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Orientational order and glassy states in networks of semiflexible polymers
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Motivated by the structure of networks of cross-linked cytoskeletal biopolymers, we study orientationally
ordered phases in two-dimensional networks of randomly cross-linked semiflexible polymers. We consider
permanent cross-links which prescribe a finite angle and treat them as quenched disorder in a semimicroscopic
replica field theory. Starting from a fluid of un-cross-linked polymers and small polymer clusters (sol) and
increasing the cross-link density, a continuous gelation transition occurs. In the resulting gel, the semiflexible
chains either display long-range orientational order or are frozen in random directions depending on the value
of the crossing angle, the cross-link concentration, and the stiffness of the polymers. A crossing angle θ ∼
2π/M leads to long-range M-fold orientational order, for example, “hexatic” or “tetratic” for θ = 60◦ or 90◦,
respectively. The transition to the orientationally ordered state is discontinuous and the critical cross-link density,
which is higher than that of the gelation transition, depends on the bending stiffness of the polymers and the
cross-link angle: The higher the stiffness and the lower the M , the lower is the critical number of cross-links.
In between the sol and the long-range ordered state, we always expect a gel which is a statistically isotropic
amorphous solid with random positional and random orientational localization of the participating polymers.
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I. INTRODUCTION

The cytoskeleton is a network of linked protein fibers which
plays an important role in several functions of eukaryotic
cells, such as maintenance of morphology, mechanics, and
intracellular transport [1]. Cytoskeletal fibers, such as F-actin,
can be described as semiflexible polymers with a behavior
intermediate between the two extreme cases of rigid rods
and random coils. The function of the actin cytoskeleton
is modulated by a large number of actin-binding proteins
(ABPs) [2,3]. The organization of actin filaments into networks
is regulated by ABPs which can be classified into two broad
categories: Cross-linkers promote binding of the filaments at
finite crossing angles, whereas bundlers promote formation of
bundles consisting of parallel or antiparallel filaments. F-actin
is a polar semiflexible polymer and some ABPs bind filaments
with a specific polarity, whereas others are not affected by the
filament’s polarity. In order to unravel the physics of these
complex aggregates, in vitro solutions of actin filaments with
controlled cross-linkers have been studied [4].

The stiffness of semiflexible filaments gives rise to orienta-
tional correlations and promotes the formation of structures
with long-range orientational order. The isotropic-nematic
transition in solutions of partially flexible macromolecules
has been studied theoretically using the Onsager approach
[5] or the Maier-Saupé approach [6,7]. In Ref. [7], the role
of the solvent is taken into account and a very rich phase
transition kinetics is predicted. Aggregation and orientational
ordering of Lennard-Jones macromolecules with bending and
torsional rigidity, with or without solvent, has recently been
investigated in Ref. [8] using molecular dynamics simulations.
Experimental investigations of the isotropic-nematic transition
in lyotropic F-actin solutions have been carried out in Ref. [9]
and measurements of the associated order parameter are
presented in [10].

The excluded volume effect is not the only mechanism
which drives an isotropic-nematic transition in solutions of
semiflexible polymers. Assemblies of cytoskeletal filaments
exhibit a structural polymorphism due to interactions mediated
by a wide range of ABPs, as shown in Ref. [11]. Theoretical
attempts to study the formation of ordered structures in
this kind of system involve a generalized Onsager approach
[12–14], a Flory-Huggins theory [15], and a semimicroscopic
replica field theory [16]. In Refs. [12–15] the filaments are
modeled as perfectly rigid rods, whereas in Ref. [16] they
are considered to be semiflexible polymers and the thermal
bending fluctuations (finite persistence length) are fully taken
into account.

In vitro structural studies by Wong et al. [17] of F-actin
in the presence of counterions have shown the formation of
sheets (“rafts”) with tetratic order without any cross-linking
proteins. It appears that electrostatic interactions are the main
mechanism behind the effective “π/2” cross-linking of the
actin filaments in this experiment. A theory for tetratic raft
formation by rigid rods and reversible sliding “π/2” cross-
linkers has been proposed by Borukhov and Bruinsma [13].

In Ref. [16], a three-dimensional melt of identical, fixed-
contour-length semiflexible chains is considered and random
permanent cross-links are introduced. The cross-links are such
that they fix the relative positions of the corresponding polymer
segments and constrain their orientations to be parallel or
antiparallel to each other. The aim of the present study is
to examine the effect of cross-links which prescribe a finite
crossing angle on a two-dimensional version of the previous
model. We distinguish the case of sensitive cross-links that
are perceptive of the polymers’ polarity and unsensitive cross-
links that are not. In contrast to previous studies where the rigid
rods have a finite width which allows for nematic ordering
à la Onsager, our semiflexible polymers are considered
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one-dimensional objects and the sole cause for the emergence
of orientationally ordered phases is the interplay of the finite
persistence length of the polymers and the cross-link geometry.

Using the polymer stiffness and the cross-link density as
control parameters, we obtain a phase diagram which involves
a sol and various types of orientationally ordered gels. For
appropriate values of the control parameters and crossing angle
θ ∼ 2π/M ; M ∈ Z, we predict the emergence of an exotic gel
with random positional localization and M-fold orientational
order (e.g., hexatic for M = 6 or tetratic for M = 4). Similar
phases have been predicted [14] for a different system in three
space dimensions: a semidilute solution of charged rods with
finite diameter in the presence of polyvalent ions that have
the function of (nonpermanent) cross-linkers and may favor
various crossing angles. Besides the orientationally ordered
phase, we also predict a statistically isotropic amorphous solid
(SIAS) with random positional and orientational localization
of its constituent polymers appearing right at the gelation
transition.

This article is organized as follows. In Sec. II, we intro-
duce our model and the Deam-Edwards distribution which
parametrizes the quenched disorder associated with the cross-
links. In Sec. III, the disorder-averaged free energy is presented
as a functional of a coarse-grained field which plays the role
of an order parameter. Then, in Sec. IV, we discuss different
variational ansatzes that express positional and orientational
localization. The symmetries imposed by the cross-linking
constraints allow the emergence of specific orientationally
ordered phases. The corresponding free energies are calculated
variationally in the saddle-point approximation and a phase
diagram is obtained. We summarize and give an outlook in
Sec. V. Finally, details of the calculations are given in the
appendixes.

II. MODEL

We consider a large rectangular two-dimensional volume
(area) V which contains N identical semiflexible polymers.
A single polymer of total contour length L is represented by
a curve in 2d space with r(s) denoting the position vector at
arc length s. Bending a polymer costs energy according to
the effective free energy functional (“Hamiltonian”) for the
wormlike chain (WLC) model [18],

HWLC({r(s)}) = 1

2
κ

∫ L

0
ds

(
dt(s)

ds

)2

. (1)

Here we have introduced the tangent vector t(s) = dr(s)/ds

and chosen a parametrization of the curve, in accord with
the local inextensibility constraint of the WLC, such that
|t(s)| = 1. The position vector is recovered from t(s) as
r(s) = r(0) + ∫ s

0 t(τ )dτ . Hence, the conformations of a single
polymer, which can be bent but not be stretched, are alterna-
tively characterized by t(τ ),0 � τ � L, and r(0). The bending
stiffness is denoted by κ; it determines the persistence length
Lp according to κ = LpkBT /2. Throughout the rest of the
paper we set kBT = 1. The WLC model can describe stiff
rods, obtained in the limit L/Lp → 0 and fully flexible coils,
obtained in the limit Lp/L → 0.

The mutual repulsion of all monomers is modeled by the
excluded-volume interaction

Hev = N2

2V

∑
k �=0

∑
m∈Z

λ2
|k|,m|ρk,m|2, (2)

with

ρk,m := 1

N

N∑
i=1

1

L

∫ L

0
dseikri (s)eimψi (s) (3)

being the Fourier transformation of the positional-orientational
density. ti(s) = (cos ψi(s), sin ψi(s)) denotes the orientation
of monomer s on polymer i. The coefficients λ2

|k|,m depend
only on the absolute value of the vector k in order to preserve
the rotational symmetry of the system. They are later chosen
large enough to provide stability with respect to density
modulations. For details, see Appendix C.

The Hamiltonian HWLC is invariant with respect to inter-
changing head and tail of the filaments; that is, the energy
is unchanged under reparametrizations of the contour of one
polymer i by {ri(s) → ri(L − s),∀s ∈ [0,L]}. However, in
the following, we want to consider filaments with a definite
polarity which could for example arise due to the helicity
of F-actin. The WLC Hamiltonian is not sensitive to such
a polarity, but the cross-links may or may not differentiate
between the two states of the filament, as discussed below.

We now introduce M permanent (chemical) cross-links
between pairs of randomly chosen monomers. A single cross-
link, say between segments s and s ′ on two chains i and j ,
constrains the two polymer segments to be at the same position,
that is, ri(s) = rj (s ′), and fixes their relative orientation by
a constraint expressed by the function 	(ti(s),tj (s ′),θ ). The
constraint of relative orientation is most easily formulated in
polar coordinates where 	 just fixes the crossing angle ψ − ψ ′
to some prescribed value θ . In the case of cross-links sensitive
to polarity, we simply have

	(ψ − ψ ′,θ ) = δ(ψ − ψ ′ − θ ), (4)

where the weight of the δ function is such that
∫ 2π

0
dψ

2π
δ(ψ) =

1. In the unsensitive case, on the other hand, changing head
and tail of either filament leads to four equivalent situations
that correspond to two different crossing angles (see Fig. 1). In
this case the cross-link (4) thus appears with the two equally
likely cross-linking angles θ and θ + π . We point out that in
our model the polarity is only recognized by the cross-links
and does not enter into the Hamiltonian.

The δ function in (4) is the simplest way to model the
angular constraint of the cross-links. It is, however, much
more realistic to introduce an effective angular cross-linking
potential that allows for fluctuations around the preferred
direction. A simple model for these “soft” cross-links is

θ + π

θ + π

2

1
1

22

1
1

2

θ
θ

FIG. 1. 4 possibilities for two filaments to be joined by an
unsensitive cross-link.
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given by

	(ψ − ψ ′,θ ) = 1

I0(γ )
eγ cos(ψ−ψ ′−θ). (5)

The cross-link stiffness parameter γ controls the variance of
the fluctuations of the angle and it is clear that in the limit
γ → ∞ we recover the simple δ function model of “hard”
cross-links. In the following we first explore the case of hard
cross-links, because it is mathematically simpler. It gives rise,
however, to artifacts which disappear when considering the
more physical model which favors certain angles but does not
enforce them strictly.

The cross-links are permanent and do not break up or
rebuild. Hence, we are led to study the equilibration of the
thermal degrees of freedom {ri(s)} in the presence of quenched
disorder represented by a given cross-link configuration C =
{ie,je; se,s

′
e}Me=1 which is characterized by the set of pairs of

polymer segments that are involved in a cross-link. The central
quantity of interest is the canonical partition function

Z(C) =
〈

M∏
e=1

δ
(
rie (se) − rje

(s ′
e)

)
	

(
tie (se) − tje

(s ′
e),θ

)〉H
. (6)

Here the thermal average 〈· · ·〉H is taken with respect to the
Hamiltonian H := HWLC + Hev and the partition function
depends on the cross-link realization C. The free energy F

is expected to be self-averaging so that we are allowed to
compute the disorder-averaged free energy [F ] = −[ln Z],
where [· · ·] denotes the “quenched” average over all cross-
link configurations according to some distribution P(C). We
assume that the different realizations obey a Deam-Edwards-
like [19] distribution,

P(CM ) ∝ 1

M!

(
μ2V

N

)M
〈

M∏
e=1

δ
(
rie (se) − rje

(s ′
e)

)〉H
, (7)

implying that polymer segments that are likely to be close
to each other in the un-cross-linked melt also have a high
probability of getting cross-linked. Note that the probability
of cross-linking is independent of the relative orientation of the
two segments, so that the cross-link actually reorients the two
participating segments. The parameter μ2 controls the mean
number of cross-links in the system: [M]/N ∼ O(μ2).

Given the Hamiltonian, the constraints due to cross-linking
and the distribution of cross-link realizations, the specification
of the model is complete and we proceed to calculate the
disorder-averaged free energy [F ].

III. REPLICA FREE ENERGY

The standard method to treat the quenched disorder average
is the replica method, representing the disorder-averaged free
energy as [F ] = −[ln Z] = − limn→0([Zn] − 1)/n; that is,
we have to calculate the simultaneous disorder average of
the partition sums of n noninteracting copies of our system.
In the end, we extract the disorder-averaged free energy [F ]
from [Zn] as the linear order coefficient of its expansion in the
replica number n.

In this section, we present only the essential formulas and
present the details of the calculation in Appendix B. The

disorder average, [Zn], gives rise to an effectively uniform
theory, however, with a coupling of different replicas:

[Zn] ∝
〈

exp

(
μ2V

2N

N∑
i,j=1

∫
s,s ′

δ(r̂i(s)

− r̂j (s ′))	(ψ̌i(s) − ψ̌j (s ′),θ )

)〉H
n+1

, (8)

where the average 〈· · ·〉Hn+1 is over the (n + 1)-fold replicated
Hamiltonian H. To simplify the notation we have introduced
the abbreviations r̂ ≡ (r0,r1, . . . ,rn), ψ̌ ≡ (ψ1, . . . ,ψn), and
the shorthand notation

∫
s
≡ (1/L)

∫ L

0 ds. Furthermore, δ(r̂) ≡∏n
α=0 δ(rα) and 	 denotes for sensitive cross-links

	s(ψ̌,θ ) ≡
n∏

α=1

δ(ψα − θ ) (9)

and

	u(ψ̌,θ ) ≡ 1

2

{
n∏

α=1

δ(ψα − θ ) +
n∏

α=1

δ(ψα − (θ + π ))

}
(10)

if they are unsensitive to polarity of the filaments. For soft
cross-links we introduce the corresponding definitions.

Different polymers are decoupled via a Hubbard-
Stratonovich transformation, introducing collective fields,
(x̂,ϕ̌), whose expectation values are given by

〈(x̂,ϕ̌)〉 = 1

N

N∑
i=1

∫
s

〈δ(x̂ − r̂i(s))δ(ϕ̌ − ψ̌i(s))〉. (11)

The field 〈〉 quantifies the probability of finding monomer
son chain i at position x0 in replica 0, at position x1 in replica
1, . . . , and at position xn in replica n and similarly to find
it oriented in the direction e1 = (cos(ϕ1), sin(ϕ1)) in replica
1, . . . and oriented in the direction en = (cos(ϕn), sin(ϕn)) in
replica n. Sometimes it is convenient to use its equivalent
representation in Fourier space,

〈(k̂,m̌)〉 = 1

N

N∑
i=1

∫
s

〈eik̂r̂i (s)eim̌ψ̌i (s)〉. (12)

In terms of these collective fields the effective replica theory
is given by

[Zn] ∼
∫

D{} exp(−NF({})). (13)

The replica free energy per polymer reads

F = μ2

2V n

∑
k̂

∑
m̌

	||2 − ln z({}), (14)

with the effective single chain partition function

z({}) =
〈

exp

(
μ2

2V n

∑
k̂

∑
m̌

	

∫
s

exp{−ik̂r̂(s)}

× exp{−im̌ψ̌(s)}
)〉HWLC

n+1

. (15)

The average 〈· · ·〉WLC
n+1 refers to the (n + 1)-fold replicated

Hamiltonian of a single WLC. The sum
∑

k̂ over replicated
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wave vectors is restricted to the combination of the so-called
“0-replica sector” (0RS) that contains only the point k̂ =
(0, . . . ,0) and the “higher-replica sector” (HRS), where at least
two wave vectors in different replicas are nonzero: kα �= 0 and
kβ �= 0 with α �= β.

Note that in the above overview we left out the “1-replica
sector” (1RS) that consists of (n + 1)-fold replicated vectors
k̂α , where only one entry (the αth) is nonzero, that is, k̂α =
(0, . . . ,kα, . . . ,0), and m̌ being arbitrary. The corresponding
fields ̃α(k,m̌) describe regular macroscopic density fluctua-
tions (modulated states). In this work we focus on the proper-
ties of the macroscopically translationally invariant amorphous
solid state and assume that the interpolymer interactions (2)
are such that periodic density fluctuations are suppressed.
See Appendixes B and C for more details on that issue.

IV. VARIATIONAL APPROACH

We only discuss the saddle-point approximation to the field
theory on the right-hand side of (13), replacing the field 

with its saddle point sp, which has to be calculated from
δF/δ|sp = 0. In fact, even the saddle-point equation is too
hard to solve, because the conformational distribution of the
WLC is very complex. Similarly, it is not possible to perform a
complete stability analysis of the Gaussian theory. Hence, we
restrict ourselves to a variational approach and in the following
we construct ansatzes which capture the symmetry of the
different physical states which may emerge.

What behavior do we expect? Upon increasing the number
of cross-links up to about one per polymer, there should be a
gelation transition from a liquid to an amorphous solid state.
A finite fraction of the polymers form the percolating cluster
and are localized at random positions. The other polymers
belong to finite clusters or remain un-cross-linked and are still
free to move around in the volume. This scenario has been
found to be valid for a variety of different models [20–24].
A similar replica field-theoretic approach has been used by
Panyukov and Rabin to study the properties of well cross-
linked macromolecular networks [25,26].

For semiflexible polymers the positional localization in the
macroscopic cluster is accompanied by orientational localiza-
tion. The cross-links create locally an orientational structure.
Supposing that the semiflexible polymers are rather stiff, a
long-range orientationally ordered state can be established.
Otherwise, we may find an orientational glass; that is, the
directions of the polymer segments are frozen in random
directions in analogy to the low-temperature phase of a
spin glass [27]. We call such a phase statistically isotropic
amorphous solid (SIAS).

Can we expect long-range orientational order for arbitrary
crossing angles θ? We first consider a special case, namely,
that the crossing angle is such that an integer multiple of the
crossing angle, Mθ , equals 2π , for example, θ = 120◦ and
M = 3. Such a choice of crossing angle allows for orienta-
tionally ordered states provided the chains are sufficiently stiff.
In the case of sensitive cross-links we expect M-fold discrete
rotational symmetry; in the case of unsensitive cross-links
and odd M we expect 2M-fold symmetry because cross-links
are established including both the angles θ and θ + π (see
Fig. 1). Sketches of gels with long-range fourfold order
(θ = 90◦) or long-range threefold or sixfold order, respectively

FIG. 2. Sketch of the tetratic phase (M = 4).

(θ = 120◦ / 60◦), are shown in Figs. 2 and 3, respectively. The
case θ = k 2π

M
with k = 1, . . . ,M − 1 leads in a similar fashion

to an M-fold symmetric phase.
Let us now consider the constraints on the order

parameter imposed by symmetries. To this end we note that
the Hamiltonian (1), the cross-link constraints (6) and the
Deam-Edwards distribution (7) are invariant with respect to
uniform translations and rotations of all particles positions
{ri(s)}. The disorder-averaged partition function of Eq. (8)
is invariant under spatially uniform translations and spatially
uniform rotations of each replica separately.

Only the fluid state is expected to have the full symmetry
of the partition function Eq. (8) because here, the polymers
and finite clusters of polymers are free to sample the complete
volume and can take any orientation. This implies for the order
parameter

〈(k̂,m̌)〉 = δk̂,0̂δm̌,0̌; (16)

that is, each replica is separately invariant under translations
and rotations.

We only investigate gels with random localization of a
fraction of the particles. In other words, we restrict ourselves
to amorphous solids and do not consider periodic density
fluctuations. It might be of interest to study one-dimensional
periodic density modulations with an overall orientation of
the WLCs perpendicular to the wave vector, reminiscent of
bundles. However, this is not the topic of the present paper,
where we stick to the incompressible limit.

If the translational and rotational symmetry is broken
spontaneously, then we expect a nontrivial expectation value
of the local density,

ρi,s(x,ϕ) := δ(x − ri(s))δ(ϕ − ψi(s)), (17)

FIG. 3. Sketch of the triangular phase (M = 3) for sensitive or
the hexatic phase (M = 6) for unsensitive cross-links.
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in a particular equilibrium state. For example, in the amor-
phous solid phase a finite fraction of particles should be
spatially localized at preferred positions and possibly oriented
along preferred directions. A simple ansatz quantifying such a
scenario is the following:

〈ρi,s(x,ϕ)〉 ∝ e
− 1

2ξ2 (x−a)2

eη cos(ϕ−ϕ0). (18)

The vector a is the preferred mean position of monomer s

and the thermal fluctuations around the preferred position
are controlled by the localization length ξ . The preferred
orientation is given by ϕ0 and η parametrizes the variance
of the orientational distribution.

An amorphous solid is macroscopically translational
invariant, so that the spontaneous symmetry breaking of
translational invariance is local. All macroscopic observables
should display translational symmetry and in particular all
moments of the local density,

̃J (k1, . . . ,kJ ,m1, . . . ,mJ )

:= 1

N

N∑
i=1

∫
s

〈ρi,s(k1,m1)〉 · · · 〈ρi,s(kJ ,mJ )〉 ∼ δk1+···kJ ,0,

(19)

are nonzero only if the wave vectors add up to zero (see
Ref. [21] for a more detailed discussion).

As far as the rotational symmetry is concerned, we consider
two possibilities: a SIAS, as well as states with true long-
range orientational order. In the former case, the spontaneous
symmetry breaking of rotational invariance is local and
restored globally analogously to what happens in the case
of translational symmetry. All macroscopic properties, such
as the moments, are nonzero only, if the angular momentum
“quantum” numbers add up to zero:

̃J (k1, . . . ,kJ ,m1, . . . ,mJ ) ∼ δk1+···kJ ,0 δm1+···mJ ,0. (20)

For the long-range ordered case the simplest ansatz consists
in assuming a local M-fold symmetry. This implies for the
moments

̃J (k1, . . . ,kJ ,m1, . . . ,mJ ) ∼ δk1+···kJ ,0

J∏
α=1

δmα,ZM ; (21)

that is, each mα has to equal an integer multiple of M .
Note that a rotation affects both ri(s) and ti(s) and that,

consequently, a system with, for example, M-fold symmetry

should be described by an ansatz (k̂,ϕ̌) which is only
invariant under common rotations of the kα and ϕα . We
have chosen our approach for simplicity and incorporated
the symmetry with respect to the orientational and position
vector separately. Consequently, the ansatz is symmetric under
individual rotations of the spatial and angular argument. An
interesting extension of the present work would involve the
study of ansatzes which couple positional and orientational
degrees of freedom. Some preliminary work in this direction
has been done in the context of random networks of covalently
connected atoms or molecules [28,29].

Rephrasing our results in replica language, frozen fluctu-
ations in a single equilibrium state correspond to a nonzero
expectation value of the density, ρi,s(k,m), within one replica.
The full statistics of the local static fluctuations that we need
for the characterization of the macroscopic symmetries in the
gel is specified by the order parameter field (k̂,m̌), encod-
ing moments of arbitrary order. In particular, macroscopic
translational invariance requires

∑n
α=0 kα = 0, macroscopic

rotational invariance requires
∑n

α=1 mα = 0, and long-range
orientational order for crossing angle θ = 2π

M
requires mα =

lM with l ∈ Z.
Let us now encode these physical expectations in a varia-

tional ansatz: The liquid state is characterized by sp(k̂,m̌) =
δk̂,0̂δm̌,0̌. It becomes unstable at a critical cross-link den-
sity, μ2

c , where a percolation transition takes place and a
macroscopic cluster is formed containing a finite fraction
of the polymers. To account for the fraction of localized
particles Q in the percolating cluster coexisting with mobile
particles (fraction 1 − Q) in finite clusters, we make the
following general ansatz for the expectation value of the order
parameter:

sp(k̂,ϕ̌) = (1 − Q)δk̂,0̂ + Qω(k̂2,ϕ̌)δ0,
∑n

α=0 kα . (22)

The first term describes the sol phase which is charac-
terized by perfect spatial homogeneity and orientational
isotropy. The second part describes the amorphous solid
which is macroscopically translational invariant, as reflected
in δ0,

∑n
α=0 kα . The details of the amorphous solid phase under

consideration have to be implemented in the order parameter
ω(k̂2,ϕ̌).

Plugging the generic form of the order parameter (22) into
the replica free energy (14) we get

Fsp = μ2

2V n

{
1 − Q2 + Q2

∑
k̂

∫
ϕ̌ϕ̌′

ω(k̂2,ϕ̌)	(ϕ̌ − ϕ̌′,θ )ω(k̂2,ϕ̌′)δ0,
∑n

α=0 kα

}

− μ2

V n
(1 − Q) − ln

〈
exp

{
μ2Q

V n

∑
k̂

∫
ϕ̌ϕ̌′

δ0,
∑n

α=0 kα	(ϕ̌ − ϕ̌′,θ )ω(k̂2,ϕ̌)
∫

s

eik̂r̂(s)δ(ϕ̌′ − ϕ̌(s))

}〉HWLC

n+1

. (23)

We expect the gel fraction to be small close to the gela-
tion transition and thus expand the log-trace contribution
of the free energy in Q. The terms linear in Q cancel,
as they should for the expansion around Q = 0 to be
justified.

A. M-fold orientationally ordered amorphous solid

1. Hard cross-links

Assuming that the thermal fluctuations of the polymers
are to a certain degree suppressed by their stiffness and a
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sufficient number of cross-links has been formed, long-range
orientational order may be present, as sketched in Figs. 2 and 3.
The ansatz for the M-fold orientationally ordered amorphous
solid favors M preferred orientational axes separated by angles
2π
M

. A simple way to incorporate this symmetry is the following
ansatz for the replica order parameter:

ω(k̂,ϕ̌) = e− ξ2

2 k̂2 eη
∑n

α=1 cos(Mϕα )

I n
0 (η)

. (24)

Here I0 denotes the modified Bessel function of the first kind;
it ensures the proper normalization.

For k̂ = 0̂, the above order parameter is a probability
distribution and thus specifies the local orientational order
completely. In experiment, on the other hand, one has access
to low-order moments only. The simplest physical order
parameter being sensitive to the degree of long-range M-fold
orientational order is given by

SM := 1

N

N∑
i=1

∫
s

〈cos(Mψi(s))〉 (25)

∼ [〈cos(Mψi(s))〉]
= η

2
+ O(η2), (26)

where in the second line, we replaced the average over all
monomers of the system with the disorder average of one
arbitrary monomer. This expression makes it possible to
relate SM to our effective one-particle theory. 〈· · ·〉 denotes the
thermal expectation value of the system for a given instance
of disorder C. In order to establish the connection between the
variational parameter η and the physical order parameter SM ,
we evaluate (26) using (24) and find that SM is in leading order
proportional to η.

We plug the ansatz (24) into (23) and perform the k̂
summations and ϕ̌ integrations. If we have chosen M according
to the symmetry considerations of the previous section, the
constraint 	 drops out. We are left with the free energy as a
function of three variational parameters: the gel fraction Q, the
spatial localization length ξ , and the degree of orientational
order as measured by η. To determine these parameters we
minimize the free energy. The resulting equation for the gel
fraction is universal and has been derived previously [21].
There are two solutions Q = 0 and Q ∼ 2

μ4 (μ2 − 1) which
implies that the phase transition from sol to gel takes place at
μ2

c = 1.
In order to determine the remaining parameters 1

ξ 2 and η

we assume them to be small near the transition and do a Taylor
expansion of the free energy where we leave out terms which
do not depend on ξ or η because these terms are irrelevant
for the variation of F . More precisely, it will turn out that
1
ξ 2 ∝ Q, being thus small close to the transition, and we keep

contributions up to order 1/ξ 2 in our expansion. As for the
variational parameter η, we find that it actually jumps from 0
to a finite value, that is, that there is a first-order orientational
transition. We expand all the same in η and obtain at least
a qualitative picture. Details on the calculations are given in
Appendix D.

Since our ansatz is replica-symmetric it is straightforward
to extract the part of F linear in the replica index n and we

find

F
n

= μ2Q2

2

{
− μ4Q

6
ln

L2

ξ 2
+ μ2L2

4ξ 2
g

(
L

Lp

)

+ δM,1
μ2L2

4ξ 2

{
η2l

(
L

Lp

)
− η4

16
l̃

(
L

Lp

)

+ η6

16
˜̃l

(
L

Lp

)}
+ η2

2

(
1 − μ2h

(
M2L

Lp

))

− 7

32
η4

(
1 − μ2h̃

(
M2L

Lp

))

+ 31

288
η6

(
1 − μ2 ˜̃h

(
M2L

Lp

))}
. (27)

Note that for M > 1 there are no terms coupling the orien-
tational order specified by η and the positional localization
specified by ξ 2. Such terms appear in higher order but will
not be considered here because we restrict ourselves to the
vicinity of the gel point. The persistence length Lp and the
localization length ξ are both rescaled by the contour length L

of the polymers.
The functions g, h, h̃, ˜̃h and l, l̃, ˜̃l go to zero for large

argument and are for small argument approximately given by

g(x) ∼ 1
6 − 1

30x, h(x) ∼ 1 − 1
3x,

h̃(x) ∼ 1 − 8
21x, ˜̃h(x) ∼ 1 − 48

93x,
(28)

l(x) ∼ 1
6 − 1

10x, l̃(x) ∼ 1
3 − 1

5x,

˜̃l(x) ∼ 125
72 − 61

30x.

For the definitions of these functions, see Appendix F.
Minimizing F for M > 1 with respect to ξ 2 yields

1

ξ 2
= 2

3L2

μ2Q

g
(

L
Lp

) = μ2Q

3R2
g

. (29)

Hence, the filaments are localized as soon as a percolating
cluster of cross-linked chains has formed and the gel fraction
is finite. The localization length is independent of M and its
scale is set by the radius of gyration Rg of the filament which
is ∼L2 for stiff chains and ∼L for random coils.

For finite polymer flexibility L
Lp

the incipient gel has
no long-range orientational order. Increasing the number of
cross-links beyond μ2 = 1 we find a first-order transition that
corresponds to a minimum of the free energy at nonzero η,
which is first metastable and eventually becomes the global
minimum (see Fig. 4). The critical values of μ2 for the first
appearance of a metastable ordered state (μ2

1), the first-order
phase transition (μ2

2), and the disappearance of the metastable
disordered state (μ2

3) are shown in Fig. 5. In the limit L
Lp

→ ∞
the phase transition coincides with the sol-gel transition,
whereas for more flexible filaments higher cross-link densities
are required. For rather stiff polymers we find that the transition
takes place at

μ2
2 ∼ 1 + 0.33 M2L/Lp. (30)

In addition, Fig. 5 shows the dependence of ηc, which
is the value of the variational parameter η at the phase
transition, on the polymer flexibility. There is a tendency
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FIG. 4. Plot of the orientational free energy of the threefold
symmetric case for L/Lp = 0.05 and μ2 = 1.1470, 1.1518, 1.1535
(continuous, dashed, fine-dashed lines, respectively).

to a lower degree of orientational localization for higher
values of the polymer stiffness. This behavior is qualitatively
different from the behavior predicted for the lyotropic nematic
ordering of partially flexible rods by Khokhlov and Semenov
in the corresponding range of flexibility [5]. However, a
direct comparison of the two models is not feasible. In our
case, orientational ordering is due to the cross-links and the
critical density of cross-links μ2

2 of the transition decreases
for increasing polymer stiffness. There are thus two competing
effects: Stiffer polymers should lead to a stronger orientational
localization of the polymers, whereas the smaller number of
cross-links should have the opposite effect. It seems that the
lower number of cross-links plays the dominant role in the
dependence of ηc(L/Lp).

μ2
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3

ηcrit

M2 L
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FIG. 5. Variational parameter of the incipient ordered state ηc

and cross-link densities μ2
1, μ2

2, and μ2
3 where a metastable ordered

minimum appears, where it becomes the global minimum (phase
transition) and where the minimum at zero corresponding to the
disordered state becomes unstable (plot for M > 1). Note that always
μ2

1 < μ2
2 < μ2

3 for finite stiffness.

We point out that the cross-linking angle θ = 2π/M enters
the free energy as a rescaling of the polymer flexibility L/Lp

through the parameter M2. This implies that the higher the
value of M (the smaller the angle), the higher is the polymer
stiffness required for the transition at a given cross-link density.
The reason for this scaling is that within our mean-field
description we are dealing with one single chain in an effective
medium. M-fold order has to be propagated along the chain
from one cross-link to the next and the M2 scaling reflects the
properties of the WLC in the calculation of the corresponding
correlator.

For a first-order transition the expansion in η2 is not really
justified and can only give qualitative results. Even worse,
the expansion of F in η2 exhibits an oscillating behavior:
The orders 2,6,10, . . . provide a stable orientational free
energy (for large η) in a region around μ2 = 1 and L

Lp
= 0,

but the orders 4,8,12, . . . are always unstable in the above
region because they diverge asymptotically to minus infinity.
However, considering the purely orientational free energy,

for, hard := μ2Q2

2

{
ln

(
1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

)

−μ2
∫

s1,s2

ln

(
1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

e− q2M2

2κ
|s1−s2|

)}
,

(31)

it is obvious that for any finite κ the Gaussian part is larger than
the log-trace contribution as long as the cross-link density μ2

does not become too large. So, as long as we restrict ourselves
to a region close enough to the sol-gel transition asymptotic
stability is guaranteed and a qualitative picture can be obtained
by truncating the expansion at order 6, 10, or even higher.

For the polar case, that is, M = 1, there are additional terms
in the free energy (27) which couple spatial and orientational
parts. At first sight it might be tempting to argue that they
can be neglected close to the transition because they are
proportional to 1

ξ 2 ∼ Q. As it turns out, this is not correct:
The orientational transition for a given polymer stiffness is
shifted to significantly higher values of μ2. However, all the
same, the qualitative picture of the transition is still valid.

In order to analyze the orientational transition we first
calculate the stationarity equation with respect to 1/ξ 2,

L2

ξ 2
= 2

3

μ2Q

g
(

L
Lp

) + η2 l
(

L
Lp

) − η4

16 l̃
(

L
Lp

) + η6

16
˜̃l
(

L
Lp

) , (32)

and plug it again into the free energy. Keeping contributions
up to order η6 we obtain again a power series in η2. The
transition scenario that we found for M > 1 is still valid, but
the transition takes place at larger values of μ2

2. For rather stiff
polymers we find approximately

μ2
2 ∼ 1 + 0.94 L/Lp (33)

and the critical μ2 is considerably larger than what we would
obtain from (30) without the coupling terms.

At first sight, it seems a bit curious that the case M = 1
is set apart by its coupling term. This is, however, only
due to the low-order expansion and the coupling terms for
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M > 1 have not appeared yet. Because of the higher symmetry
of the orientational contributions, only higher-order spatial
contributions may lead to nonvanishing coupling terms.

If long-range orientational order could exist only for
rational values of θ/2π , then it would be inaccessible in
experiment. We show in the next section that the long-range
ordered states discussed above are also present if we introduce
cross-links that favor given crossing angles on average only.

2. Soft cross-links

Which changes do we expect when using soft cross-links (5)
that do not rigidly fix the intersection angle to one particular
value, but allow for fluctuations about a given mean direction?
Soft cross-links surely will make it harder to establish long-
range order, so the first expectation is that the orientational
transition will need a higher cross-link density μ2 to take
place. In particular, the behavior in the limit of stiff rods
will change qualitatively: In the case of hard cross-links the
macroscopic network is a completely rigid object, even at
cross-link densities just above the critical value of μ2 = 1,
whereas in the case of soft cross-links there are still the degrees
of freedom of fluctuations around the preferred directions of
the cross-links left. Instead of approaching a combined spatial
and orientational transition right at μ2 = 1 upon increasing the
polymers stiffness, it appears possible that for soft cross-links
the long-range order transition will take place not at μ2 = 1
but at a higher cross-link densitiy because the networks need
to be stabilized. However, in the limit of stiff rods and hard
cross-links we should recover the combined transition right at
μ2 = 1.

We now discuss the modifications of the free energy due
to the soft cross-links: Keeping terms only up to order Q3

as before, we find that in the case M > 1 there is still an
effective decoupling of spatial and orientational transition. The
spatial part does not change at all, but the purely orientational
contribution becomes

for,soft := μ2Q2

2

{
ln

(
1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

IMq(γ )

I0(γ )

)

−μ2
∫

s1,s2

ln

(
1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

I 2
Mq(γ )

I 2
0 (γ )

e− q2M2

2κ
|s1−s2|

)}
.

The soft cross-links give rise to additional factors IMq (γ )
I0(γ ) that

equal 1 in the limit of hard cross-links γ → ∞. They appear
linearly in the Gaussian and quadratically in the contribution
of the log-trace term. Their range lying between 0 and 1 it is
clear that the log-trace contribution is smaller with respect to
the Gaussian so that the transition occurs at a higher cross-
link concentration (as compared to the case of hard cross-
links). This is confirmed by a numerical analysis of the Taylor
expansion up to 10th order in η.

The effect of soft cross-links on the orientational phase
transition is illustrated in Fig. 6 for M = 3: First of all, it
shows that for finite γ the phase transition takes place at a
finite distance from μ2 = 1, even in the limit of stiff rods.
Moreover, comparing the curves corresponding to increasing
values of γ , that is, to harder and harder orientational cross-link
constraints, the curves converge toward the solid curve at the

μ2
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FIG. 6. Plot of the critical μ2(L/Lp) where the phase transition
takes place for M = 3 and stiffness parameters γ = 80, 160, 240,
320 and hard cross-links.

bottom that was drawn for perfectly hard cross-links as they
should.

The case M = 1 involves additional coupling terms
between spatial and orientational parameters that need to be
calculated. However, as before, they do not lead to a behavior
that differs qualitatively from what we found for M > 1.

In the preceding section we found that the higher the M ,
the more cross-links are needed to get into the long-range
ordered phase. This holds true for soft cross-links, too, as we
checked numerically. The related calculations are presented in
Appendixes D and F.

B. Statistically isotropic amorphous solid

In the preceding two sections, we found that (given a
suitable cross-linking angle θ ) there is a phase boundary
μ2( L

Lp
) above which long-range orientational order becomes

possible. For lower cross-link density, long-range orientational
order vanishes. However, the positional localization of the
polymer segments that takes place in the macroscopic cluster
is always accompanied by orientational localization. The
corresponding alternative to long-range order are glassy states,
where the average orientations of the polymer segments are
frozen in random directions, so that isotropy is restored on
a macroscopic level. We expect such states for WLCs with a
small persistence length, such that the order induced by a cross-
link cannot be sustained along the contour length up to the next
cross-link. This will be particularly severe if M is large.

Frozen orientations for polar filaments are described by
the distribution (18) for a single site. However, the direction
of localization varies from chain to chain, so that averaging
over the whole sample implies an average over the locally
preferred orientation ϕ0, assuming all directions to be equally
likely. For convenience we introduce the unit vectors uα =
(cos ϕα, sin ϕα) and denoting the local preferential axes by e
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we get∫
de
2π

exp

(
ηe ·

(
n∑

α=1

uα

))
= I0

(
η

∣∣∣∣∣
n∑

α=1

uα

∣∣∣∣∣
)

. (34)

Altogether the order parameter for polar filaments in the glassy
state then reads

ω(k̂,ϕ̌) = e− ξ2

2 k̂2 1

I n
0 (η)

I0

(
η

∣∣∣∣∣
n∑

α=1

uα

∣∣∣∣∣
)

. (35)

What is the physical order parameter and how does it scale
with the parameter η?

Locally, we have for each localized polymer segment a
polar moment 〈ti(s)〉 ∼ η �= 0, but because of the orientational
disorder it vanishes globally. We thus need an Edwards-
Anderson-like order parameter and choose

q = 1

N

N∑
i=1

∫
s

〈ti(s)〉 · 〈ti(s)〉. (36)

As for the M-fold order parameter in the preceding section,
we relate the variational parameter η to q and find that in
lowest order

q = η2

4
+ O(η4). (37)

We plug the ansatz (35) for the replicated order parameter
into the saddle-point free energy and keep only terms which
depend on ξ or η. We obtain the simplest nontrivial free energy
by including terms up to second order in η2:

F
n

= μ2Q2

2

{
−μ4Q

6
ln

L2

ξ 2
+ μ2 L2

4ξ 2
g

(
L

Lp

)

− η4

16
�(γ )

(
1 − μ2�(γ )h

(
2L

Lp

))

+ η2L2

8ξ 2
μ2�(γ )l

(
L

Lp

)}
, (38)

where we have introduced the shorthand notation �(γ ) :=
I 2

1 (γ )
I 2

0 (γ )
. The functions g,h,l are given by (28) in the M-fold

section. Minimizing the above free energy with respect to
ξ 2, yields qualitatively the same result as for the long-range
ordered state, namely,

L2

ξ 2
= 2

3

μ2Q

g
(

L
Lp

) . (39)

The orientational part shows a behavior different from the
M-fold case: The stationarity equation with respect to η2 gives
rise to

η2 = L2

ξ 2

μ2l
(

L
Lp

)
1 − μ2�(γ )h

(
2L
Lp

) . (40)

The coupling terms implies a nonzero value η2, that is,
orientational localization, as soon as positional localization
sets in. Hence, glassy orientational order is enslaved to posi-
tional localization and the orientational order parameter grows
continuously at the gelation transition. Varying γ we see that
the softer the cross-links are, the smaller also is the variational
parameter η, that is, the degree of orientational order.

Note that, in contrast to the M-fold ordered case, the limit
n → 0 leads in the SIAS free energy to an extra minus sign
for all the orientational contributions because of the coupling
of the replicas in the corresponding order parameter (35). As
a consequence, we have to maximize the free energy with
respect to η instead of minimizing it, as is well known from
spin glasses [27].

C. Phase diagram

The results of the previous sections can be summarized in a
phase diagram, presented in Fig. 7. The control parameters are
the cross-link density measured by μ2, the polymer flexibility
measured by L/Lp, and the cross-linking angle θ . Irrespective
of the cross-linking angle, independent of the stiffness of
the filaments and of the softness of the cross-links there is
a continuous gelation transition accompanied by random local
orientational ordering (SIAS phase) at the critical cross-link
density μ2

c = 1. This glassy ordering has been encountered
previously for randomly linked molecules with many legs
(p-Beine) [20,22]. The free energy of the SIAS is above the
free energy of the sol, which, however, is unstable beyond μ2 =
1 and hence is not available in this region of the phase diagram.

What is new is the appearance of a state with long-range
orientational order, if the crossing angle θ = k

M
2π , where

k,M ∈ Z. This phase is characterized by a spontaneous
breaking of the rotational symmetry. For sensitive cross-
links the symmetry of the orientational order is M-fold, for
unsensitive cross-links and odd M the resulting phase has
2M-fold symmetry. The free energy of the long-ranged ordered
state is below the free energy of the isotropic sol as well as
below the free energy of the SIAS. Hence, we expect it to win
as soon as it appears, even though we cannot do a complete
stability analysis beyond the variational ansatz.

We find that the appearance of long-range order is pushed
to higher values of μ2 as the constraint for the crossing angle is
softened. The same effect is observed for increasing flexibility
of the polymers, because it becomes more difficult to sustain
the orientation of the polymers, and increasing M .

When reading the phase diagram, we should keep in mind
that the parameters μ2 and L/Lp are not thermodynamic ones
like a temperature or a chemical potential because changing
either of them changes the disorder ensemble, too. This means

μ2

Sol

1

L/Lp

M−fold
SIAS

FIG. 7. Phase diagram in the plane of cross-link concentration
μ2 and polymer flexibility L/Lp . To the right of the vertical dotted
line, SIAS order becomes stable, whereas M-fold order appears to
the right of the continuous tilted line which depends on M .

021905-9



KIEMES, BENETATOS, AND ZIPPELIUS PHYSICAL REVIEW E 83, 021905 (2011)

that two points in the phase diagram correspond effectively to
two different systems.

V. CONCLUSIONS, DISCUSSION

In this paper, we studied the role of the cross-linking angle
in the formation of orientational order in random networks
of semiflexible polymers in two dimensions. We have used
a variational ansatz to map out a phase diagram. Besides
a SIAS we find more exotic gels with random positional
order coexisting with long-ranged orientational order, whose
symmetry is dictated by the crossing angle. In analogy to
liquid crystals with long-range orientational order and thermal
center-of-mass motion like in a fluid, these gel phases might
be termed “glassy crystals,” with long-range orientational
order and frozen in random positions like in a glass. It is
interesting to note that the tetratic ordering, which corresponds
to M = 4 in our system, has been predicted and/or observed in
a variety of physical systems with quite different constituents
and underlying physical mechanisms [14,30–32].

Because of the peculiarities of two dimensions, we expect
fluctuations to affect positional localization [33,34]. It is
known, in the context of two-dimensional defect-mediated
melting, that at finite temperature positional order can only
be quasi-long-ranged, whereas orientational order can be truly
long ranged [35]. A study of the corresponding phenomena for
our positionally amorphous and orientationally ordered system
is a very interesting direction for further investigation.

We point out that the finite bending rigidity is an essential
ingredient of our model. It allows the effective decoupling of
positional and orientational degrees of freedom close to the
gelation transition. In the case of infinitely stiff polymers, on
the other hand, a rigid cross-link would automatically fix both
position and orientation. The nature of the emerging network
is an interesting problem which goes beyond the scope of this
paper.

Another possible extension of our work concerns more
elaborate variational ansatzes probing the appearance of
combined M-fold and glassy orientational order. Here, the
chains in the gel fraction are assumed to be orientationally
localized in preferential directions which vary from chain to
chain but macroscopically average in an M-fold pattern.

The three-dimensional generalization of our model has to
deal with the fact that a finite cross-linking angle between two
WLCs prescribes a cone and not a plane. If we want to describe
cross-links with torsional rigidity, we need to go beyond the
simple WLC model and use the helical WLC [36].

In this work, we focused on orientational and glassy
order in networks of semiflexible polymers mediated through
appropriate cross-links. We assume that the excluded-volume
interaction is such that it supports a macroscopically transla-
tionally and rotationally invariant liquid which, upon cross-
linking, may give rise to ordered networks. Although this
assumption is mathematically consistent and facilitates the
analytical treatment of our model, it may be challenged in
experimental realizations where the excluded volume may lead
to lyotropic alignment in dense systems. In a future extension
of our model, one may envisage adding a Maier-Saupe aligning
pseudopotential as in Refs. [6,7] and studying its interplay with
the cross-link induced interaction.
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APPENDIX A: EVALUATING EXPECTATION VALUES:
THE WLC PROPAGATOR

The WLC propagator G(ϕ,s1; ϕ′,s2) quantifies the proba-
bility that the tangential vector of monomer s1 points into the
direction ϕ provided that the tangential vector of monomer s2

points into the direction ϕ′:

G(ϕ,s1; ϕ′,s2) : = 〈δ(ϕ − ψ(s1))δ(ϕ′ − ψ(s2))〉HWLC

= 1

N

∫ s2

s1

D{t}e− κ
2

∫ s2
s1

dτ ( dt
dτ

)2

. (A1)

Here N denotes the normalization and ψ(s) the angle
corresponding to the unity vector t(s). In principle, the path
integral includes all the monomers from 0 to L, but the mono-
mers that lie not between s1 and s2 do not affect the result
and can be integrated out. In order to perform the remaining
path integral we write down a discretized version of the
above expression, replacing the continuous degrees of freedom
with a finite number l of them such that t1 corresponds to
t(s1) and tl corresponds to t(s2). The distance ε between
neighbors is determined by lε = |s2 − s1|. Expressing the
integral and the derivatives of the WLC Hamiltonian by their
discretized versions and calling the normalization constant for
the discretized path integral Nε , we arrive at [37]

Gε = 1

Nε

l−1∏
i=2

(∫
dϕi

2π

)
exp

(
− κ

2
ε

l−1∑
i=1

(
ti − ti+1

ε

)2
)

= 1

Nε

l−1∏
i=2

(∫
dϕi

2π

)
exp

(
−κ

ε

l−1∑
i=1

(1 − cos(ϕi − ϕi+1))

)
.

We want now to perform the integrations over the ϕi . For that
purpose it is convenient to decouple ϕi and ϕi+1 by means of

ea cos ϕ =
∞∑

q=−∞
Iq(a)eiqϕ,

where the Iq (a) denotes modified Bessel functions. Performing
the integrations, we arrive at

Gε = 1

Nε

∞∑
q=−∞

(
e− κ

ε Iq

(
κ

ε

))l−1

eiq(ϕ1−ϕl )

and integrating over ϕ1

2π
and ϕl

2π
we find that the normalization

is given by Nε = (exp(−κ/ε)I0(κ/ε))l−1. Last, we take the
limit ε → 0 keeping lε = |s1 − s2| constant. It is thus possible
to express the modified Bessel functions by the asymptotic
expansion Iq(a) ∼ exp(a)√

2πa
(1 − 4q2−1

8a
+ · · ·) and the propagator

converges to

G(ϕ,s1; ϕ′,s2) =
∞∑

q=−∞
e− 1

2κ
q2|s1−s2|eiq(ϕ−ϕ′). (A2)
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Calculating a general two-point correlation function of the
(real valued) observables O1 and O2 at positions s1 and s2,
respectively, by means of the above propagator, we find

〈O1(ψ(s1))O2(ψ(s2))〉HWLC =
∞∑

q=−∞
e− 1

2κ
q2|s1−s2|Ô1(q)Ô∗

2(q),

(A3)

where Ô1 and Ô2 denote the Fourier transformation of the
observables. We learn from this expression that only the
Fourier components to the same q couple to each other and
that the rate of the exponential decay of correlations along the
filament scales with q2.

APPENDIX B: MEAN-FIELD REPLICA FREE ENERGY
AND THE SADDLE-POINT EQUATIONS

In order to obtain the disorder-averaged free energy [F ] by
means of the replica method we need to calculate the disorder-
averaged n-fold replicated partition function,

[Zn] ∝
∞∑

M=0

M∏
e=1

(
N∑

ie,je=1

∫
se,s ′

e

∑
σe

)
1

M!

(
μ2V

2Ny

)M

×
〈

M∏
e=1

{
δ(r̂ie (se) − r̂je

(s ′
e))

× eγ
∑n

α=1 cos(ψα
ie

(se)−ψα
je

(s ′
e)−θσe )

I n
0 (γ )

}〉H
n+1

, (B1)

where rα
i (s) and ψα

i (s) denote the position vector and angle of
orientation of segment s belonging to polymer i inside the αth
replica. For sensitive cross-links θσ equals always the single
crossing-angle θ , that is, the normalization y = 1, and we can
omit the summation over σ , but in the unsensitive case θσ takes
the two values θ1 = θ and θ2 = θ + π and so, y = 2.

Observing that the formula factorizes in the cross-link index
e it is possible to perform the sum over the number of cross-
links M that leads to an exponential function

[Zn] ∝
〈

exp

(
μ2V

2N

N∑
i,j=1

∫
s,s ′

δ(r̂i(s) − r̂j (s ′))

×	(ψ̌i(s) − ψ̌j (s ′),θ )

)〉H
n+1

,

where for sensitive cross-links the function 	 is defined as

	s(ψ̌,θ ) ≡ eγ
∑n

α=1 cos(ψα−θ)

I n
0 (γ )

(B2)

and in the unsensitive case, on the other hand, as

	u(ψ̌,θ ) ≡ 1

2

{
eγ

∑
α cos(ψα−θ)

I n
0 (γ )

+ eγ
∑

α cos(ψα−(θ+π))

I n
0 (γ )

}
.

(B3)

After the disorder average, all the sites, that is, all the
polymer segments, are equivalent but still appear explicitly,
coupled by the cross-linking constraint 	 and the δ functions.
Expressing the δ functions in Fourier space we can rewrite our

formula in terms of the quantity

Q(k̂,m̌) = 1

N

N∑
i=1

∫
s

eik̂r̂i (s)eim̌ψ̌i (s).

Using this definition and writing Hev explicitly the replicated
partition function reads

[Zn] ∝
〈

exp

(
μ2N

2V n

∑
k̂,m̌

	m̌|Q(k̂,m̌)|2
)

× exp

(
−λ2N2

2V

n∑
α=0

∑
k �=0

∑
m

|ρα(k,m)|2
)〉HWLC

n+1

.

In Sec. II the parameter λ2 was introduced in its most general
form depending on |k| and m, but as it turns out a constant is
sufficient for our purpose and allows in the following for a more
compact notation. Because of the symmetry |Q(k̂,m̌)|2 =
|Q(−k̂, − m̌)|2 it is only the real part of 	m̌ that contributes
and we thus redefine the sensitive kernel 	s accordingly as

	s,m̌ =
∏n

α=1 Imα (γ )

I n
0 (γ )

cos

(∑
α

mαθ

)
. (B4)

For unsensitive cross-links 	u,m̌ equals zero if the sum∑n
α=1 mα is not even, but takes otherwise the values of the

sensitive kernel in (B4).
We now rearrange the contributions of intrapolymer re-

pulsion and Deam-Edwards distribution into contributions
belonging to the following subsets of the space of (n + 1)-fold
replicated vectors k̂:

(i) the 0-replica sector (0RS) consisting only of 0̂;
(ii) the 1-replica sector (1RS), including all vectors of the

form k̂ = (�0, . . . ,kα, . . . ,�0), where kα �= 0;
(iii) the higher-replica sector (HRS) containing all the k̂

where wave vectors in at least two replicas are nonzero; that
is, there are α �= β ∈ {0,1, . . . ,n} with kα �= 0 and kβ �= 0.
In the following we denote the sum over 0RS and HRS by

∑
k̂

and the sum over the 1RS as
∑̃

k. For the 1RS we obtain the
new kernel

	̃α
m̌ = λ2N

2V

n∏
β �=α=1

δmβ,0 − μ2

2V n
	m̌. (B5)

Using Q̃α(k,m̌) as shorthand notation for Q(k̂,m̌) when only
the wave vector kα in replica α is nonzero the expression reads

[Zn] ∝
〈

exp

(
−N

n∑
α=0

∑̃
k

,m̌	̃α
m̌|Q̃α(k,m̌)|2

)

× exp

(
μ2N

2V n

∑
k̂

,m̌	m̌|Q(k̂,m̌)|2
)〉HWLC

n+1

.

In order to decouple the sites we now apply a Hubbard-
Stratonovich transformation. The symmetry Q(k̂,m̌) =
Q∗(−k̂,−m̌) and the analogous relation for Q̃α(k,m̌) have
to be reflected by their corresponding fields (k̂,m̌) and

021905-11



KIEMES, BENETATOS, AND ZIPPELIUS PHYSICAL REVIEW E 83, 021905 (2011)

̃α(k,m̌). After the transformation [Zn] can be written as

[Zn] ∝
∫

D{̃α,} exp(−NF({̃α,})), (B6)

where the integrals over the complex fields are meant to be
integrations over real and imaginary parts separately. The
replica free energy F is given by

F =
n∑

α=0

∑̃
k

∑
m̌

|̃α|2 + μ2

2V n

∑
k̂

∑
m̌

||2 − ln

〈
exp

(
2i

n∑
α=0

∑̃
k

∑
m̌

√
	̃�

(
̃α

∫
s

exp{−ikαrα(s)} exp{−im̌ψ̌(s)}
)

+ μ2

V n

∑
k̂

∑
m̌

√
	�

(


∫
s

exp{−ik̂r̂(s)} exp{−im̌ψ̌(s)}
))〉HWLC

n+1

. (B7)

Using the saddle-point approximation we replace the inte-
gral (B6) by its maximal contribution. The corresponding
values of the order parameter fields have to fulfill the self-
consistency equations that arise from

∂F
∂�̃α(k0,m̌0)

= 0,
∂F

∂�̃α(k0,m̌0)
= 0,

∂F
∂�(k̂0,m̌0)

= 0, and
∂F

∂�(k̂0,m̌0)
= 0.

Note that there are many ways to perform the HS trans-
formation, each of them leading to a different replica free
energy F . The resulting saddle-point replica free energy, on
the other hand, is always the same as it can be checked
easily. As a consequence, we are free to redefine the fields

for later convenience by doing the replacements �(k̂,m̌) →√
	m̌�(k̂,m̌) and for the imaginary part accordingly. The

advantage of this transformation is that the saddle-point fields
sp(k̂,m̌) are now directly related to an expectation value
of Q(k̂,m̌) as presented in the main part, Eq. (12). This
connection between Q and its corresponding field  is derived
by means of an external field that couples to Q. Performing
then the Hubbard-Stratonovich transformation and taking the
logarithmic derivatives with respect to real and imaginary parts
of the field on both sides of the equation, that is, for both
the microscopic and the field theoretic representation of our
theory, results in the desired relation between Q and .

The 0RS/HRS part of the free energy in terms of the new
fields reads then

F = μ2

2V n

∑
k̂

∑
m̌

	||2 − ln

〈
exp

(
μ2

V n

∑
k̂

∑
m̌

	�
(



∫
s

exp{−ik̂r̂(s)} exp{−im̌ψ̌(s)}
))〉HWLC

n+1

. (B8)

The 1RS part is treated in the next section.

APPENDIX C: STABILITY OF THE 1-REPLICA SECTOR

The fields of the 1RS, ̃α(k,m̌), can be subdivided into the
fields where m̌ is such that only the entry mα is nonvanishing
and those corresponding to the other possible values of m̌.
In the former case the fields describe M-fold orientationally
symmetric density fluctuations with wave vector k in replica

α and have thus a clear physical meaning. The other fields
break replica symmetry in the sense that they describe density
fluctuations, for example, in replica α accompanied by purely
orientational fluctuations in other replicas. These fields are
unphysical and need thus to equal zero.

In order to study the stability of the 1RS with respect
to fluctuations in the physical fields ρα(k,m) it is sufficient
to study stability for one replica only. The expansion of the
corresponding free energy reads up to second order

F1RS =
∑̃

k

∑
m

|ρ̃(k,m)|2 + 2
∑̃
k1,k2

∑
m1,m2

ρ̃(k1,m1)ρ̃(k2,m2)
√

	̃m1

√
	̃m2

∫
s1,s2

〈ei(k1r1+k2r2)ei(m1ψ1+m2ψ2)〉︸ ︷︷ ︸
C(k1,k2;m1,m2)

, (C1)

with rx := r(sx) and ψx := ψ(sx). Choosing λ2 > μ2 the kernel 	̃m = λ2

2 − μ2

2
Im(γ )
I0(γ ) cos(mθ ) is positive because Im(γ )

I0(γ ) � 1. It

is thus possible to redefine the fields by introducing ρ(k,m) := √
	mρ̃(k,m) without changing the stability. The corresponding

free energy is given by

F1RS =
∑̃

k

∑
m

2

λ2 − μ2 Im(γ )
I0(γ ) cos(mθ )

|ρ(k,m)|2 + 2
∑̃
k1,k2

∑
m1,m2

ρ(k1,m1)ρ(k2,m2)C(k1,k2; m1,m2). (C2)

Let us now consider the two contributions to F1RS separately:
It is evident that the first term is a positive quadratic form
provided that λ2 is large enough. If we consider stiff rods as

the limiting case of very unflexible WLCs, the matrix of the
second quadratic form can be diagonalized by switching back
from the Fourier modes m to the real space variables ϕ. Writing
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r(s) = r0 + st and integrating over r0 and t we find for C∫
s1,s2

〈ei(k1r1+k2r2)δ(ϕ1 − ψ1)δ(ϕ2 − ψ2)〉

= δk1,−k2δ(ϕ1 − ϕ2)
sin2(k1t1/2)

(k1t1/2)2
(C3)

and know thus that the second quadratic form is positive
semidefinite. Altogether we have thus proved stability in the
case of stiff rods, but we assume that this result will at least
hold for WLCs with large L/Lp, too.

APPENDIX D: VARIATIONAL FREE ENERGY: M-FOLD
SYMMETRIC LONG-RANGED ORDER

In this appendix, we present some details on the derivation
of the variational free energy (27) of the M-fold orientationally
ordered amorphous solid. We insert the corresponding replica
order parameter ansatz (24) into the general replica free
energy (23) and expand it in powers the variational parameters
1
ξ 2 and η.

A. Gaussian part

The Gaussian part reads

fG = μ2Q2

2V n

∑
k̂

δ∑n
α=0 kα,0e

−ξ 2k̂2
∫

ϕ̌1,ϕ̌2

	(ϕ̌1,ϕ̌2)

× 1

I 2n
0 (η)

eη
∑n

α=1(cos(Mϕα
1 )+cos(Mϕα

2 )).

The spatial part is easily computed by replacing the sum
over the replicated Fourier variables k̂ by an integral and
representing the δ function in Fourier space. Performing the
resulting integrations we arrive at

fG = 1

n + 1

(
1

4πξ 2

)n

f0.

For the orientational contribution fo we find

fo =
∫

ϕ̌1,ϕ̌2

	(ϕ̌1 − ϕ̌2,θ )
eη

∑n
α=1(cos(Mϕα

1 )+cos(Mϕα
2 ))

I 2n
0 (η)

∼ 1 + n ln

(∫
ϕ1,ϕ2

	(ϕ1 − ϕ2,θ )
eη(cos(Mϕ1)+cos(Mϕ2))

I 2
0 (η)

)

= 1 + n ln

(
1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

IMq(γ )

I0(γ )
cos(Mqθ )

)
.

For θ = k
M

2π the cosine equals 1 and vanishes. In order to
obtain the last line we replaced the three functions depending
on the ϕ’s by their Fourier representations. Performing then

the integrations lead to Kronecker 	’s that cancel two of the
three sums over Fourier modes.

Altogether we find for the Gaussian contribution in linear
order in the replica index n

fG = μ2Q2

2

×
{
−1 − ln(4πξ 2) + ln

(
1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

IMq(γ )

I0(γ )

)}
.

Considering unsensitive cross-linker the corresponding
expression reads

fo = 1 + n ln

⎛
⎝1 + 2

∞∑
q=1

δMq,2Z
I 2
q (η)

I 2
0 (η)

IMq(γ )

I0(γ )
cos(Mqθ )

⎞
⎠;

(D1)

that is, for odd M the contributions corresponding to odd q are
projected out. For M even, on the other hand, we obtain the
same result as for the sensitive cross-links.

Note that for hard cross-links (γ = ∞) there is an alter-
native expression for the fo. For sensitive cross-links it is
given by

fo ∼ 1 + n ln

(∫
ϕ1,ϕ2

	(ϕ1 − ϕ2,θ )
eη(cos(Mϕ1)+cos(Mϕ2))

I 2
0 (η)

)

∼ 1 + n ln

(
1

I 2
0 (η)

∫
ϕ

eη(cos(M(ϕ+θ))+cos(Mϕ))
)

∼ 1 + n ln

(
1

I 2
0 (η)

∫
ϕ

e2η(cos(Mϕ+ Mθ
2 )) cos( Mθ

2 ))
)

∼ 1 + n ln

(
I0

(
2η cos

(
Mθ

2

))
I 2

0 (η)

)

and in the unsensitive case we have

fo ∼ 1 + n ln

(
1

I 2
0 (η)

1

2

{
I0

(
2η cos

(
Mθ

2

))

+ I0

(
2η cos

(
M(θ + π )

2

))})
. (D2)

B. Log-trace contributions

Let us now turn to the log-trace contribution that we will
expand up to the third order in the gel fraction Q:

flt = μ2Qflt,1 + μ4Q2

2

(
flt,2 − f 2

lt,1

)
+ μ6Q3

6

(
flt,3 + 2f 3

lt,1 − 3flt,1flt,2
) + O(Q4).

The first-order term gives a trivial contribution because of

flt,1 =
〈

1

V n

∑
k̂

∫
ϕ̌,ϕ̌′

δ0,
∑n

α=0 kα e−ξ 2k̂2 eγ
∑n

α=1 cos(ϕα−ϕ′α−θ)

I n
0 (γ )

eη
∑

α cos(mϕ′α )

In0(η)

∫
s

eik̂r̂(s)δ(ϕ̌′ − ψ̌(s))

〉

= 1

V n

∫
s

〈∫
ϕ̌

eγ
∑n

α=1 cos(ϕα−ψ(s)α−θ)

I n
0 (γ )

eη
∑

α cos(mϕα )

In0(η)

〉
= 1

V n
. (D3)
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In the second step we use r̂(s) = r̂(0) + ∫ s

0 dτ t̂(τ ) and transform the original path integral D{r̂(s)} into an integral d r̂(0)
V n+1

and a path integral D{ψ̂(s)} over angular variables. Performing the r̂(0) integration we get a Kronecker δ setting k̂ to zero. The
last line follows from the fact that the functions are normalized and the two integrations with respect to ϕ̌ and ψ̌(s) simply lead
to 1.

The second-order contribution reads

flt,2 = 1

V 2n

∫
s1,s2

〈∑
k̂1

∑
k̂2

δ0,
∑n

α=0 kα
1
δ0,

∑n
α=0 kα

2
e−ξ 2(k̂2

1+k̂2
2)/2ei(k̂1 r̂(s1)+k̂2 r̂(s2))

×
∫

ϕ̌1ϕ̌
′
1

∫
ϕ̌2ϕ̌

′
2

	(ϕ̌1 − ϕ̌′
1,θ )	(ϕ̌2 − ϕ̌′

2,θ )δ(ϕ̌′
1 − ψ̌(s1))δ(ϕ̌′

2 − ψ̌(s2))
eη

∑n
α=1{cos(Mϕα

1 )+cos(Mϕα
2 )}

I2n
0 (η)

〉
. (D4)

Before Taylor expanding the expression in the variational parameters, we need to perform the summations over k̂1 and k̂2. We
integrate over d r̂(0) as before and get a Kronecker Delta imposing k̂1 = −k̂2. There is thus only one summation left. We replace
this sum by an integral and represent the Kronecker δ in Fourier space. After the two Gaussian integrations we find

flt,2 = 1

V n

(
1

4πξ 2

)n 1

n + 1

×
∫

s1,s2

〈
e

1
4ξ2

(
1

n+1

∑n
αβ=0 fα fβ−∑n

α=0(fα )2
) ∫

ˇ	ϕ1, ˇ	ϕ2

eγ
∑n

α=1(cos(	ϕα
1 )+cos(	ϕα

2 ))

I 2n
0 (γ )

eη
∑n

α=1{cos(M(ψα
1 +	ϕα

1 ))+cos(M(ψα
2 +	ϕα

2 ))}

I2n
0 (η)

〉
(D5)

using the shorthand notations fα ≡ ∫ s2

s1
dstα(s) and ψα

i := ψα(si). This expression can be expanded up to the desired order and
the remaining task then consists in calculating the corresponding correlation functions. Details are given in Appendix F.

For the calculation of the third-order term, we proceed the same way as before and need thus to perform three sums over wave
vectors. With the abbreviation fα

l ≡ ∫ sl

s3
dτ tα(τ ) the result reads

flt,3 = 1

V n

(
1

4πξ 2

)n ( 1

3πξ 2

)n ( 1

n + 1

)2

×
∫

s1,s2,s3

〈
exp

(
1

3ξ 2

(
1

n + 1

n∑
α,β=0

(
fα
1 fβ

1 + fα
2 fβ

2 + fα
1 fβ

2

) −
n∑

α=0

((
fα
1

)2 + (
fα
2

)2 + fα
1 fα

2

)))

×
∫

	̌ϕ1,	̌ϕ2,	̌ϕ3

eγ
∑n

α=1(cos(	ϕα
1 )+cos(	ϕα

2 )+cos(	ϕα
3 ))

I 3n
0 (γ )

eη
∑n

α=1{cos(M(ψα
1 +	ϕα

1 ))+cos(M(ψα
2 +	ϕα

2 ))+cos(M(ψα
3 +	ϕα

3 ))}

I3n
0 (η)

〉
. (D6)

APPENDIX E: VARIATIONAL FREE ENERGY (SIAS)

C. Gaussian part

In the following, we present the derivation of the SIAS
variational free energy. Let us first turn to the Gaussian
contribution. It is given by

fg = μ2Q2

2V n

∑
k̂

δ0,
∑n

α=0 kα e−ξ 2k̂2
∫

ϕ̌,ϕ̌′
	(ϕ̌ − ϕ̌′,θ )

× I0
(
η
∣∣∑n

α=1 uα
∣∣) I0

(
η
∣∣∑n

α=1 u′α∣∣)
I 2n

0 (η)
, (E1)

where uα = (cos ϕα, sin ϕα). The spatial part is treated the
same way as for the M-fold case, but the orientational
contribution is slightly more complicated because it does
not factorize in the replica index. By means of the integral
representation of the Bessel function,

I0(η) = 1

2π

∫ 2π

0
dϑeη cos ϑ , (E2)

we get a factorizing expression and find in linear order in n for
the orientational part of the free energy

fo = 1 + n

∫
ϑ1,ϑ2

ln

×
(∫

ϕ1,ϕ2

	(ϕ1 − ϕ2,θ )
1

I 2
0 (η)

eη(cos(ϕ1+ϑ1)+cos(ϕ2+ϑ2))
)

= 1 + n

∫
ϑ

ln

⎛
⎝1 + 2

∑
q∈N

I 2
q (η)

I 2
0 (η)

Iq(γ )

I0(γ )
cos(ϑ)

⎞
⎠ . (E3)

In order to obtain the last line, we simply switch from the
angular variables to Fourier space. The expression is then
easily expanded up to the desired order.

D. Log-trace contributions

The first-order contribution of the log-trace part gives
the same (trivial) result as for the long-range ordered case.
As for the second- and third-order terms, we again have to
perform the k̂ summations first, but this calculation is done
exactly the same way as before. The corresponding results are
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obtained from those of the M-fold case by simply replacing
the M-fold orientational distributions in (D5) and (D6) with
the corresponding SIAS distributions.

Details on the calculation of the individual terms
of the second order log-trace contribution are given in
Appendix G.

APPENDIX F: EVALUATION OF THE EXPECTATION
VALUES (M-FOLD)

In our expansion we include all the terms up to first order
in 1

ξ 2 and up to sixth order in η.

A. Spatial part

Let us consider the calculation of the 1
ξ 2 -term:

∫
s1,s2

⎛
⎝ 1

n + 1

n∑
α,β=0

〈fαfβ〉 −
n∑

α=0

〈(fα)2〉
⎞
⎠

= −n

∫
s1,s2

∫ s2

s1

dτ

∫ s2

s1

dτ ′〈t(τ )t(τ ′)〉

= −n

∫
s1,s2

∫ s2

s1

dτ

∫ s2

s1

dτ ′e− 1
2κ

|τ−τ ′| (F1)

=: −nL2g

(
L

Lp

)
.

The first expectation value gives a contribution for α = β only.
Combining the two terms and noticing that each replica gives
the same contribution we obtain the prefactor of −n. It is
interesting to note that the function g is closely related to the
radius of gyration Rg:

R2
g := 1

2

∫
s1,s2

〈(r(s1) − r(s2))2〉

= 1

2

∫
s1,s2

∫ s1

s2

dτdτ ′〈t(τ )t(τ ′)〉 (F2)

= L2

2
g

(
L

Lp

)
.

B. Coupling terms

In order to calculate the lowest order coupling terms we
expand the spatial part in first order. For θ = k

M
2π we find

1

4ξ 2

〈{
1

n + 1

n∑
α �=β=0

fαfβ − n

n + 1

n∑
α=0

(fα)2

}∫
	̌ϕ1,	̌ϕ2

eγ
∑n

α=1(cos 	ϕα
1 +cos 	ϕα

2 )

I 2n
0 (γ )

eη
∑n

γ=1{cos(M(ψγ

1 +	ϕ
γ

1 ))+cos(M(ψγ

2 +	ϕ
γ

2 ))}

I 2n
0 (η)

〉
.

(F3)

We can omit the second term in the first line of the above equation because it is already proportional to n and will in
the end give rise to contributions proportional to n2. Writing for the moment only the terms that are directly involved in the
thermal expectation value, we have

n∑
α �=β=1

〈{
cos ψα

τ cos ψ
β

τ ′ + sin ψα
τ sin ψ

β

τ ′
}
eη

∑n
γ=1{cos(M(ψγ

1 +	ϕ
γ

1 ))+cos(M(ψγ

2 +	ϕ
γ

2 ))}〉

= −nδM,1

{ 〈
cos ψ1

τ eη(c1
1+c1

2)〉〈cos ψ2
τ ′e

η(c2
1+c2

2)〉︸ ︷︷ ︸
(∗)

+ 〈
sin ψ1

τ eη(c1
1+c1

2)〉〈sin ψ2
τ ′e

η(c2
1+c2

2)〉}∏n

γ=3

〈
eη(cγ

1 +c
γ

2 )〉︸ ︷︷ ︸
(∗∗)

, (F4)

where we used the abbreviations cα
i := cos(ψα(si) + 	ϕα

i ). This expectation value is only nonvanishing for M = 1
because of the relation (A3): The Fourier transform of cos(ψτ ) has contributions for the modes q = ±1, but the Fourier transform
of exp{η cos(Mψ(s1))} only for q = ±ZM . The prefactor of −n ∼ n(n − 1) stems from the number of ways to combine the
indices α and β from the spatial contribution with the γ ’s from the orientational contribution.

We need thus to compute three types of expectation value. We find

1

I 2
0 (γ )

∫
	ϕ1,	ϕ2

eγ cos 	ϕ1eγ cos 	ϕ2
〈
cos(ψτ )eη{cos(ψ1+	ϕ1)+cos(ψ2+	ϕ2)}〉

=
∑
q∈N0

Iq(η)Iq+1(η)
Iq(γ )Iq+1(γ )

I 2
0 (γ )

1

2

{
e− 1

2κ
(q2|s1−τ |+(q+1)2|s2−τ |) + e− 1

2κ
((q+1)2|s1−τ |+q2|s2−τ |)}, (F5)

〈sin(ψτ )eη{cos(ψ1+	ϕ1)+cos(ψ2+	ϕ2)}〉 = 0 (F6)
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and

1

I 2
0 (γ )

∫
	ϕ1,	ϕ2

eγ cos 	ϕ1eγ cos 	ϕ2〈eη{cos(ψ(s1)+	ϕ1)+cos(ψ(s2)+	ϕ2)}〉 = I 2
0 (η) + 2

∑
q∈N

I 2
q (η)

I 2
q (γ )

I 2
0 (γ )

e− 1
2κ

q2|s1−s2|. (F7)

From (F4) we obtain the coefficients of the coupling terms proportional to η2

ξ 2 , η4

ξ 2 , and η6

ξ 2 by sampling all the ways to collect the

corresponding power in η from the different factors. For η2

ξ 2 , for example, the only way to collect a factor η2 is to expand the two
averages in (∗) in first order and leave out (∗∗). The result is

−μ2 1

4ξ 2

{
η2

I 2
q

I 2
0

l(α) + η4

4

(
−I 2

1

I 2
0

l(α) + I 2
1 I2

I 3
0

l3(α) − 4
I 4

1

I 4
0

l2(α)

)

+ η6

4

(
155

48

I 2
1

I 2
0

l(α) − 5

12

I 2
1 I2

I 3
0

l3(α) + 1

16

I 2
1 I 2

2

I 4
0

l5(α) + 1

24

I1I2I3

I 3
0

l4(α) − 1

4

I 2
1 I 2

2

I 4
0

l6(α) − I 4
1 I2

I 5
0

l7(α) + 8
I 4

1

I 4
0

l2(α)

)}
. (F8)

The appearing correlation functions are defined as follows:

l(x) := 7 − 8e−x + e−2x − 6x + 2x2

2x4
, (F9)

l2(x) := −11 − 9e−2x + 2e−3x + 18e−x + 6x

9x4
, (F10)

l3(x) := 1

600x4
(−291 − 100e−2x + 400e−x

+ 16e−5x − 25e−4x + 180x), (F11)

l4(x) := 1

81 000x4
(−653 − 1296e−5x + 2025e−4x

+ 324e−10x − 400e−9x + 1260x), (F12)

l5(x) := 1

7200x4
(−297 + 400e−2x − 128e−5x

+ 25e−8x + 360x) (F13)

l6(x) := 1

1800x4
(−37 + 100e−6x − 288e−5x

+ 225e−4x + 60x), (F14)

l7(x) := 1

1350x4
(−114 − 100e−3x + 225e−2x

+ 25e−6x − 36e−5x + 120x). (F15)

In the case of hard cross-links it is convenient to introduce the
following functions:

l̃(x) := 16(l(x) + 4 l2(x) − l3(x)) (F16)

and
˜̃l(x) := (

155
3 l(x) + 128 l2(x) − 20

3 l3(x)

+ 2
3 l4(x) + l5(x) − 4 l6(x) − 16 l7(x)

)
. (F17)

C. Orientational contributions

As for the calculation of the purely orientational part we
notice first that it is factorizing in the replica index α. It
is thus possible to take the replica limit directly by means
of the expansion 〈· · ·〉n = 1 + n ln〈· · ·〉 + O(n2) and we
have

for = 1 + n

∫
s1,s2

ln

(〈∫
	ϕ1,	ϕ2

eγ (cos 	ϕ1+cos 	ϕ2)

I 2
0 (γ )

eη{cos(M(ψ1+	ϕ1))+cos(M(ψ2+	ϕ2))}

I 2
0 (η)

〉)
. (F18)

The thermal average can be performed using formula (A3). Keeping only the contribution linear in the replica index we obtain

for =
∫

s1,s2

ln

(〈 ∫
	ϕ1,	ϕ2

eγ (cos 	ϕ1+cos 	ϕ2)

I 2
0 (γ )

∑
q∈Z

e− q2

2κ
|s1−s2| I

2
q (η)

I 2
0 (η)

eiq(	ϕ1−	ϕ2)

〉)
. (F19)

The 	ϕ integrations lead to a Fourier transformation of the
soft cross-link contributions and noticing that the resulting
expression is symmetric in q we find

for =
∫

s1,s2

ln

⎛
⎝1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

I 2
Mq(γ )

I 2
0 (γ )

e− q2M2

2κ
|s1−s2|

⎞
⎠ .

(F20)

Expanding the orientational free energy for hard cross-links in
η and performing the s1- and s2-integrations it is convenient to

introduce the function h(x)

h

(
L

Lp

)
≡

∫
s1,s2

e− 1
2κ

|s1−s2| (F21)

and to build of h(x) the functions

h̃(x) ≡ h(x) + h(2x) − 1
4h(4x) (F22)

and

˜̃h(x) ≡ 11
16h(x) + 3h(2x) + h(3x)

− 1
4h(4x) − 3

8h(5x) + 1
48h(9x). (F23)
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APPENDIX G: EVALUATION OF THE EXPECTATION
VALUES—SIAS

The calculation of the expectation values in the second-
order contributions of the SIAS log-trace part can be done

along the same lines as above using again the integral
representation of the Bessel function (E2). The calculation
of the lowest order spatial contributions is the same as for the
M-fold case. For the purely orientational we obtain

flt2,or =
∫

s1,s2

∫
ϑ1,ϑ2

ln

⎛
⎝1 + 2

∞∑
q=1

I 2
q (η)

I 2
0 (η)

I 2
q (γ )

I 2
0 (γ )

e− q2

2κ
|s1−s2| cos(q(ϑ1 − ϑ2))

⎞
⎠ . (G1)

The lowest order coupling term is given by

1

4ξ 2

〈(
1

n + 1

n∑
α �=β=0

fαfβ − n

n + 1

n∑
α=0

(fα)2

)∫
ϑ1,ϑ2

∫
	̌ϕ1,	̌ϕ2

eγ
∑n

α=1(cos 	ϕα
1 +cos 	ϕα

2 )

I 2n
0 (γ )

η2

2

n∑
γ,δ=1

(
cos

(
ψ

γ

1 − ϑ1 + 	ϕ
γ

1

)

+ cos
(
ψ

γ

2 − ϑ2 + 	ϕ
γ

2

))(
cos

(
ψδ

1 − ϑ1 + 	ϕδ
1

) + cos
(
ψδ

2 − ϑ2 + 	ϕδ
2

))〉
. (G2)

As in (F3) the second term in the first line of the expression
is already proportional to n and will thus finally lead to a
contribution of O(n2) that is not of interest for us. After
integrating with respect to the ϑ variables and then with respect
to the ϕ variables we obtain in the end

−n
η2

8ξ 2

I 2
1 (γ )

I 2
0 (γ )

l(α). (G3)

The results for the SIAS can be expressed in terms of the
functions g, h, and l that we already introduced in the preceding
section.
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