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Configurational subdiffusion of peptides: A network study
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Molecular dynamics (MD) simulation of linear peptides reveals configurational subdiffusion at equilibrium
extending from 107'% to 10~® s. Rouse chain and continuous-time random walk models of the subdiffusion
are critically discussed. Network approaches to analyzing MD simulations are shown to reproduce the time
dependence of the subdiffusive mean squared displacement, which is found to arise from the fractal-like geometry
of the accessible volume in the configuration space. Convergence properties of the simulation pertaining to the

subdiffusive dynamics are characterized and the effect on the subdiffusive properties of representing the solvent
explicitly or implicitly is compared. Non-Markovianity and other factors limiting the range of applicability of

the network models are examined.
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I. INTRODUCTION

The internal fluctuations of proteins and peptides are
essential for biological function and occur over a wide range
of time scales [1]. One of the intriguing features of protein
internal dynamics is the presence of subdiffusive fluctuations;
that is, the mean squared displacements (MSD) of the atomic
random walks in configuration space exhibit a sublinear time
dependence, and this has been observed over many decades of
time. On the ps-ns time scales, subdiffusion has been observed
in molecular dynamics (MD) simulations [2-4] and in neutron
spin-echo experiments [5]. Further, single molecule fluores-
cence resonance energy transfer spectroscopy has allowed
projections of the MSD on internal distance fluctuations to be
determined, revealing subdiffusive dynamics occurring also
on the time scales of milliseconds to seconds [6-9].

In previous work [4] the question was addressed of whether
anomalous diffusion at equilibrium observed in proteins
pertains only to large and complex molecules showing at
least secondary structure, or is a generic property of a larger
class of heteropolymers, including, for example, peptides, the
building blocks of proteins. It was found that the diffusional
anomalies in the behavior of the end-to-end distance and in
single principal components of the motion are observed even
for relatively small and flexible peptides lacking secondary
structure.

The main questions addressed in the present work are

1. What is the source of the anomalous diffusion? Is
it mostly determined by the intramolecular interactions, or
by interactions with solvent molecules (e.g., hydrodynamic
interactions)?

2. Which theoretical model is the most promising for the
description of the anomalous internal diffusion?

As to the first question, we find here that the phenomenon
of subdiffusion—although not fully insensitive to the model
of solvent chosen—is satisfactorily reproduced even using an
implicit solvent model and Langevin dynamics. Therefore,
intramolecular interactions determine the subdiffusivity of the
internal dynamics.
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To answer the second question, we first analyze common
models of anomalous diffusion. Two popular classes of models
used to describe the internal anomalous diffusion of proteins
are generalized Gaussian models (including the Rouse model
for a linear polymer chain) and random energy models (REM),
both of which have been used to describe nonequilibrium
properties of proteins, such as are observed in the folding
process [11-13]. We find here highly nonlinear interactions,
inconsistent with Gaussian models, and equilibrium subdif-
fusive dynamics in conflict with REM. The Gaussian models
and REM are ruled out and instead, the diffusion process is
confined to a fractal cluster representing the accessible volume
of the configuration space.

Diffusion on a fractal substrate, although popular in other
fields, has not often been applied to polymer dynamics.
While formally taking place in the extremely high-dimensional
configurational space comprising the spatial coordinates
of all atoms, the equilibrium fluctuations of peptides are
essentially confined to a low-dimensional subset. Crucial for
the emergence of subdiffusion is the fractal geometry of
this dynamically relevant subset. The diffusion on a fractal
set (as exemplified, e.g., by the diffusion on a percolation
cluster) is known to exhibit an MSD sublinear in the lag
time [14].

Conceptually, the energy landscape may be thought of as a
deep valley with a flat bottom surrounded by high mountain
ridges, inaccessible to the equilibrium dynamics. The moun-
tains confine the dynamics to the valley at equilibrium, and are
explored only in nonequilibrium processes, such as folding.
The ruggedness of the folding energy landscape justifies
the REM approach in the case of folding. In contrast, the
floor of the valley is flat on the kg7 scale. The entirety of
energetically accessible valleys forms a fractal volume, which
is modeled here as a network. The edges of the network
represent the valleys and the nodes correspond to regions of
the configurational space where multiple valleys merge. This
network picture of the energy landscape is the main conceptual
result of the present investigation.
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TABLE 1. Simulation lengths in units of microseconds (us).

n 2 3 5 7

(GS), W 0.8 1.0 1.9 25

II. METHODS

Here we analyze the dynamics of peptide chains of the
(GS), W type (with G = glycine, S =serine, W = tryptophan,
and n = 2,3,5,7); these peptide systems are small enough that
their configuration space is well sampled while still exhibiting
a subdiffusive MSD over more than three orders of magnitude
in time.

A. Simulation details

The (G S), W molecules are polypeptide chains formed of
n (here n = 2,3,5,7) repeated G § segments (G = glycine, S =
serine) with a terminal tryptophan (W) residue. The (G S), W
peptides do not fold into specific secondary structures [15].

The simulations of the (G S),, W peptides were performed
with the simulation engine GROMACS [16] and the GROM0S96
force field [17]. The canonical (NV7) ensemble was used,
with the number of particles (N), volume (V'), and temperature
(7) held constant. The constant temperature, 7 = 293 K, was
established by the isokinetic thermostat [18]. The peptide
was placed in a rhombic dodecahedral box. The boundary
of the box was at least ~1.0nm from all the atoms of
the peptide. The bond lengths were kept fixed with the
LINCS algorithm [19] and a time step of 2 fs for numerical
integration of the equations of motion was used. The total
simulation times are given in Table 1. In what follows, we
concentrate particularly on the (G S)s W peptide. In the explicit
solvent simulations the solvent was modeled by the explicit
simple point charge water model [20]. The liquid density
was 55.32 mol/l (1 g/cm?). Periodic boundary conditions
were used and long-range interactions treated by the particle
mesh Ewald method [21] with a grid spacing of 0.12 nm and
fourth-order B-spline interpolation. The real space cut-off
distance was set to 0.9 nm. In the case of (GS)sW the
simulation box had a volume of 34.81 nm? and contained in
total 3569 atoms; the number of water molecules was 1543.

To examine the role of the solvent dynamics, an additional
simulation was performed, apart from the simulations in
explicit aqueous solution: the (G S)sW peptide with implicit
solvent using the generalized Born/surface area (GB/SA)
approach [22,23] together with an effective Langevin process
imitating the solvent dynamics [16]. The Born radii were
calculated using the fast asymptotic pairwise summation of
Ref. [24]. The relevant parameters used, together with the
GROMOS96 force field, can be found in Ref. [25]. To increase
the efficiency of the surface area calculation, a mimic based
on the Born radii was used [26]. Further details of a similar
simulation study of a 8 hairpin can be found in Ref. [27].

B. Analysis tools

Multidimensional data analysis provides schemes that,
depending on the quantities of interest, allow the amount of
data to be efficiently reduced. One such scheme common
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in MD simulation is principal component analysis (PCA)
[28-31].

The time-averaged value of the ith component of the mass-
weighted position vector x (¢) is denoted by ;. The PCA starts
with the covariance matrix C, whose components are given as

Cij = [xi(r) — X1 [x;(r) — X1, (D

where the time average is performed over the variable 7.
The covariance matrix is symmetric by construction and is
diagonalized by the orthogonal matrix W, i.e.,

WICW = A, (2)

where A has the components A;; = §;;A;. The matrix W
represents a transition from one orthonormal basis set to
another orthonormal basis set. The eigenvalues of the covari-
ance matrix, A;, are the fluctuations along the eigenvectors. The
eigenvalues are usually sorted in descending order, A; being
the largest eigenvalue. The coordinates ¢ = W”x, in which
the covariance matrix is diagonal, are termed the principal
components (PC). The components of q(t) = W’ x(¢) are
referred to as PC modes. By construction, the PCs are uncor-
related coordinates (but they are, in general, not statistically
independent). As in the case of normal modes, the low PCs are
global coordinates involving many particles, while the high
PCs are more localized. From the trajectory PC mode g;(t)
the configuration space density is obtained as a normalized
histogram, p(g;). Assuming equilibrium, the corresponding
free energy—also referred to as potential of mean force
(PMF)—reads F(q;) = —kg7 In p(q;).

III. RESULTS

A. Thermodynamics and Kinetics

A detailed analysis of the PCs demonstrates that the free
energy profiles are strongly anharmonic for the lowest PCs, and
that the lowest PCs are strongly delocalized and involve a large
number of atoms (see a detailed discussion in the supplemental
material [10]).

We now examine kinetic quantities in the simulations. The
MSD along PC i for the discrete data g, = g, = qi(k At)—
we skip the ¢ subscripts i for simplicity where appropriate—
with Ar being the resolution of the trajectory, is obtained as

(AX*(1)) = (Ax*(k At)) 3
K—«

— ! _ 2
== kZ:]j<qk+K @)’ “

where K is the total number of frames of the trajectory, the
length of the simulation being 7 = K At. The time-averaging
procedure in Eq. (3) is valid for t <« T'. For ¢ values too close
to T the time average in Eq. (3) is statistically not significant.

Figure 1 illustrates the time-averaged MSD of the individual
PC modes of the (G S)s W peptide simulations with the explicit
[Fig. 1(a)] and implicit solvent model [Fig. 1(b)]. For the
explicit water simulation, PCs 1, 2, and 3 exhibit a power-law
behavior extending from 1 ps up to 10 ns. The exponent of the
power law is & 0.5 for all PCs. PCs 10, 20, and 30 also exhibit
power-law behavior for short time scales but reach saturation
more quickly. The implicit solvent simulation reproduces
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FIG. 1. (Color online) The time-averaged MSD of the (GS)sW
peptide for various PCs.

the subdiffusive MSD. However, the exponent o =~ (0.3 is
considerably lower than in the explicit solvent simulation and
for lag times longer than 1 ns the lowest PCs exhibit a second
subdiffusive regime with an exponent o = 0.6.

For lower lag times, the Langevin simulation exhibits an
MSD exponent o lower than the one seen in the explicit
solvent simulation, i.e., in the Langevin system subdiffusion
is enhanced. Therefore, the solvent dynamics are neither the
origin nor do they contribute substantially to the subdiffusivity
seen in the subspace of the molecule coordinates.

B. Modeling subdiffusion

The presence of subdiffusive kinetics in the internal
coordinates of biomolecules raises the question as to the
underlying mechanism. Several models can account for sub-
diffusion, some of which have been discussed as candidates for
biomolecular fluctuations, and are reviewed in the following.

1. The Rouse chain

As peptides are chains of amino-acid residues, chain
models, including the Rouse model, can be useful in describing
them [11,12,32,33]. The Rouse chain is a common model in
polymer physics [34,35].
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A Rouse chain consists of N beads of mass m coupled
together by Hookean springs with typical frequency &.
Coupling to a heat bath transfers an average energy to each
degree of freedom, according to the equipartition theorem,
and leads to a frictional force characterized by the friction
constant ¢. It can be shown that, given a sufficiently long
chain, the autocorrelation of the distance between two beads
not too close together along the chain decays as a power law
with exponent 1/2 [36]. However, this power law is bounded
by the intrinsic time scale of the chain, the so-called Rouse
time

¢(N =1y
 m2ma?

&)

TR

Beyond 1 the autocorrelations decay exponentially.

In order to account for the secondary structure of proteins
the linear Rouse chain model has been generalized to bead-
spring clusters [12,36], thereby skipping the condition that
the springs form a linear chain and introducing cross-links.
The geometry of the bead-spring cluster is described as a
fractal in terms of its fractal exponents [36,37]. The vibrational
eigenmodes, i.e., the normal modes, were calculated and
found to be strongly localized [36]. Distance autocorrelation
functions decay as power laws with various exponents up to a
time scale that is approximately given by the inverse friction
¢~ or, if smaller, by the inverse minimal eigenfrequency of
the harmonic cluster @}, [36].

In the case of the biomolecules presented here, typical
normal mode fluctuations are in the range of (Ax?) ~ 1 nm?.
The corresponding frequencies are then &> &~ 3kzT /m(Ax?),
which are in the range of @~ 1 ps~!. A typical friction
value for a heavy atom at the surface of a biomolecule is
y ~ 50 ps~! [38]. Equation (5) allows the Rouse time of
the (GS)sW peptide (N = 11, the number of residues) to
be estimated as tg &~ 40 ps. In contrast, the subdiffusion
found in the present simulation extends to 10 ns and beyond.
Therefore, the Rouse chain model—irrespective of potential
subdiffusive dynamics on short time scales—cannot provide a
full understanding of the subdiffusive dynamics as found in the
MD simulations presented above. Similar objections apply to
subdiffusion found in single molecule fluorescence quenching
experiments [8,9,11,39,40].

In accordance with the above findings, computer simula-
tions revealed recently that linear chains with anharmonic
single-minimum pair potentials do not exhibit subdiffusive
PCs, whereas chains with multi-minimum pair potentials
do [41].

2. Glassy properties and continuous time random walk

Non-exponential relaxation patterns, as found in the
dynamics of proteins and peptides, are a common property of
glassy materials. There are also other characteristics shared
by glasses and proteins, such as non-Arrhenius dynamical
temperature dependence, i.e., the logarithm of the reaction
rate is not inversely proportional to the temperature [42,43]
and the enhancement of fluctuations above the glass transition
[44]. This similarity of proteins to glasses is a consequence
of the large number of nearly isoenergetic potential minima
(conformational substates) that both proteins and glasses
can assume [42,45,46]. The energy landscape of glasses,
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and the glassy dynamics that follows from it, have been
successfully described as hopping between energy traps on
a fully connected lattice, where the distribution of effective
trap depths essentially determines the time evolution [47-50].
The essential properties of these trap models are equivalently
reproduced by the continuous-time random walk (CTRW)
model [51,52].

It has been demonstrated that the time-averaged MSD
of a free, unbounded CTRW does not exhibit a sublinear
lag-time behavior [4]. Although the time-averaged MSD of
a confined CTRW may be found to exhibit a subdiffusive
lag-time dependence, the time scales on which subdiffusivity is
found are inconsistent with the simulation results [53] (see [10]
for a more detailed discussion). Therefore, the distribution of
traps or metastable states is incapable of accounting for the
MSD found in the (G S)s W simulations.

C. Network representation of the configuration space

For peptides, a trap distribution cannot describe the prop-
erties of the random walk on the energy landscape, as the
failure of CTRW to reproduce the diffusion process in the
configuration space indicates. Therefore, geometrical aspects
of the energy landscape must be considered. This can be
achieved by a network representation of the configuration
space, also known as a transition network [54].

To establish a transition network, the first step is to
discretize the configurational volume explored in the course of
the trajectory, i.e., to group the K discrete configurations of the
trajectory into a smaller number of ““states.” There are multiple
ways of doing this. Here, a number N, of configurations
was randomly chosen from the K configurations, {ry,....,rg}
visited in the course of the trajectory, r; being the vector of
coordinates of frame i. Then, each of the K configurations
was assigned to that state, ry € {ry,....ry,}, with the closest
Euclidean distance in the configuration space. In the present
context, alternative discretization schemes (e.g., with at least
a minimum distance between every pair of configurations or a
k-means approach) were found to have a very low impact on
the results.

The discretization allows the time evolution of the system,
as represented by the trajectory, to be mapped onto a series of
integers hy,h,....hg with h; € {1,2,...,N;}. The count matrix
Z(?Y) is defined by its components

K—-9
2 () =Y S jOnis ©6)
k=1

where §;; is the Kronecker delta. The system is found z;; ()
times in state { after being in state j exactly ¢ time steps
earlier. At equilibrium, the matrix Z must obey the condition
of detailed balance, i.e., z;; () = z;;(¢) [55].

The relative probability of being in state j exactly ¥ time
steps after being in state i is denoted by s;;. The matrix S is
the so-called transition matrix of the system. Its components
are obtained from the approximation

Zij(ﬁ)

5ij (D) & §j(0) = — L
! ! YN @)

(7
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The approximate transition matrix S can be used as the input
of a Markov model: to generate a pseudotrajectory starting
at an arbitrary state [} € {1,2,...,N,}, the next state is drawn
such that the probability of being in i is given by s;;,(9).
To obtain a pseudotrajectory of length 7', this procedure is
repeated 7/ times. The time resolution of such a trajectory
is bounded by ©. The discrete trajectory in state space can be
mapped onto the configuration space, as each state can be
identified with a configuration. That is, the network can
be embedded into the configuration space. Here, state i is
mapped onto the coordinates r; used in the discretization
scheme.

By definition, the above algorithm takes into account only
the present state when determining the next transition, and is
therefore inherently Markovian. Even in the statistical sense,
the pseudotrajectories are expected to deviate from the random
walk in the configuration space obtained from the full MD
simulation.

There are four possible primary sources of error:

1. The dynamics may be non-Markovian on the relevant
time scale represented by the lag time ¥

2. The discretization may not be appropriate for the
dynamics present: stable configurations may not be resolved
and mapped on various, dynamically different states.

3. The statistics may be insufficient and S a poor approxi-
mation.

4. There may be limited spatial resolution, i.e., too few
discrete states.

The first point is due to the projection onto low-dimensional
subspaces, and can be alleviated by taking more dimensions
into account. The second point emerges from the discretization
scheme, which in the present case was not designed to
find dynamically stable configurations. Approaches based on
dynamical quantities usually need very accurate statistics and
lead therefore to a relatively low number of states [56-59].
However, the trade-off between statistical significance (point
3) and spatial resolution (point 4) renders most of these
schemes inappropriate for the modeling of configurational
subdiffusion.

Transition networks of the (GS),W peptides were cal-
culated from the MD trajectories based on a discretization
scheme with 10000 states, unless stated otherwise. The
simulation lengths of the individual MD trajectories are given
in Table I. As the network analysis in the full configuration
space is numerically cumbersome, the analysis was performed
on the subspace spanned by the first ten PCs. In each (GS), W
peptide, these ten strongly delocalized modes account for more
than 75% of the overall fluctuations. However, considering
Zwanzig’s argument that projection may lead to correlations
in time [60], the appearance of memory effects possibly
pertaining to the time scale of the MD resolution, 1 ps, cannot
be ruled out.

The fractal dimension of the transition network S(¢) was
obtained using volume-length scaling [14], i.e., in a sphere of
radius R typically N edges are enclosed with

N ~ R%. 8)

The function N(R) was calculated counting the edges inside
spheres of various radii R for 1000 central nodes randomly
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TABLE II. Fractal dimension d; of the networks representing
the configuration space S(i%). None of the networks fill the full
ten-dimensional embedding space, and all networks exhibit fractal
behavior.

dy
¥ (ps) 1 10 100 1000
(GS),W 6.1 6.8 74 7.9
(GS);W 6.2 6.8 7.6 8.7
(GS)sW 6.4 6.6 7.0 7.7
(GS),W 6.1 6.3 6.4 73

chosen, followed by an average over these 1000 individual
N(R). Equation (8) then yielded the fractal dimension d; via
a least-squares power-law fit to the data (Table II).

Networks corresponding to various ¥ were then used as
Markov models. The random walk dimension d,, was obtained
from the MSD exponent « as d,, = 2/«, and both are listed in
Table III. The network representation enables us to study how
the energy landscape brings about the subdiffusive dynamics
of the molecule.

The network diffusion reproduces the effect of subdiffu-
sivity, insofar as the MSD exponent « is in the subdiffusive
regime (Table IIT). However, the networks for # = 1 and 10 ps
exhibit MSDs clearly larger than for the original trajectory,

102 ¢ d=1
(a) .
=
o .'
g .
=, o X"
1L ° x
s 0 S full MSD
%Y o Y=lps
<
> x ¥=10ps
10° o 9¥=100ps
+  Y=lns

100 10! 102 103 10* 10° 108

time [ps]
10t
d =10
(c)
? L]
EO10%F
;E ..
= o full MSD
% o ¥=lps
4 ,
102 E X 19:10ps
o 9¥=100ps
+  Y=lns

10° 101 102 103 10% 10° 106
time [ps]
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TABLE III. Random walk on the networks representing the
configuration space S(®). The random walk dimension d, was
calculated from the MSD using d,, = 2/« [14]. The MSD exponent
« used throughout the present paper to quantify the subdiffusivity, is
given in the right panel for comparison.

dw o
DY (ps) 1 10 100 1000 1 10 100 1000

(GS)LW 26 30 43 113 08 07 05 0.2
(GS:W 24 27 38 9.6 08 07 05 0.2
(GSswW 24 27 32 44 0.8 07 0.6 0.5
(GS);w 23 25 3.0 4.4 09 08 07 0.5

given as the red continuous lines in Fig. 2. The reason
for the difference may be the presence of memory effects
on the shorter time scales, which may possibly arise from
the projection of the first ten PCs onto the ten-dimensional
subspace. By construction, these memory effects cannot
be reproduced by the Markovian network dynamics, and
therefore, the subdiffusivity is underestimated, such that the
network MSD exceeds the MSD found in the MD simulation
data. Also, the limited spatial resolution of a network with
10000 vertices affects the MSD, introducing additional noise,
in particular, on the shorter time scales. For & = 100 ps, the
network MSD and the MD MSD are closely similar. The

(b) d=3
. 102t Lerosenter
m: ...- Xxx OOOJ
g K XXX o
i '. * oo
= L S o full MSD
% 101 f S e U=lps
~ Lo x 9=10ps
e o  9¥=100ps
. +  Y=lns
100 & . . . . . ]
100 ot 102 100 100 105 10°
time [ps]
10*

0290002 mepRsBeteCn
xRS
e

=)

E

A 10%F

= full MSD

%Y Y=1ps

<

~ ¥=10ps

¥=100ps

102 L

P¥=1ns

100 101 102 103 10% 10° 109
time [ps]

FIG. 2. (Color online) MSD arising from diffusion on a transition network representing the configuration space, for various lag times
(@ =1, 10, and 100 ps and 1 ns) and projections onto d-dimensional subspaces, d = 1, 3, 10, and 100. The continuous red line represents

the MD MSD in the projection with the corresponding d.
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TABLE 1IV. Projection of (GS)sW onto configurational
subspaces—fractal dimension d; of transition networks. Subspaces
with d = 1, 3, 10, and 100 with lag time ¢ = 1, 10, and 100 ps,
and 1 ns. The fractal dimension of the networks was obtained using
Eq. (8). The MSD exponent « was calculated from the random walks
illustrated in Fig. 2.

d df o

¥ (ps) 1 10 100 1000 1 10 100 1000

1 1.6 16 1.7 1.7 09 10 08 0.6
3 14 14 1.5 1.6 09 09 038 0.5
10 64 66 70 7.7 08 07 06 0.5

100 63 65 6.8 7.7 07 06 05 0.3

significance of the networks with ¥ =1 nsis limited by the fact
that the time resolution is close to the time scale of saturation,
on which the walker is affected by the finite accessible volume.
The finite volume also accounts for the tendency of the MSD
exponent « to be underestimated by the random walks on the
1 ns transition network, S(& = 1 ns).

In the above analysis, the dynamics were projected onto the
subspace spanned by the first ten PCs, i.e., the network was
embedded in a d-dimensional space with d = 10. In order to
characterize the influence of the projection, the dynamics of
the (G S)s W peptide is now also analyzed for projections onto
subspaces with d = 1, 3, and 100. The fractal dimensions of
the resulting networks are given in Table IV. The dimension
dy of the networks obtained from the projections onto d = 1
and d = 3 dimensions are in the range 1.4-1.7. The d values
obtained for d = 10 are 6.4-7.7, close to those found for
d = 100. Hence, the fractal structure of the network S(2)
is essentially developed in the subspace spanned by the first
ten PCs. However, the MSD of the network obtained from
the projection on d = 100 dimensions is considerably closer
to the original MSD than that for d = 10. The fact that the

10*
d=10

=
NE 103 L
A
= full MSD
N<]&. J=1ps
~ 102¢ 9=10ps

¥=100ps
Y¥=1ns

100 10! 102 10° 10* 10° 108

time [ps]

FIG. 3. (Color online) MSD arising from diffusion on a transition
network representing the configuration space, for various lag times
(v = 1,10, and 100ps and 1 ns; symbols as given in the legend)
and different numbers of states N, = 50,500,5000 (top down)
obtained after projections of the full trajectory onto a ten-dimensional
subspace. The continuous red line represents the MD MSD in the
corresponding projection.
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d = 10 network exhibits the same fractal exponent as that
with d = 100 but does not reproduce the kinetics as well
demonstrates that, although the higher PC modes (here PC
modes 11 to 100) make only a small contribution to the total
MSD, they are kinetically significant.

As to the influence of the number of states, we analyzed
network models with various numbers of discrete states. The
MSD of network models with a low number of discrete states
tends to underestimate the subdiffusivity (see Fig. 3). The low
spatial resolution contributes a random noise to the trajectory.
In particular, for short lag times, the random component
dominates and obscures the sublinear part of the MSD.

IV. CONCLUSIONS

The present results demonstrate that the configurational
space of a molecule can be represented by a network model,
and that a Markov process on the network can reproduce
the dynamics of the molecule. Similar results as those in the
present paper were obtained for a S-hairpin protein motif (not
shown).

Subdiffusive dynamics, as manifested by the sublinear time-
dependence of the MSD, arises from a fractal-like geometry of
the network. The validity and accuracy of this fractal-geometry
representation of the dynamics is confined by two findings.
First, memory effects due to the projection of the dynamics
are present and lead to violation of the Markov property on
short time scales. Second, in order to be numerically tractable
and to have sufficient statistics, the number of discrete states is
limited and this restricts the spatial resolution of the network
in the configuration space. Furthermore, the discretization is
not uniquely defined.

The comparison of simulations with explicit and implicit
solvent shows that the memory effects due to the projection
onto the coordinates of a (GS)sW peptide, i.e, by neglecting
the solvent coordinates, do not have a significant effect on
the dynamic behavior of the peptide, in particular, for the
MSD, on the time scale of 2 ps (the time resolution of the
MD simulation) and longer.

The results show that a Markov process based on a
network representation of the configuration space allows the
subdiffusive MSD of the MD simulation to be reproduced
with high accuracy on time scales of 100 ps and above. The
fractal-like nature of the transition network is characterized by
the fractal dimension and identified as the essential mechanism
that gives rise to subdiffusive dynamics.

The fractal structure of the network is found to be essentially
developed in the subspace spanned by the first ten PCs.
However, the MSD of the network obtained from the projection
on 100 dimensions is considerably closer to the original MSD
than that for ten dimensions demonstrating that, although the
higher PC modes make only a small contribution to the total
MSD, they are kinetically significant.
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