices F0

n and spontaneous curvatures κ0
j and G0

j must be
calculated? In order to answer this question, we cut several
sections of the trap body and the door and observed the
resulting shapes. Two examples are shown in Fig. 4. Figure 4(a)
shows a transverse section of the trap body, while Fig. 4(b)
shows the door, which has been separated from the rest of
the trap, seen from the edge that rests on the threshold. The
conclusion of these experiments is that these parcels certainly
do not become flat, but retain instead essentially the shape of

the inflated trap. Stated in other words, the F0
n, κ0

j , and G0
j must

be computed for a geometry which is close to the equilibrium
one when the pressure outside the trap is equal to that inside.
The fact that the spontaneous curvatures are different from 0
has two important consequences. At first, this implies that the
Gaussian curvature energy does not reduce to the integral of
c1c2, so that it does not remain constant upon deformation,
even in the case of a closed surface (note, however, that
for the closed surface describing the trap body, the Gauss-
Bonnet theorem ensures that the sum over j of Gj − G0

j in
Eq. (3.11) remains constant upon deformation). Moreover,
when estimating the Gaussian curvature energy according to
Eq. (3.10), the potential energy is not necessarily exactly min-
imum for the reference geometry, for which the F0

n, κ0
j , and G0

j

are calculated. Once these quantities have been calculated, the
geometry with minimum potential energy, which corresponds
to the system at rest, must therefore be searched for. It usually
differs only slightly from the reference geometry.

A proper investigation of the dynamics of the Utricularia
trap would require the consideration of explicit liquid in
addition to the membrane discussed above. The motion of
the fluid would be described by Navier-Stokes equations and
that of the membrane by Hamilton or Newton equations. The
motion of the membrane and that of the liquid would be
coupled through the pressure forces and the frictions exerted by
the liquid on the membrane. This is, however, a very complex
problem. We actually chose a simpler approach, which consists
in solving Langevin equations for the membrane. More
precisely, the position rj of each vertex j is assumed to satisfy

mj

d2rj

dt2
= − ∇Epot − �pδAj nj

− mjγ
drj

dt
+ √

2mjγ kBT
dW (t)

dt
. (3.13)

(a)

(b)

z
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z

x

400 µm 

200 µm 

FIG. 4. Stereo microscopy views of two cuts of the Utricularia
inflata trap. (a) Transverse section of the trap body. The sharp kink,
which is observed in the right part of the figure, is due to the fact that
the membrane was slightly damaged during the cut. (b) View of the
door (separated from the rest of the trap) seen from below the edge
that rests on the threshold.
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In this equation, �p is the pressure outside the trap minus
the pressure inside, nj is the outward normal to the surface at
vertex j, γ is the dissipation coefficient, and W (t) is a Wiener
process. The first and second terms on the right-hand side
of Eq. (3.13) describe elastic and pressure forces, respectively,
while the two last terms model the effects of the liquid, namely
friction and thermal noise. Note that thermal noise (the last
term) is negligibly small compared to elastic and pressure
forces. nj is computed according to

nj =

∑
n∈V1(j )

δSnun∥∥∥∥ ∑
n∈V1(j )

δSnun

∥∥∥∥
, (3.14)

where un is the outward normal to facet n. For numerical
purposes, the derivatives in Langevin equations are replaced
by finite differences. The position of vertex j at time step i + 1,
ri+1
j , is consequently obtained from the positions r i

j and r i−1
j

at the two previous time steps according to

mj

(
1 + γ�t

2

)
ri+1
j = 2mj ri

j − mj

(
1 − γ�t

2

)
ri−1
j

− (∇Epot + �pδAj nj )�t2

+√
2mjγ kBT �t3/2w(t), (3.15)

where �t is the time step and w(t) is a normally distributed
random function with zero mean and unit variance.

It is important to realize that the model described above
actually depends on two adjustable parameters, namely
the Young’s modulus E, which determines the strength
of the elastic energy of the membrane in Eq. (3.1), and the
dissipation coefficient γ , which determines the strength of the
interactions between the liquid and the membrane in Langevin
equations (3.13). On the other side, experiments yield two
fundamental quantities, namely the pressure difference �p

in set conditions (�p is in the range 10–20 kPa [11,13]),
and the time scales at which the door opens (a few tenths
of ms) and the trap inflates (a few ms). As will be shown
below, the Young’s moduli of the trap and door membranes
can be unambiguously derived from the experimental value
of �p, while the value of γ is obtained by requiring that the
door opening and trap inflation time scales computed with
the model match the observed ones. This is therefore a very

favorable case, where all the parameters of the model can be
deduced from experiment.

IV. DYNAMICS OF THE TRAP BODY

As already mentioned, we separated, for the sake of faster
calculations, simulations performed for the trap body from
those concerning the door. In this section, we describe the
model we developed for the trap body and the results obtained
therewith. The model for the door will be discussed in the
following section.

A. Geometry of the trap

The trap body is modeled as a closed shell of thickness
h = 100 μm. It contains no aperture. The setting phase
(deflation) is simulated by decreasing slowly the internal
pressure relative to the external one. Once the trap is set,
firing and the subsequent inflation are simulated by resetting
instantly to zero the pressure difference between the inside and
the outside of the trap.

The first question that arises is that of the geometry of the
trap body. By considering the shape of real traps, like the one
shown in Fig. 1(a), we first described the inflated trap as an
oblate ellipsoid with major radius of 1 mm and minor radius
in the range 0.5–0.7 mm. However, results obtained with this
geometry differ markedly from the observed behavior, for all
realistic values of the Young’s modulus E and the dissipation
coefficient γ . Such simulations indeed predict that deflation
consists of a single, abrupt buckling of the membrane, while
observation instead leads to the conclusion that deflation is an
essentially smooth and continuous process, although it seems
that some limited buckling of small portions of the surface
sometimes occur. This difference is due to the fact that the real
trap is not convex everywhere but contains instead regions with
negative curvature even in the inflated geometry. These regions
with negative curvature actually act as seeds from which
deflation propagates like a rolling wave when the internal
pressure is decreased.Therefore we introduced such regions
with negative curvature in our model by considering that the
geometry of the inflated trap is obtained by transforming the
coordinates (xj ,yj ,zj ) of the vertices of a triangulated sphere
of radius 1 mm according to

⎛
⎜⎝

xj

yj

zj

⎞
⎟⎠ →

⎛
⎜⎝

xj

yj − 0.1
(
y2

j − z2
j

)
0.55zj − 0.12

(
1 − x2

j

)[
sin

(
3
2

)
zj + 2 sin(3)yj zj + sin

(
9
2

)
zj

(
3y2

j − z2
j

) + 4 sin(6)yj zj

(
y2

j − z2
j

)]
⎞
⎟⎠ . (4.1)

The transformation of Eq. (4.1) may look rather arbitrary,
especially for the zj coordinate. However, the trigonometric
terms that appear in this equation are just the first terms of the
Fourier expansion of a Dirac peak and are aimed at creating
a region with negative curvature on both sides of the trap.
Moreover, the overall shape of the trap body is convincingly
reproduced with this expression. The F0

n, κ0
j , and G0

j are

calculated for this geometry and the geometry corresponding to
the minimum of the potential energy is then searched for. From
the practical point of view, and unless otherwise stated, we used
a mesh with about N ≈ 2150 vertices and M ≈ 4300 facets.
For this mesh, the minimum energy geometry corresponds to a
potential energy Epot ≈ −0.89 μJ and is only slightly different
from that described by Eq. (4.1). It is shown in the left picture

021911-6



MECHANICAL MODEL OF THE ULTRAFAST UNDERWATER . . . PHYSICAL REVIEW E 83, 021911 (2011)

Vred = 1.00 Vred = 0.60

x
z

y

FIG. 5. (Color online) Simulated trap body (without the door).
The left figure (Vred = 1.0) represents the minimum energy geometry,
that is, the equilibrium geometry of the trap when �p = 0. The right
figure (Vred = 0.6) corresponds to the trap in set conditions, when it is
ready to fire. This is the equilibrium geometry for �p ≈ 15 kPa, and
the initial condition for the inflation simulations reported in Sec. IV C.

of Fig. 5. The area with negative curvature is clearly seen on the
side of the body (the surface being symmetric with respect to
the xy plane, there obviously exists a similar area with negative
curvature on the hidden side). If the model would contain a
door, then this door would face the right edge of the picture,
as in Fig. 1(a).

B. Setting of the trap (deflation phase)

We then determined the value of the Young’s modulus E by
requiring that maximum deflation, corresponding to a reduced
volume Vred ≈ 0.6, is achieved for a pressure difference �p ≈
15 kPa [11,13] (the reduced volume Vred is defined as the
actual volume of the strained trap divided by the volume of
the minimum energy geometry). To this end, we decreased the
pressure inside the trap at the “slow” rate of 1 Pa μs−1 and
integrated Langevin equations (3.15) for γ = 0 with a time
step �t = 10 ns.

We obtained that the Young’s modulus of the trap membrane
is about E = 7.2 MPa, which lies in the range of values that
are commonly measured for parenchymatous tissues (see, for
example, Refs. [26–28]). The bottom plot of Fig. 6 shows the
evolution of �p as a function of 1 − Vred. It can be checked on
this plot that Vred is indeed close to 0.6 for �p ≈ 15 kPa. The
geometry of the trap for Vred = 0.6, that is, in set conditions,
is displayed in the right picture of Fig. 5. In addition, the top
plot of Fig. 6 shows the evolution of the elastic energy stored
in the membrane, Epot, as a function of 1 − Vred. It is seen that
the available elastic energy in set conditions is of the order
of several μJ, in fair agreement with the estimation obtained
from the disks-and-spring model.

The deflation curve obtained with γ = 0 looks smooth and
continuous (see Fig. 6). This is, however, no longer the case for
the deflation curve obtained with γ = 104 s−1, which is also
shown in Fig. 6. For this value of the dissipation coefficient,
the deflation curve displays several plateaus, which are the
fingerprints of a series of small bucklings, which involve
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FIG. 6. (Color online) Simulation of the deflation of the trap
body. The top and bottom plots show the evolution of �p and
Epot, respectively, as a function of 1 − Vred. The pressure difference
between the outside and the inside of the trap, �p, is expressed
in kPa, and the elastic energy stored in the membrane, Epot, in μJ.
As indicated in the plots, the various curves were obtained either
by integrating Langevin equations with γ = 0 (blue dot-dash line)
and γ = 104 s−1 (red solid line) or by minimizing Epot for each
value of Vred (green short-dash line). The brown long-dash line in
the bottom plot was also obtained by integrating Langevin equations
with γ = 104 s−1, but for a mesh with only about 200 vertices instead
of 2150 ones. For dynamics simulations, the pressure inside the trap
was decreased at the rate of 1 Pa μs−1, while Langevin equations
were integrated numerically with a time step �t = 10 ns.

limited portions of the body membrane. This indicates that
the minimum energy pathway that leads from the inflated to
the deflated trap actually consists of several (perhaps many)
minima separated by energy barriers. When γ = 0, the system
acquires sufficient kinetic energy to surf above these barriers.
When γ > 0, the kinetic energy, which is released each time
the system overcomes a barrier leading to a deeper minimum,
is instead dissipated and the system may remain blocked in this
minimum until sufficient pressure work has again been brought
to him. Also drawn in the top plot of Fig. 6 is the “static” curve
obtained by minimizing Epot (with the conjugated gradient
method) for increasing values of Vred. It can be observed that
the “dynamic” curves obtained by integrating Langevin equa-
tions are always located slightly but significantly above the
static one, which confirms that the actual pathway for deflation
does not coincide exactly with the minimum energy pathway.

At that point, it is worth emphasizing that the precise
sequence of buckling events depends on the mesh. In particular,
the finer the mesh, the smaller the amplitude of buckling
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events, and the more continuous the deflation process. This
is clearly seen in the bottom plot of Fig. 6, which displays
curves obtained with γ = 104 s−1 for two different meshes,
namely the standard one with about 2150 vertices and a rougher
one with only about 200 vertices. For the rougher mesh, the
number of plateaus is approximately divided by two compared
to the finer one, but these plateaus are wider and the steps are
higher. Since small bucklings are also observed during the
deflation phase of real Utricularia traps, this suggests that
the cells that form the membrane play approximately the same
role as the mesh in our simulations, and that their rather large
size is actually responsible for the observed buckling events.

C. Firing of the trap (inflation phase)

Let us now turn our attention to the inflation phase, that
is, the firing of the trap. After the trigger hairs have been
excited, the door opens completely in about 0.5 ms. Due to
the combined actions of pressure forces and the relaxation of
the walls of the trap to their equilibrium positions, thereby
releasing the stored elastic energy, water (and the eventual
prey) are engulfed. Once the pressures inside and outside the
trap are leveled, the door closes again autonomously. The
whole process lasts a few milliseconds (see Fig. 3). In this
section, this is simply modeled by assuming that the trap is
initially at equilibrium with a pressure difference �p ≈ 15 kPa
and a reduced volume Vred = 0.6, that is, in the configuration
shown in the right picture of Fig. 5, and that at time t = 0 the
pressure difference is instantly set to �p = 0. Langevin equa-
tions (3.15) are then integrated with a time step �t = 2.5 ns.

The time evolution of Vred obtained from a simulation with a
dissipation coefficient γ = 0 is shown in the top plot of Fig. 7.
This simulation agrees qualitatively with the disks-and-spring
model described in Sec. II, in the sense that it predicts that the
characteristic period of the free motion of the trap is of the order
of 0.2 ms. There is, however, a marked difference, because
the disks-and-spring system oscillates forever if γ = 0, while
volume oscillations appear to die out slowly for the membrane
model, even in the absence of dissipation. This is due to
the fact that the disks-and-spring model has a single vibration
mode, while the membrane model has a very large number of
coupled modes. While the energy is initially deposited in a
single, “breathing” mode, it does not remain localized therein,
but transfers instead to all other modes of the membrane.

Such oscillations with a characteristic period of a few tenths
of a millisecond are, however, not observed experimentally
(see Fig. 3). This indicates that the liquid exerts a friction
on the membrane, which slows down its natural motion and
damps the oscillations. It is not easy to predict theoretically the
strength of the friction. We consequently performed additional
simulations with E = 7.2 MPa and increasing values of the
dissipation coefficient γ , in order to determine for which value
of γ simulations match experiments. Results of simulations
performed with three values of γ ranging from 2 × 105 to 1 ×
106 s−1 are shown in Fig. 7 on linear (top plot) and logarithmic
(bottom plot) scales. It is seen that experimental results are
best reproduced for values of γ comprised between 5 × 105

and 1 × 106 s−1. Oscillations are indeed damped and the walls
of the trap relax with the correct characteristic time. We will
come back later to this value of the dissipation coefficient.
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FIG. 7. (Color online) Simulation of the inflation of the trap body.
The plots show the evolution of the reduced volume Vred of the trap
as a function of time (expressed in ms) on linear (top plot) and
logarithmic (bottom plot) scales. The trap is assumed to be initially
at equilibrium with the geometry shown in the right picture of Fig. 5
(Vred = 0.6, �p ≈ 15 kPa). �p is instantly switched to 0 at time
t = 0 and Langevin equations are integrated numerically with a time
step �t = 2.5 ns. As indicated on the plots, the various curves were
obtained with four different values of γ ranging from 0 to 106 s−1.
The dot-dashed line in the bottom plot shows the time evolution of
an exponential process with a characteristic time τ = 1.3 ms, for the
sake of an easier comparison with the bottom plot of Fig. 3.

V. DYNAMICS OF THE TRAP DOOR

The ability of the door of the trap of Utricularia to open
completely in about 0.5 ms after excitation of the trigger hairs,
to close again after a few milliseconds, and to repeat this cycle
tens or hundreds of times during the trap’s life, is certainly
the key and most impressive feature of this plant. At that
point, it should be stressed that the word “door” is misleading,
since it suggests the rotation of a more or less rigid panel
around hinges, while our high-speed video recordings show
that the mechanism of the trap of Utricularia is completely
different. As illustrated in Fig. 8, the inversion of the curvature
of the door indeed precedes its opening, and not the opposite
as previously assumed [18]. It is only after the inversion of
curvature has spread over the whole surface that the door
opens and water enters the trap. Demonstration that the door
of the trap therefore acts as a flexible valve that buckles under
the combined effects of pressure forces and the mechanical
stimulation of trigger hairs, and not as a panel articulated on
hinges, is probably our major result. We propose in this section
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(c) 7.6 ms (d) 7.9 ms

(a) 0 ms (b) 5.9 ms

300 µm 

FIG. 8. High-speed recording of the door opening of an
Utricularia australis trap after manual triggering with a needle. These
fluorescence images were captured at 2900 frames per second using a
microscope equipped with a laser sheet illumination apparatus, which
enables one to image only a thin slice of the living trap (see Ref. [17]
for more information). The figure displays a selection of images at
0, 5.9, 7.6, 7.9, 8.6, and 9.7 ms after the first door motion. (a) Trap
in set conditions. The inversion of curvature spreads gradually on
the whole door, (b)–(d), before the door opens wide (e) and closes
back (f). The speed of aperture of this Utricularia australis trap is
significantly slower than that of the Utricularia inflata traps.

a model for such a door/valve and discuss the features that are
mandatory for it to work correctly.

A. Geometry of the door

Keeping with woodwork terminology, the door consists of
three essential parts, namely the frame, the threshold, and the
panel. Examination of the traps with light-sheet fluorescence
microscopy indicates that the panel at rest looks like a portion
of a prolate ellipsoid, which is attached to the frame along
one of the two limiting ellipses and rests on the threshold
(when the door is closed) along the other limiting ellipse. At
rest, the surface of the threshold is more or less perpendicular
to the edge of the panel. Videos furthermore indicate that the

frame and the threshold deform very little during the setting
and firing of the trap. In the model we therefore considered
that both the frame and the threshold are rigid and fixed.

In order to stick to the dimensions of real traps, the
panel of the door was therefore modeled as a quarter of a
prolate ellipsoid with major radius a = 300 μm, minor radius
b = 240 μm, and thickness h = 30 μm. More precisely, the
reference geometry of the panel is described by the following
equations:

x2 + y2

b2
+ z2

a2
= 1,

x � 0, (5.1)

y � 0.

The ellipse in the x = 0 plane represents the frame and
is kept fixed. The ellipse in the y = 0 plane represents the
free edge of the panel. The mesh we used consists of about
M ≈ 1100 facets and N ≈ 550 vertices. Note that if we
had used such a fine mesh to describe the trap body, then
calculations would have become prohibitively long. This is
the essential reason why we separated the simulation of the
body from that of the door. The minimum energy geometry,
which corresponds to a potential energy Epot ≈ −0.08 nJ, is
only marginally deformed compared to Eq. (5.1).

The threshold is modeled as a crescent in the y = 0 plane. It
has two effects. The principal one is to forbid motion towards
negative values of y of the portions of the panel that rest on
it. This is very simply modeled by canceling the y component
of the global force acting on the portions of the panel that lie on
the threshold when this component is negative, which amounts
to applying a reaction force normal to the threshold. In real
traps, the threshold furthermore exerts a friction on the panel
during the sliding phase that occurs just after buckling (see
below). We neglected this effect in our model, because it only
slightly slows down the overall process without modifying the
fundamental mechanism that enables the door to open and
close repeatedly. From the practical point of view, the inner
border of the threshold was modeled as an ellipse with major
radius a = 300 μm and minor radius c = 180 μm. Negative
y components of the global force exerted on vertex j were
therefore canceled when the coordinates (xj ,yj ,zj ) of this
vertex satisfied the condition

x2
j

c2
+ z2

j

a2
� 1,

xj � 0, (5.2)

yj = 0.

The equilibrium geometry (pressure difference �p = 0,
reduced volume νred = 1) of the door model is shown in
Fig. 9(a).

B. Door buckling and opening

As in Sec. IV we first ran several simulations with a
dissipation coefficient γ = 0 and increasing values of the
Young’s modulus E, in order to check whether the model
described above has the correct behavior and to determine
which value of E leads to a realistic critical pressure for
buckling. We therefore decreased the pressure inside the door
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(a) (Δp = 0); vred = 1.00 (b) t = 15 μs; vred = 0.93

(d) t = 120 μs;   vred = 0.44

(f) t = 300 μs;   vred = -0.08

(h) t = 420 μs;   vred = -1.02

(c) t = 30 μs;  vred = 0.92

(e) t = 200 μs;   vred = 0.23

(g) t = 360 μs;   vred = -0.57

y
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FIG. 9. (Color online) Snapshots of the opening dynamics of the
simulated trap door. (a) Geometry of the door at equilibrium (�p = 0,
νred = 1). (b)–(h) Opening of the door when submitted to a pressure
difference slightly larger than the critical pressure for buckling (�p ≈
15.6 kPa). The origin of times, t = 0, is somewhat arbitrary. Langevin
equations (3.15) were integrated numerically with a time step �t =
0.2 ns and a dissipation coefficient γ = 2 × 105 s−1.

at “slow” rates ranging from 2 to 10 Pa μs−1 and integrated
Langevin equations (3.15) with a time step �t = 0.2 ns.
We obtained that for E = 2.67 MPa the door deforms very lit-
tle up to �p = 15.6 kPa, while for larger pressure differences,
the panel buckles, slides on the threshold and finally swings
wide open. This latter point will be illustrated shortly. Note that
the Young’s modulus of the door membrane is only slightly
different from that of the trap membrane (E = 7.2 MPa) and
lies again in the range of values that are commonly measured
for parenchymatous tissues (see, for example, Refs. [26–28]).
It might also appear as a surprise that the door deforms very
little up to �p = 15.6 kPa [see Fig. 9(b)], while the membrane
of the trap body deforms continuously when �p increases
from 0 to 15 kPa [see Fig. 5(b)]. As already mentioned at the
beginning of Sec. IV A , this marked difference is actually due
to the different geometries of the body and the door. The door
is convex everywhere and behaves consequently much like
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FIG. 10. (Color online) Simulation of the opening of the trap
door. The plot shows the time evolution of the reduced volume νred of
the door when it is submitted to a pressure difference slightly larger
than the critical pressure for buckling (�p ≈ 15.6 kPa). The origin
of times, t = 0, is somewhat arbitrary. Langevin equations (3.15)
were integrated numerically with a time step �t = 0.2 ns. As
indicated in the plots, the various curves were obtained with five
different values of γ ranging from 0 to 5 × 105 s−1. For γ = 5
× 105 s−1, complete inversion (νred ≈ −1) is achieved in about 1 ms,
as shown in the small insert.

a sphere, which sustains pressure without deforming much
up to a critical pressure where it undergoes buckling, that is,
a very abrupt shape transformation caused by a very small
pressure increase. In contrast, the body of the trap is not
convex everywhere, but displays instead regions with negative
curvature. As illustrated in Fig. 5, these regions with negative
curvature act as seeds from which deflation propagates like a
rolling wave when water is pumped outside the trap.

The free motion (γ = 0) of the door at pressures slightly
larger than the critical one is illustrated in Fig. 10, which shows
the time evolution of the reduced volume νred of the door.
The volumes we calculate are signed quantities, because all
facets are oriented and an elementary volume is associated to
each of them. The elementary volume is positive (respectively,
negative) if the scalar product of the vector relating the origin
to the center of mass of the facet with the outward normal
to the facet is positive (respectively, negative). The volume
therefore changes sign when the door crosses the origin.
Examination of Fig. 10 shows that for γ = 0 the inversion
time predicted by simulations (slightly less than 0.1 ms) is
too small compared to the experimental one (around 0.5 ms).
We consequently performed additional simulations with E =
2.67 MPa and increasing values of the dissipation coefficient
γ , in order to determine for which value of γ simulations
match experiments. Results of simulations performed with
four values of γ ranging from 2 × 104 to 5 × 105 s−1 are
shown in Fig. 10. It is seen that experimental results are
best reproduced for values of γ comprised between 2 × 105

and 5 × 105 s−1. Note that these values of the dissipation
coefficient are of the same order of magnitude as the ones that
are best adapted to the description of the dynamics of the trap
body (5 × 105–1 × 106 s−1; see Sec. IV).

The dynamics of the door, obtained from simulations
performed with a dissipation coefficient γ = 2 × 105 s−1, is

021911-10



MECHANICAL MODEL OF THE ULTRAFAST UNDERWATER . . . PHYSICAL REVIEW E 83, 021911 (2011)

illustrated further in Figs. 9(b)–9(h). Figure 9(b) shows the
geometry of the door for a pressure difference �p slightly
larger than 15.6 kPa, just before the onset of buckling.
Comparison of Figs. 9(a) and 9(b) shows that the panel is only
slightly deformed with respect to its equilibrium geometry at
�p = 0. This is, of course, due to the fact that pressure forces
are balanced by the reaction of the threshold on the free edge
of the panel. Figure 9(c) shows the first indentation, which
appears close to the center of the panel, at the place where
trigger hairs are fixed to the door in real Utricularia traps. It is
worth mentioning that the fact that the first indentation occurs
in the xy plane is a consequence of the ellipsoid geometry of
the door. When modeling the door as a quarter of a sphere
instead of a quarter of an ellipsoid, one indeed observes two
symmetrical indentations on the sides of the panel, instead of a
single one at the center. In excellent agreement with high-speed
videos (see Fig. 8), the inversion of curvature then spreads
over the panel in about 0.1 ms, but the door is still closed
[Fig. 9(d)]. At that point, the surface of the panel, which is
flattened against the threshold by pressure forces, is dragged
across the threshold. This is certainly the step of the opening
sequence that depends most on the precise geometry of the
door. As can be checked in Fig. 10, it corresponds to a decrease
of the speed of evolution of νred. The duration of this step can,
however, be substantially modified by changing the width of
the threshold and/or its inclination with respect to the xz plane.
The surface of the panel flattened against the threshold by
pressure forces is also smaller (and the drag time shorter) if
the door is not modeled as a quarter of an ellipsoid, but rather
as a smaller portion thereof, like, for example, a sixth or an
eighth of an ellipsoid. For some geometries, the only part of
the panel which is ever in contact with the threshold is its
free (lower) edge, which simply slides on the threshold. At
last, let us recall that in real Utricalaria traps this dragging or
sliding motion across the threshold is slowed down by friction
forces, which we neglect in our simulations. It is only when the
free edge of the panel reaches the inner side of the threshold
[Fig. 9(e)] that the door really opens and water enters the trap.
Inversion of the door then proceeds freely [Figs. 9(f) and 9(g)]
until complete inversion is attained [Fig. 9(h)]. Comparison
of Figs. 8 and 9 shows that the door profiles during opening
obtained with the membrane model agree qualitatively with
the observed ones.

Complete inversion corresponds to a stable equilibrium
in our simulations, because we assumed that the difference
between pressure forces exerted on the external and internal
sides of the membrane is constant. In real Utricularia traps,
this pressure difference, however, decreases as water enters
the trap and finally vanishes. When pressures are leveled,
the door again closes autonomously in about 2.5 ms. Our
high-speed video recordings show that closure of the door
proceeds through the same steps as opening, but of course in
reverse order. We made no attempt to simulate this last step of
the opening and closure door mechanism.

In our simulations, the opening mechanism is fired by
increasing slowly �p above the critical pressure for buckling
(�p ≈ 15.6 kPa). In real Utricularia traps, the pressure
difference �p remains instead almost constant once the trap
is set, and the mechanism is fired by potential prey touching
the trigger hairs. The question of whether triggering is purely
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FIG. 11. (Color online) Energy landscape of the trap door along
the reaction pathway for opening. 1 − νred is used as the reaction
coordinate. The upper curve, labeled Ereact, shows the elastic energy
of the door along the reaction pathway for door opening. The five
other curves show the actual energy of the system along the reaction
pathway, Ereact − �pν0(1 − νred), for five different values of �p

ranging from 5 to 25 kPa. Buckling is forbidden for values of �p

smaller than 15.6 kPa by the energy barrier at 1 − νred ≈ 0.072.

mechanical (trigger hairs act as levers) or whether it involves
a chemical transmission (sensitivity) is still debated [10,11].
In both cases, what physically happens upon triggering can,
however, be visualized by plotting the energy landscape of the
system. The upper curve in Fig. 11 (labeled Ereact) represents
the potential energy of the door along the reaction pathway
that leads from the closed to the open position, 1 − νred being
used as the reaction coordinate. This curve was obtained by
assuming that the door is initially at rest [�p = 0, νred = 1;
see Fig. 9(a)] and in recording the elastic energy Epot of the
system as �p is increased slowly. Deformation of the door
is quasistatic up to 1 − νred ≈ 0.072 and �p ≈ 15.6 kPa, so
that Ereact depends very little on the precise value of γ up to
1 − νred ≈ 0.072. At this value of 1 − νred, buckling occurs
and part of the elastic energy of the system is converted
into kinetic energy or dissipated at rates that depend on γ .
Therefore the curve for Ereact depends more markedly on
γ for 1 − νred > 0.072 (the curves shown in Fig. 11 were
obtained with γ = 2 × 105 s−1). In this discussion, we are
anyway essentially interested in the region 1 − νred < 0.072.

Let us assume that there exists a constant pressure differ-
ence �p between the liquids outside and inside the membrane.
The energy of the system along the reaction pathway is then
Ereact − �pν0(1 − νred), where ν0 is the volume of the door
at equilibrium at �p = 0. This energy is plotted in Fig. 11
for five different values of �p ranging from 5 to 25 kPa.
As long as �p remains smaller than the critical pressure
of 15.6 kPa, the energy landscape actually consists of a
minimum located between 1 − νred = 0 and 1 − νred ≈ 0.072
and a barrier located at 1 − νred ≈ 0.072. Even if the energy of
the buckled door is smaller than that of the unbuckled one, the
door cannot buckle, because of the barrier. It remains trapped
in the well located below 1 − νred ≈ 0.072 and deforms only
slightly, as illustrated in Fig. 9(b). In contrast, the barrier no
longer exists if �p > 15.6 kPa, so that the door buckles freely,
as observed in our simulations.
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In real Utricularia traps, the pressure difference �p in
set conditions is probably only very slightly smaller than the
critical pressure for buckling. This implies that the barrier
hindering buckling along the reaction pathway is very small,
too. In this case, the torsion exerted on the membrane when
trigger hairs are touched by a potential prey may be sufficient
to give the system that tiny amount of extra energy it needs to
overcome the barrier and buckle. On the contrary, if chemical
transmission (sensitivity) is involved instead of mechanical
action [10,11], then the local bending and stretching energy
constants of the membrane are temporarily reduced when the
trigger hairs are touched. This has the effect of lowering the
barrier and letting the door buckle.

VI. CONCLUSION

The underwater traps of Utricularia carnivorous plants
catch their prey through the repetition of an active slow
deflation followed by passive fast suction sequence. In this
paper, we presented experimental results and theoretical
models aimed at understanding this mechanism. We first
showed that a very simple disks-and-spring model enables
us to extract important information from the experimental
results, like the maximum pumping rate, the characteristic
pumping time, the hydraulic permeability of the membrane,
the average elastic energy stored in the membrane, and the
maximum velocity of the fluid during the suction phase. We
then proposed a more elaborate model that describes the
second step of this sequence, that is, the ultrafast suction
phase. This model consists of a thin membrane with strain and
curvature energy. The only free parameter in the expression of
the elastic energy, the Young’s modulus E of the membrane,

is adjusted by requiring that the pressure difference between
the outside and the inside of the traps is close to measured
values (10–20 kPa) in set conditions. Obtained values of E
(2–10 MPa) lie in the range of values that are commonly
measured for parenchymatous tissues. The door of the trap
is modeled as a quarter of an ellipsoid, one edge of which is
fixed, while the other one is free and rests on the threshold in set
conditions. Our simulations show that, for a pressure difference
slightly larger than the critical one, the door buckles, slides on
the threshold, and finally swings wide open. This sequence is
in excellent agreement with that observed in high-speed videos
(Fig. 8).

This model therefore strongly supports the hypothesis that
we formulated by looking at the high-speed videos, that is, that
the trap acts as a flexible valve that buckles under the combined
effects of pressure forces and the mechanical stimulation of
trigger hairs, and not as a panel articulated on hinges. The only
real limitation of this model is that the liquid is only roughly
taken into account through the dissipation coefficient γ in
Langevin equations. It was shown that γ must be chosen in the
range 2 × 105–1 × 106 s−1 in order for the characteristic times
of the model to match observed ones. A better model would
consist in taking water explicitly into account and in integrating
coupled equations for the dynamics of the liquid and the
membrane. This is, however, a much more complex problem.

To conclude, let us note that this work on the underwater
ultrafast traps of Utricularia opens very interesting perspec-
tives for the practical design of flexible structures performing
fast motion in a fluid. Since such flexible structures show less
fatigue than articulated ones, the mechanism of the tiny traps
of Utricularia suggests a new kind of microfluidic tools, based
on buckling, for lab-on-chip devices.
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