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The cross-linking of polymer brushes is studied using the bond-fluctuation model. By mapping the cross-linking
process into a two-dimensional (2D) percolation problem within the lattice of grafting points, we investigate the
gelation transition in detail. We show that the particular properties of cross-linked polymer brushes can be reduced
to the distribution of bonds which are formed between the grafted chains, and we propose scaling arguments to
relate the gelation threshold to the chain length and the grafting density. The gelation threshold is lower than
the percolation threshold for 2D bond percolation because of the longer range and broad distribution of bonds
formed by the cross-linking process. We term this type of percolation problem star percolation. We observe a
broad crossover from mean-field to critical percolation behavior by analyzing the cluster size distribution near
the gelation threshold.
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I. INTRODUCTION

Polymer brushes consist of polymer chains grafted to a
surface with one end. The chains stretch out due to the
excluded-volume interactions, when grafted densely enough,
resembling the bristles of a brush. The stretching leads to a
behavior of the chains in a brush different from free chains,
which led to a variety of applications ranging from colloid
stabilization [1,2] to drug delivery [3]. Polymer brushes are
also used for the reduction of friction [4–6], increasing the
biocompatibility of medical implants [7], and as switchable
amphiphilic surfaces [8,9].

A first theoretical model for polymer brushes based on
mean-field and scaling concepts was given by Alexander and
de Gennes [10–12]. Here, each chain forms a string of excluded
volume blobs whose extension is given by the grafting density.
Using self-consistent field approaches, a refined description of
the monomer profile inside the brush has been obtained by
Semenov [13] and Milner et al. [14]. Computer simulations
have also been applied by several groups to test theoretical
models and to explore detailed static and dynamic properties
of polymer brushes [15–21]. On the experimental side, great
progress has been made over the years [22] with recent
accomplishments allowing very high grafting densities to be
examined [23].

In many applications, polymer brushes are situated on
surfaces that are exposed to a sometimes harsh environment.
This exposure and the resulting interactions with the polymer
brush lead to a slow destruction of the brush, because more
and more chains are broken or torn away from the substrate.
Introducing cross-links inside the brush provides a solution
to this destruction problem: Should a chain degraft, then it
can be connected to other chains so that it remains inside
the brush. Such a cross-linking approach has been taken, for
instance, in [24,25]. Another application of cross-linking of
grafted chains is to freeze a certain state of the brushes under
given solvent conditions, which has recently been applied for
switchable brushes [8]. On the other hand, cross-linking a
polymer brush leads to a novel type of polymer network,
since the chains to be cross-linked are stretched and ordered.
Furthermore, a cross-linked polymer brush represents an

ultrathin quasi-two-dimensional polymer network, where the
thickness is given by the extension of a single chain only. To the
best of our knowledge there is no computational or theoretical
study of cross-linked polymer brushes up to now.

In this work we use the bond-fluctuation model (BFM)
to simulate polymer brushes and the cross-linking process.
The model has been proven to be successful for simulating
cross-linked polymers [26–29]. In order to investigate the
gelation properties in detail, we map the cross-linking process
into a percolation problem on the 2D lattice of grafting points.
This mapping allows the realization of large systems that
could otherwise not be investigated. The key property of the
original problem to be transferred to the percolation problem
is the distribution of bond vectors obtained in the cross-linking
process. This procedure leads to a particular type of percolation
problem that we call star percolation - as motivated by the
structure of the connections in the grid of grafting points.
We study the properties of the bond vector distribution and
reveal a scaling variable, which controls this distribution for
different chain lengths and grafting densities. Using the star
percolation model, we investigate the percolation threshold
and the distribution of cluster sizes at the critical point of
percolation.

The remainder of the work is organized as follows: The
simulation model and the cross-linking process are described
in Sec. II. The mapping of the cross-linking process onto the
2D percolation problem is explained in Sec. II B. Network
properties are discussed in Sec. III A, while the bond distribu-
tion and its scaling properties are analyzed in Sec. III B. Star
percolation and its basic properties are introduced in Sec. IV
and its application to the gelation problem of polymer brushes
is presented in Sec. V. We give a summery and our conclusions
in Sec. VI.

II. SIMULATION MODEL AND PERCOLATION ANALYSIS

A. Bond-fluctuation model and cross-linking process

The bond-fluctuation model was first introduced by
Carmesin and Kremer in 1988 [30] in order to simulate
conformations and dynamics of dense polymer systems with
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excluded volume interactions. The simulations in this work
were performed with the version of the BFM algorithm
proposed by Deutsch and Binder [31]. The BFM does not
consider hydrodynamic interactions and the solvent is treated
implicitly in the athermal limit. In this model, the monomers
are represented by cubes on a regular cubic lattice with each
cube occupying eight lattice positions, which cannot be shared
with another cube (excluded volume). The monomers of one
chain are connected by a bond vector out of a predefined vector
set. The combination of bond vector set and excluded volume
of monomers in this model ensures cut avoidance of strands
without an explicit test of the local topology [31].

In the early 1990s Sommer et al. [26,32] showed that the
BFM is well suited to capture static and dynamic properties
of polymer networks. For the purpose of this publication, the
BFM as described in [31] is augmented with a cross-linking
process for the polymer brushes. During the course of the
simulation, cross-linking between two (not directly connected)
monomers can be initiated by a face-to-face collision between
the two monomers. Instead of rejecting the move, the following
conditions are checked: The new bond does not exceed the
maximum functionality of f = 3 for each monomer and an
activation barrier for cross-linking is checked by a Metropolis-
type algorithm as described in [32]. Here, a probability (rate
of cross-linking) is chosen for a successful formation of the
cross-link. As a result, a network builds up in time and the
network information is stored in a bond list. Once established
bonds are assumed to be stable and thus are kept permanently.

We simulated the cross-linking of polymer brushes with
chain lengths N = 16, 32, and 64 and grafting densities
σ = 0.04, 0.0625, 0.11, 0.1588, and 0.25. The unit of the
grafting density is the inverse squared BFM lattice constant,
where σ = 1 corresponds to the maximum possible grafting
density in the BFM model. System sizes varied between
approximately 1500 and 10 000 grafting points and peri-
odic boundary conditions were applied in the xy direction.
Reflecting boundary conditions were used in the z direction
and the grafting plane corresponds to z = 0. The grafting
points are arranged regularly on a square lattice. The brush
was created in a fully stretched configuration and was then
relaxed for much longer than the relaxation time τR to obtain
totally independent and relaxed start configurations for the
cross-linking and measurement runs. The overlap threshold for
the grafting density, σ ∗, has been estimated from the scaling
analysis of the brush height for the various chain lengths after
being completely relaxed. Here, we have identified the overlap
density as the crossing point of the asymptotic brushlike and
mushroomlike behaviors of the height of the brush as a function
of σ . The cross-linking rate was set to unity (immediate
cross-linking). Supplementary simulations have shown that
the results do not alter even if the cross-linking rate is lowered
by a factor of 10 or even more.

B. The percolation problem

The result of the cross-linking process is a bond list, which
contains the cross-links established during the network forma-
tion. Before we analyze the bond list further we need to define
the percolation problem for cross-linked polymer brushes. To
be in line with the original bond percolation problem all bonds

FIG. 1. (Color online) Visualization of the percolation problem
for cross-linked polymer brushes. The dashed green lines are
examples of how cross-links can connect two grafting points (a).
A brush is called percolating if a continuous path of bonds connects
two opposite boundaries of the sample (solid red lines) (b).

which cross the simulation box boundaries (due to the periodic
boundary conditions used in the simulation) were eliminated
from the bond list first.

Each grafted chain is uniquely characterized by its grafting
point. Thus, cross-linking can be mapped onto a percolation
problem in the 2D lattice of grafting points as shown in
Fig. 1(a). Because of this unique relation between the 2D
percolation problem and the gelation of polymer brushes, we
will use the terms “percolation” and “gelation” synonymously
in the following. The percolation analysis of the original BFM
simulation of the cross-linked polymer brushes has then been
carried out using a cluster coloring algorithm [33] on the 2D
grafting lattice after every addition of the next bond from
the bond list. This was done until percolation was reached.
A sample is called percolating in the x or y direction, if
there is a continuous path of bonds that travels across the full
sample in the particular direction without crossing the periodic
boundaries; see Fig. 1(b).

The mapping on the 2D grafting lattice enables us later
to consider much larger systems by reducing all polymer
degrees of freedom to a distribution of bond vectors. Only
this distribution is taken from the BFM simulations in order to
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investigate the gelation properties of the cross-linked brush.
We return to the analysis of the percolation problem in
Secs. IV and V.

III. NETWORK PROPERTIES AND BOND
DISTRIBUTIONS OF CROSS-LINKED

POLYMER BRUSHES

A. Primary cross-links, secondary cross-links, and self-links

In order to analyze network features of cross-linked poly-
mer brushes the cross-links are divided into three categories:
Self-links connect monomers of the same chain, primary
cross-links link two previously unconnected chains, while
secondary cross-links are a repeat of an existing bond between
a pair of different grafting points.

Typical results for the original bond distribution of the BFM
simulations at the particular percolation threshold are shown
in Fig. 2 for five samples of chain length N = 64 at various
grafting densities. The number of added bonds per chain, q,
is given by the total number of bonds (one bond connects
two monomers) divided by the total number of chains in the
system. The theoretical expressions for the lines in the figure
are derived in the following sections. The figure shows that
the percolation threshold in terms of the number of all bonds
added is very high for low grafting densities. For instance,
for σ a little above σ ∗ ≈ 0.013, the added bonds are in their
majority self-links, so that the percolation value in terms of
primary cross-links is only a small fraction of the total number
of network bonds. For higher grafting densities, the number
of added bonds at the onset of percolation decreases, mainly
because the fraction of self-links decays.

B. Bond distributions and scaling

For the percolation problem, only primary cross-links are
important. These primary cross-links can be characterized
by the vectors �v connecting two grafting points. Primary
cross-links are characterized by the corresponding pair of
grafting points. The bond between is directionless, and due

secondary cross links
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self links
added bonds at percolation
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FIG. 2. (Color online) Frequency of occurrence of different types
of added bonds at the onset of percolation for N = 64. The fraction of
primary cross-links is considerably smaller than one bond per chain
(indicated by the horizontal solid orange line at q = 1), the value
expected from classical 2D bond percolation on a square lattice. The
theoretical lines are derived and discussed in Sec. III B.
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FIG. 3. (Color online) Symmetrized bond distribution for N = 64
and σ = 0.25. The height of the column indicates the frequency
with which primary cross-links connecting grafting points with the
distance (�x, �y) occur.

to the symmetry of the lattice we can define a bond class B of
equivalent connections similarly to defining a class of vectors:
Two bonds are of the same bond class B = (�x,�y), if the
vectors between the particular pair of grafting points differ
only by sign permutations of the vector components.

In the following, a bond distribution is a collection of all the
bond classes present together with their relative frequencies. In
Fig. 3 the frequency p of primary cross-links between grafting
points in a given direction and distance is shown exemplarily
for N = 64 and σ = 0.25.

The cross-linking process leads to a broad bond distribution
which decays monotonically with increasing bond length.
Numerical tests have shown that the resulting bond distribution
can be considered invariant with respect to the number of bonds
added to the system. Thus, the bond distribution at the end of
the cross-linking can be used, allowing a higher precision in the
relative frequencies of the bond classes. This also indicates that
correlation effects during the cross-linking process are rather
weak. As very long bonds occur only seldom, a reasonable
cutoff for each bond distribution is applied individually. In the
following, we use the distance between two grafting points as
the unit length scale (lattice of grafting points).

In order to analyze the dependence of chain length and
grafting density, we consider the distribution of bond lengths
b = |�v|. In Fig. 4 we display the bond length distribution
p(b = |�v|)/p(1) at constant grafting density σ = 0.25 for
different chain lengths N . The distribution shows an expo-
nential decay for all chain lengths. The decay decreases with
increasing chain length, reflecting the longer range of the
bonds. Bond length distributions are shown for fixed chain
length N = 64 and different grafting densities in Fig. 5. Here,
the decay of the distribution is decreasing with increasing
grafting density.

The above observations suggest that the bond length
distribution is characterized by the average extension of the
grafted chain within the lattice of grafting points. For σ � σ ∗
the chains are represented by a 2D random walk of blobs
[21,34]. The size of the blobs is given by the grafting density
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FIG. 4. (Color online) Bond length distribution for N =
16 (circles), 32 (squares), and 64 (diamonds) with σ = 0.25. All
distributions show an exponential decay.

as ξ = σ−1/2 and the number of monomers within a blob is
g ∼ ξ 1/ν ∼ σ−1/2ν . Thus, the average lateral extension of a
grafted chain in the lattice of grafting points (lattice constant ξ )
is given by

b0(N,σ ) ∝ (N/g)1/2 ∝ σ 5/12N1/2, (1)

where we have used ν ≈ 3/5 [35,36]. In Fig. 6 we display the
rescaled bond length distributions using b/b0 as the scaling
variable. Here, we used Eq. (1) with the prefactor according to
b0(64,0.25) = 1. The data in Fig. 6 are additionally rescaled
along the y axis according to p(1) = 1 which corresponds to
normalization of the rescaled probability density (given an
exponential decay). The rescaled data points lie roughly on a
master curve. The slope in the semilogarithmic plot is ≈ −0.7
(N = 64, σ = 0.25) for the given choice of the prefactor for
b0. Being of order 1, it shows that this length scale is on the
order of the lateral extension b0 as given in Eq. (1) and thus on
the order of the lateral fluctuations of the chains. Deviations for
low grafting densities are expected since our scaling argument
is valid for σ � σ ∗ only.

As a result of this analysis we find that the bond distribution
depends on universal parameters of the polymer brush. The
lateral fluctuations of the conformations of a grafted chain
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FIG. 5. (Color online) Bond length distribution for σ =
0.04 (circles), 0.11 (squares), and 0.25 (diamonds) with N = 64.
All distributions show an exponential decay.
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FIG. 6. (Color online) Rescaled bond length distribution of the
data in Fig. 4 and 5. The y axis has been rescaled such that all data
sets start at (1,1). Almost all data lie on one master curve; the little
overlap between chains accounts for the deviations at small grafting
densities.

characterize the range of the distribution of bonds. In particular
the combination Nσ 1/2ν controls the cross-linking behavior.

The above scaling arguments can also be applied to derive
estimates for self-links and secondary cross-links as shown
in Fig. 2. As assumed in Eq. (1), the N/g blobs of the
chains inside the brush perform a random walk of N/g steps
in the xy direction. Thus, this random walk reaches on the
order of N/g different grafting points and the probability
to return to the same lattice point is of the order of g/N ,
which is ∼ g ∼ σ−1/2ν for the constant N . This prediction is
plotted by a solid line in Fig. 2. The amount of self-links
at the gel point can be estimated from a comparison of
intrachain monomer contacts with interchain contacts. Using
similar scaling arguments as above we find that the self-link
contribution is roughly proportional to the inverse of the blob
volume ∼ σ−3/2 as shown in Fig. 2.

IV. STAR PERCOLATION

The data in Fig. 2 show that the percolation threshold
observed in the simulations in terms of the primary cross-
links (qc ≈ 0.75) drops clearly below qc = 1, the percolation
threshold expected from bond percolation in 2D. In order to
provide an intuitive explanation for this result we reconsider
in this section first the standard bond percolation problem with
a bimodal distribution of bond vectors before we proceed to
the bond distributions as obtained by BFM simulations in the
following section. Due to the starlike pattern of possible bond
vectors originating from each site, we call both simulations
star percolation in the following.

A. Simulation and analysis

Consider any 2D or nD translationally invariant lattice of
a given size L that contains no bonds between lattice sites.
Assume that the bond distribution {(Bi,pi)} is given, where Bi

is a bond class and pi is the corresponding frequency. Now,
the following algorithm is implemented: A bond class Bi is
randomly selected according to its statistical weight pi and
a bond vector is created by randomly assigning positive or
negative signs to the vector elements (�x,�y). This bond is
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added to the lattice at a random position and percolation in the
x and y directions is monitored. The above steps (bond creation
and insertion) are repeated until percolation is reached and the
number of added bonds per lattice site, q, at percolation is
recorded.

Repetition of this procedure a number of times leads to a
distribution of these lattice-size-dependent values q(L). In the
limit of infinite system size, the distribution approaches a step
function and the value at which the step occurs is called the
percolation threshold qc.

In the following, P is the cumulative probability for
percolation in a lattice with q bonds per point added. The
median of the distribution of percolation values characterizes
that fraction below which 50% of the cases are already
percolating. This value is taken as a lattice-size-dependent
percolation value qM (L). Combining the percolation data in
the x and y directions, a finite size scaling [37] is applied,
the result of which is the percolation threshold qc. For finite
size scaling, lattices with size L = 13 to 97 with �L = 12 are
used each containing 200 statistically independent samples.
For comparison, all system sizes L and bond lengths b are
given in lattice units and the percolation threshold qc is given
in units of bonds per lattice point.

B. Star percolation of bimodal bond distributions

While in the original bond percolation problem on a square
lattice the bonds all have length b = 1 and a maximum of
four connections per lattice point is allowed, the more general
percolation problem addressed here allows for distribution
of bond lengths, direction, and number of bonds per site.
We tested these three factors concerning their impact on the
percolation threshold using particular bond distributions or
limits for the number of bonds per site. Introduction of a
length distribution turned out to be the dominating factor, and
we discuss the results below using two model distributions of
bond lengths.

Two bond distributions are presented in this section, one
using bond lengths b1 = 1 and b2 = 2 and the other one using
bond lengths b1 = 1 and b2 = 3. The bonds are parallel to
the lattice boundaries, making the system comparable to the
classic bond percolation problem with bond length b = 1. The
fraction r of the long bonds with length b2 is varied so that r

changes from 0% to 100% in steps of 10%. The dependence
of qc on the bond length frequency ratio r is shown in Fig. 7
for b2 = 2 and 3.

It can be clearly seen that the percolation threshold drops
below qc = 1 as soon as only a small fraction of bonds of
other length(s) is involved in the percolation process. The
percolation threshold initially decays with increasing fraction
of longer bonds in the system. It is remarkable that this
dependence is quite asymmetric with respect to r = 0.5.

This result can be explained as follows: If only longer
bonds are put into the system several sublattices are filled
independently. A sublattice in this sense is the set of lattice
points that can be reached from one random lattice point
while using the longer bond length only. These sublattices can
only be connected by bonds of length 1, making it possible
to jump from one sublattice to another sublattice on the
way from one lattice end to the other. As the longer bonds
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FIG. 7. (Color online) Percolation threshold vs fraction of longer
bonds of length b2 = 2 (squares) and 3 (crosses). The percolation
threshold shows an asymmetric dependence on the fraction of longer
bonds. The dashed curves represent data obtained from finite size
scaling on different data sets.

traverse larger distances, even a small fraction of short bonds
is enough to enable the connections between the sublattices and
therefore lowers the percolation threshold. As a limiting case,
the percolation threshold qc = 1 (classical bond percolation
on a 2D square lattice), is obtained if the bond distribution is
monodisperse with short bonds only. The slight deviation for
monodisperse bond distributions with long bonds only might
be explained with not completely filled sublattices.

To conclude, we have shown that mixing of bond vectors
of different lengths yields a lower percolation threshold as
compared to simple bond percolation.

V. STAR PERCOLATION OF POLYMER BRUSHES

The concept of star percolation is used below as a coarse-
grained model of cross-linking a polymer brush. This allows
us to consider larger systems with given numerical resources
without resorting to a direct polymer simulation. The key
input from the polymer model is the distribution of bonds
in the lattice of grafting sites, which can be obtained from the
simulation of rather small systems.

A. Percolation thresholds

Based on the simulations with model bond distributions
discussed in the last section, the percolation threshold is
expected to drop below qc = 1 for bond distributions obtained
from the simulations of the cross-linked polymer brushes.
In this section, we now repeat the analysis of the previous
section for the star percolation simulations that use the full
bond distributions as obtained from the BFM simulations
of polymer brushes. The percolation threshold for the cross-
linked brush bond distribution is obtained by finite size scaling
of the results for lattices ranging from size L = 13 to 97
with �L = 12 and an ensemble size of 200 each. In Fig. 8
the percolation probability and the percolation threshold are
plotted exemplarily for chain length N = 64 and grafting
density σ = 0.25. The percolation thresholds for systems with
different chain lengths and grafting densities are given in
Table I.
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FIG. 8. (Color online) Percolation threshold qc for chain length
N = 64 and grafting density σ = 0.25. Finite size scaling yields
qc = 0.662, which is considerably lower than qc = 1 (classical 2D
bond percolation). The percolation probability for different lattice
sizes is shown as an inset.

As observed in Sec. III B, the bond distribution is controlled
by the number of blobs per chain in the polymer brush. Thus, all
properties derived from the bond distribution should display
the same scaling. In Fig. 9, the percolation threshold from
Table I is plotted as a function of the number of blobs per chain.
As expected, the data for various grafting densities and chain
lengths collapse onto a common master plot. After the data
are shifted by −0.5 to reflect the lowest possible percolation
threshold qc = 0.5, which is given by mean-field gelation, it
can be fitted by a power law with a slope of ≈ −0.42.

Figure 9 indicates a decrease of the percolation threshold
with increasing overlap of the grafted chains. As a consequence
of the scaling of the bond length distribution, the percolation
threshold for a fixed chain length thus decreases with increas-
ing grafting density and also increases with increasing chain
length following the scaling behavior according to Nσ 1/2ν .

While star percolation as a coarse-grained model reflects the
main features of the cross-linked polymer brush, correlation
effects that may occur during the cross-linking process are
not included. This is because bonds are drawn randomly from
the real distribution of bond lengths. Correlations can occur
for several reasons. As an example, chains that connect two
grafting points with a large distance on the lattice are bent
toward each other to bridge this gap. Bonds that are oriented
in the direction of the other chain are possibly preferred to
those in the opposite direction. This effect is enhanced at lower
grafting densities (on the verge of overlapping). Such effects
might be included in the star percolation problem by adding
bonds in a correlated fashion.

TABLE I. Percolation thresholds from star percolation for bond
distributions obtained from simulations with different chain lengths
and grafting densities.

N σ ∗ σ = 0.0625 σ = 0.11 σ = 0.16 σ = 0.25

16 0.028 0.970 0.905 0.866 0.828
32 0.018 0.864 0.794 0.766 0.726
64 0.013 0.751 0.709 0.683 0.662
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FIG. 9. (Color online) Percolation threshold as a function of
Nσ 1/2ν . The data are shifted by −0.5 to reflect the lowest possible
percolation threshold qc = 0.5, which is given by mean-field gelation.
The slope of the fit is ≈ −0.42.

B. Cluster size distributions

The cluster size distributions as obtained from star percola-
tion using the bond distribution of a cross-linked polymer brush
are displayed in Fig. 10 for the case N = 16 and σ = 0.25. The
data display a crossover from mean-field to critical behavior
with increasing cluster size of about sco = 18.

The slope of the initial decay (s < 18) is τ = 2.48, which is
in good agreement with the slope expected from the mean-field
gelation model (τ = 2.5) [38]. An ideally branching cluster of
s lattice sites on the 2D lattice resembles the conformations of
a lattice animal with lateral spatial extension R ∼ |b|s1/4. In
general, ideal branching becomes impossible, if the growing
clusters are dense within their own volume RD ≈ s, which is
the case for

sco ≈ |b|4D/(4−D) ∼ (N/g)2D/(4−D) ∼ (Nσ 1/2ν)2D/(4−D), (2)

with D = 2 for cross-linked brushes and D = 3 for bulk
networks. For the example given in Fig. 10, the bond
distribution decays to 1/e for |b| ≈ 2; see Fig. 4. Thus, we
obtain a value of 16 in good agreement with the observed
crossover value. Bigger clusters (s > sco) have to follow
restrictions imposed by external space. In this range, the

1 5 10 50 100 500 1000

10 5

0.001

0.1

s

n
s

FIG. 10. (Color online) Cluster size distribution for N = 16 and
σ = 0.25. The transition from mean-field behavior (slope −2.48 in
good agreement with the theoretical value −2.5) to critical behavior
(slope −2.02 in good agreement with the theoretical value −2.05) is
clearly visible.
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exponent changes to τ = 2.02, which is in good agreement
with the value expected for 2D percolation (τ ≈ 2.05) [39].
We note that for bulk networks, the crossover point is shifted to
a rather high value of s ≈ (N/g)6, which is difficult to observe
for typical values of N/g � 1. Thus, polymer networks are
dominated by mean-field behavior [36].

VI. SUMMARY AND CONCLUSION

We have studied the cross-linking of polymer brushes using
Monte Carlo simulations. In contrast to ordinary polymer
networks, polymer chains in brushes are ordered on a 2D lattice
with respect to one of their end points in our simulations. This
allows us to map the cross-linking process into a corresponding
2D percolation problem. The difference between simple bond
percolation and the problem at hand is a broad distribution of
bond vectors which allow direct bonds between grafting points
(sites) at longer distance. We call this variant of percolation
“star percolation.” The key property for the mapping is the
distribution of bonds obtained from the direct simulation.
When the bond distribution in the cross-linked polymer brush
has been obtained numerically, the gelation process can be
studied using the percolation model.

The distribution of bond lengths (distances between
grafting points of cross-linked chains) displays an exponential

decay which is well characterized by the lateral extension of
the grafted chains. More precisely the overlap of a given chain
with other chains (number of grafting points within the area of
a given chain) is characterized by the scaling variable Nσ 1/2ν ,
and this variable controls the bond distribution for grafting
densities well above the overlap threshold. This confirmed
scaling behavior can be used to generate the bond distribution
without the need for simulations for any combination of N

and σ .
Using finite size scaling we have shown that star percolation

displays a lower percolation threshold qc < 1 as compared
to bond percolation qc = 1. This result agrees with the
direct observation of a lower percolation threshold in cross-
linked polymer brushes. Moreover, the scaling behavior of
the bond distribution is directly transferred to the gelation
properties of the polymer brush. As a consequence, the
gelation threshold depends on the scaling variable Nσ 1/2ν

only.
The data for the cluster size distribution show a pro-

nounced crossover from the mean-field gelation behavior
for small cluster sizes to critical percolation behavior for
larger cluster sizes at s ≈ (N/g)2. To conclude, we have
introduced star percolation as a paradigm to understand the
basic features of gelation process in cross-linked polymer
brushes.
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