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Size dependence of the contact angle of a nanodrop in a nanocavity: Density
functional theory considerations
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The dependence of the contact angles of nanodrops of Lennard-Jones type fluids in nanocavities on their sizes
are calculated using a nonlocal density functional theory in a canonical ensemble. Cavities of various radii and
depths, various temperatures, as well as various values of the energy parameter of the fluid-solid interactions
were considered. It is argued that this dependence might affect strongly, for instance, the rate of heterogeneous
nucleation on rough surfaces, which is usually calculated under the assumption of constant contact angle.
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I. INTRODUCTION

When a small liquid drop is in contact with a smooth
homogeneous solid substrate it acquires the shape of a spheri-
cal cup, which creates with the solid surface a constant contact
angle θY provided by the Young equation cos θY = (γsv −
γls)/γlv , where γsv , γls , and γlv are the surface tensions for
substrate-vapor, substrate-liquid, and liquid-vapor interfaces,
respectively. The angle θY was also considered constant when
the heterogeneous nucleation of a liquid from vapor was treated
by considering the nucleus of the new phase as a uniform
drop [1–4]. In the framework of the classical nucleation theory
[1–3], this assumption essentially simplifies the calculation
of the free-energy barrier for nucleation, which is a function
of the unique contact angle given by the Young equation. In
the kinetic theory of nucleation [5,6], the constancy of θY

simplifies the calculation of the evaporation and condensation
rates, which are involved in the rate of nucleation.

However, as well known (see, for example, Refs. [7–12]),
for small drops with sizes of several microns on a solid
surface, the contact angle θ depends on the radius r of the
contact line and hence θ depends on the size of the drop. In
the classical theory of wetting, this dependence is accounted
for by introducing the line tension τ in a modified Young
equation cos θ = cos θY − τ/γlvr , where 1/r is the curvature
of the contact line [7–12]. However, when the size of the
drop is of the order of a few nanometers (as it is for a
nucleus), the thicknesses of the fluid-liquid and fluid-solid
interfaces become comparable to the size of the drop, and
the classical concepts of surface tensions defined for bulk
phases are not applicable. In such cases, the contact angle
should be determined differently, on the basis of a microscopic
theory. One such theory, the density functional theory (DFT)
in a canonical ensemble, was successfully applied to the
description of nanodrops on smooth planar solid surfaces as
well as to droplike objects (bumps, bridges between walls of
nanoslits, etc.) [13–18]. In this paper, DFT is employed to
examine a nanodrop in a cavity of a solid surface, focusing on
the dependence of the contact angle that the nanodrop makes
with the wall of the cavity on the size of the drop. For the sake
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of simplicity, two-dimensional (cylindrical) cavities and drops
will be considered.

II. BACKGROUND

Let us consider a system of finite dimensions Lx and Lh

in the x and h directions, respectively, and infinite dimension
in the y direction, which contains a one-component fluid of
fixed average density ρav in contact with a solid surface (see
Fig. 1 where the y axis is normal to the plane of the figure).
The solid contains a cylindrical cavity (groove) of radius R

and depth d and is considered to have a uniform density ρs .
The fluid density distribution (FDD) ρ(r) in such a system
is uniform in the y direction and nonuniform in the x and h

directions, i.e., ρ(r) ≡ ρ(x,h). A periodic boundary condition
is employed in the x direction, and the upper boundary of the
box is treated as a hard wall.

The interactions between the fluid molecules and the
fluid molecules and the solid substrate are considered of the
Lennard-Jones type with a hard core repulsion φ(|r − r′|) =
4ε[( σ

r
)12 − ( σ

r
)6] for r � σ and φ(|r − r′|) = ∞ for r < σ ,

where the coordinates r and r′ provide the locations of the
interacting molecules, r = |r − r′|, and σ and ε are the hard
core diameter and the energy parameter, respectively. In the
following, the notations εff , σff and εf s , σf s are used for
fluid-fluid and fluid-solid interactions, respectively.

The total Helmholtz free energy F [ρ(r)] of the fluid in the
external potential generated by the solid, the Euler-Lagrange
equation for FDD, and an outline of the numerical procedure
used to solve the Euler-Lagrange equation are provided in
Refs. [15] and in the Appendix.

A typical example of a two-dimensional FDD is presented
in Fig. 2(a). To determine the profile of a drop on the basis
of the obtained FDD, a procedure similar to that used in
Refs. [15] was employed. First, the one-dimensional FDD
along the h axis (vertical axis of symmetry) was determined
from the two-dimensional FDD obtained by solving the Euler-
Lagrange equation. An example of such a FDD is presented in
Fig. 2(b). In the vicinity of the liquid-solid interface, there
are strong density oscillations due to the ordering of the
fluid molecules, which form several liquid layers of various
densities. At larger distances from the solid, the density
becomes almost constant, acquiring liquidlike values and
then quickly decreasing across the liquid-vapor interface and
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FIG. 1. Schematic presentation of the considered system, which
is infinite in the y direction (normal to the plane of the figure) and is
periodic with period Lx in the x direction. The dashed line indicates
the location of the centers of the fluid molecules in the first (nearest
to the solid) layer. Other notations are presented in the text.

approaching vaporlike values. Considering the AB range [see
Fig. 2(b)] of the fluid density distribution, which contains the
vapor-liquid interface, the location of the equimolar dividing
surface and the corresponding density ρdiv were determined.
The drop profile was extracted from the two-dimensional FDD
as a curve along which the local fluid density has the value ρdiv.
Note that a similar approach for calculating the contact angle
was used in Refs. [19–21], where the FDDs were obtained by
molecular dynamics simulations.

An example of a drop profile obtained as described above is
presented schematically in Fig. 2(c) by the dotted line. Because
of the complex structure of this profile near the solid surface,
its upper part was approximated by a circle and extended up to
the surface of the cavity. The angle θ that this circle makes with
the surface of the cavity was considered as the actual contact
angle. This procedure is similar to that used in the experimental
determination of the contact angle. Note that the change of
the location of the dividing surface and the corresponding
change of ρdiv weakly affect the calculated contact angle. For

instance, a change of ρdiv by 10% with respect to that obtained
for the equimolar dividing surface results in changes of the
contact angle of about 0.5%. The size of the cylindrical drop
is characterized by the number of molecules Nd it contains per
unit length along the y direction of the drop. This number is
provided by the expression Nd = ∫

S
ρ(x,h)dx dh, where S is

the area between the cavity and the circle that approximates
the drop profile. For convenience, the dimensionless quantity
N∗

d ≡ Ndσff , which typically has an order of magnitude of
102, will be used in the following. This quantity provides the
number of molecules in a part of the cylindrical drop of length
σff .

Note that a droplike solution of the Euler-Lagrange equation
can be obtained only if the average fluid density in the system
is larger than ρav,d which depends on the interaction potentials,
the geometry of the system, and temperature. For ρav < ρav,d ,
the fluid forms a film. Typically, ρav,dσ

3
ff is between 0.04

and 0.05. The obtained droplike solutions are stable in closed
systems but unstable in the open ones; similar features were
noted for drops on a planar surface in Refs. [13,14] and for
bridges and bubbles in cylindrical pores in Ref. [17].

III. RESULTS

In this study, argon was selected as the fluid; it has the
interaction parameters εff /kB = 119.76 K and σff =
3.405 Å. The temperatures T = 85 and 95 K were selected.
As a supporting solid, the solid carbon dioxide was considered
with εf s = ε0

f s (ε0
f s/kB = 153.0 K) and σf s = 3.727 Å [22].

To examine the effect of the fluid-solid interactions on the FDD
in the cavity, other solids were considered, which differ from
CO2 only via the energy parameter εf s ; all the other parameters
remained unchanged. The width of the system Lx was taken as
Lx = 60σff and the height as Lh = 20σff + 2σf s . Two cavity
radii R1 = 15σff and R2 = 11σff were selected with cavity
depths d1 = 5σff and d2 = 10σff , respectively. For compari-
son purposes, drops on a planar surface were also considered
for the same parameters of the fluid-solid interactions.

The size dependence of the contact angle at T = 85 K is
presented in Fig. 3 for various cavities and energy parameters
εf s . The solid and dashed lines are for cavities with R =
15σff and 11σf s , respectively. The curves for different εf s
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FIG. 2. (Color online) (a) Example of
a two-dimensional fluid density distribution
(FDD) in a cavity of radius R = 15σff and
depth d = 5σff . The lighter areas correspond
to higher fluid densities. (b) One-dimensional
FDD along the vertical axis of symmetry of
the two-dimensional FDD presented in panel
(a). The region AB contains the liquid-vapor
interface. (c) Half of the drop profile (dotted
line) extracted from the FDD of panel (a).
The solid line is the surface of the cavity,
and the dashed line represents the circular
approximation of the upper part of the drop
profile. θ is the contact angle.
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FIG. 3. (Color online) Size dependence of the contact angle in a
cavity with R = 15σff (solid lines) and R = 11σff (dashed lines)
for various values of the energy parameter εf s of the fluid-solid
interactions.

in this figure are plotted for various drop sizes. The upper
bounds Nd,max of these sizes correspond to the largest drops
with the leading edge located inside the cavity. The lower
bounds Nd,min correspond to the smallest drops that can be
formed in the cavity. From Fig. 3, one can see that, in all
cases, there is a considerable variation 	θ of the contact
angle with the drop size. For example, for εf s = ε0

f s and
R = 15σff , the contact angle increases monotonously from
θ = 66.3◦ to 116.5◦ (	θ = 50.2◦) as N∗

d increases from 20.9
to 127.4, respectively. (The average fluid density in this case
changes from ρavσ

3
ff = 0.042 to ρavσ

3
ff = 0.124.) Note that a

nanodrop on a planar surface of the same solid makes with the
surface a contact angle θpl � 52◦, the change of the latter with
the size being of the order of only a few degrees. The value of
θpl is close to the value of θ for the smallest of the considered
drops in the cavity. This is expected because the smallest drop
in the cavity can be approximately considered as located on a
planar surface.

For εf s = 0.39ε0
f s and R = 15σff , the contact angle has

a nonmonotonous dependence on the drop size with a much
smaller variation 	θ (	θ ∼ 10◦) (Fig. 3). Such a behavior is
the obvious consequence of the weaker fluid-solid interactions.
The contact angle θpl for this case is 137◦, which is close
to the values of θ for drops in the cavity.

For an intermediate value of the fluid-solid interactions
(εf s = 0.63ε0

f s and R = 15σff , θpl ∼ 104◦) the contact angle
changes from θ = 110.5◦ to θ = 138.3◦ (	θ = 27.8◦) when
N∗

d changes from 38.9 to 147.3 (Fig. 3). For the cavity

with R = 11σff , the size dependence of the contact angle
represented by the dashed curves of Fig. 3 is qualitatively the
same as for the cavity with the larger radius (R = 15σff ).
Comparing the behavior of the contact angle as function
of the drop size Nd for cavities with R = 15σff and R =
11σff , one can see that, for small Nd , the contact angle
is smaller for the cavity with the smaller radius. However,
this inequality is inverted as Nd increases (see Fig. 3). The
inversion occurs for N∗

d � 102. A summary of the results is
provided in Table I where, instead of 	θ , the average rate
	θ ≡ 	θ/(N∗

d,max − N∗
d,min) of the variation of 	θ with the

change of the number of molecules in the drop is presented.
As one can see from Table I, for a selected cavity, 	θ

decreases with decreasing εf s but increases with increasing
temperature. For the same εf s , 	θ increases with decreasing
cavity radius.

It is of interest to note that the dependence of the contact
angle of a drop on the cavity radius leads, at least in some
cases, to a transition from nonwetting (θ > 90◦) to wetting
(θ < 90◦) with decreasing cavity radius (increasing curvature
of the surface). See, for example, the case with εf s = ε0

f s and
N∗

d < 90 in Fig. 3. The opposite transition from wetting to
nonwetting situations with increasing curvatures of the solid
was predicted in Ref. [23], where a drop on a cylindrical fiber
was considered.

It is instructive to examine the dependence of the contact
angle that a drop of given size makes with the cavity on the
cavity radius. The results of such calculations for a drop with
N∗

d = 130 in a cavity of depth 5σff are presented in Table II
for various substrates (various εf s/ε

0
f s). One can see that the

contact angle decreases with increasing cavity radius in the
direction of the contact angle θpl of a drop on a planar surface,
with the rate of change being the largest for smaller radii.
However, even for the largest considered cavity radius R =
90σff , the contact angle does not reach θpl. In our calculations,
the consideration of cavity radii larger than R = 90σff was not
possible because of the small size of the system selected to pro-
vide reasonable calculation times. Nevertheless, the results are
compatible with the expected contact angle dependence on R.

IV. DISCUSSION

The obtained results show that the contact angle that a
nanodrop makes with the surface of a cavity depends on
the size Nd of the drop. This dependence becomes more
pronounced with increasing εf s , increasing temperature and

TABLE I. Summary of results obtained for the size dependence of the contact angle 
 for a nanodrop in a nanocavity. All notations are
explained in the text.

T = 85K T = 95K

R εfs/εfs
0 Nd,minσ ff Nd,maxσ ff 	θ Nd,minσ ff Nd,maxσ ff 	θ

1 20.9 127.4 0.471 38.5 91.6 0.683
15σff 0.63 38.9 147.3 0.257 36.7 131.4 0.309

0.39 16.6 147.2 0.074 35.3 112.9 0.084
1 86.7 154.6 0.825 77.7 135.5 0.951

11σff 0.63 20.6 156.3 0.376 66.3 140.1 0.633
0.39 65.9 150.4 0.348 65.2 114.4 0.459
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TABLE II. The contact angle for a drop with Nnd
∗ = 130 on

various substrates and for various cavity radii.

εfs/εfs
0

R/σ ff 0.39 0.63 1.0

15 147.7◦ 133.0◦ 117.0◦

25 144.5◦ 115.3◦ 75.8◦

45 144.2◦ 113.9◦ 71.2◦

90 142.3◦ 114.1◦ 69.1◦

planar surface 137.0◦ 104.0◦ 52.0◦

decreasing cavity radius R. The dependence of the contact
angle on the drop size can considerably affect the nucleation
rate calculated both by the classical [1] and kinetic [5,6]
nucleation theories. In both approaches, the size dependence of
the contact angle affects the size dependence of the fluid-liquid
and fluid-solid contact areas, which contribute to the free
energy of nucleus and hence can change the size of the
critical cluster and, as a consequence, the rate of nucleation.
In the kinetic theory, in addition, the nonuniformity of the
fluid density distribution inside the drop, which can affect the
evaporation rate of molecules from the nucleus, should be
taken into account.

Because of computational restrictions, the radii of the
cavities and the sizes of the drops considered in this paper do
not exceed 6–7 nm. Such sizes are much smaller than those for
which one expects the classical theory of wetting to be valid.
As shown in Refs. [16,24], where the capillary condensation
in spherical pores was examined using the classical and
the density functional approaches, these approaches provided
similar results when the cavity radius was larger than 100 nm.

Note that, for nanodrops, in contrast to macrodrops, the
contact angle on a smooth solid surface depends slightly on
the size of the drop. For example, at εf s = 0.39ε0

f s , this angle
changes from θ1 = 139.4◦ to θ2 = 132.8◦ when the size of
the base of the drop changes from 2.6σff � 9 Å to 7.4σff �
25 Å, and the number of molecules in the drop is changed from
N∗

d � 25 to N∗
d � 190. However, the variation of the contact

angle on the smooth surface is much smaller than that in the
cavity (compare 	θ � 7◦ for a planar surface with 	θ � 35◦
for a cavity with radius R = 11σff ).

Note, in conclusion, that the results for the size dependence
of the contact angle were obtained here for a cylindrical drop
in a cylindrical cavity. However, as previously shown [25]
for drops on a planar surface, the difference between the
drop profiles of cylindrical and axisymmetrical ones is not
large. Therefore, one can expect the size dependence of the
contact angle obtained in this paper to remain valid for drops
in spherical cavities as well.

APPENDIX: FREE-ENERGY CONTRIBUTIONS AND
SOLUTION OF THE EULER-LAGRANGE EQUATION

The total Helmholtz free energy F [ρ(r)] of a fluid in
the external potential generated by a solid is expressed as
the sum of an ideal gas free energy Fid[ρ(r)], a free energy
Fhs[ρ(r)] of a reference system of hard spheres, a free energy
Fattr[ρ(r)] due to the attractive interactions between the fluid

molecules (in the mean-field approximation), and a free energy
Ff s[ρ(r)] due to the interactions between the fluid and solid.
These contributions to the free energy can be represented as
follows [26,27]:

Fid [ρ(r)] = kBT

∫
dr ρ(r){log[�3ρ(r)] − 1}, (A1)

Fhs[ρ(r)] =
∫

dr ρ(r)	hs(r), (A2)

where � = hP/(2πmkBT )1/2 is the thermal de Broglie wave-
length, hP and kB are the Planck and Boltzmann constants,
respectively, T is the absolute temperature, m is the mass of a
fluid molecule,

	hs(r) = kBT ηρ̄

4 − 3ηρ̄

(1 − ηρ̄)2
, (A3)

ηρ̄ = 1
6πρ̄(r)σ 3

ff is the packing fraction of the fluid molecules,
σff is the fluid hard core diameter, and ρ̄(r) is the smoothed
density defined as

ρ̄(r) =
∫

dr′ρ(r′)W (|r − r′|) . (A4)

The weighting function W (|r − r′|) is selected in the form
[28]

W (|r − r′|) =
{

3
πσ 3

ff

(
1 − r

σff

)
, r � σff

0, r > σff

where r = |r − r′|.
The contribution to the excess free energy due to the

attraction between the fluid-fluid molecules is calculated in
the mean-field approximation

Fattr [ρ(r)] = 1

2

∫ ∫
dr dr′ρ(r)ρ(r′)φff (|r − r′|), (A5)

where φff (|r − r′|) is the potential of the fluid-fluid interac-
tions.

The last contribution Ff s[ρ(r)] is given by the expression

Ff s[ρ(r)] =
∫

V

dr ρ(r)Uf s(r), (A6)

where V is the volume occupied by the fluid and Uf s(r) is the
net potential generated by the solid. This potential is given by

Uf s(r) =
∫

Vs

ρs(r′)φf s(|r − r′|) dr′, (A7)

where φf s(|r − r′|) is the potential of the fluid-solid inter-
actions, Vs is the volume of the solid, ρs(r′) is the density
of the solid, which, in general, depends on coordinates.
Note that the integration over y and x coordinates in the
three-dimensional integral of Eq. (A7) can be carried out
in analytical form, whereas the integration over h can be
performed only numerically.

The Euler-Lagrange equation for the fluid density distribu-
tion ρ(x,h) obtained by minimizing the Helmholtz free energy
can be represented in the following general form:

log[�3ρ(x,h)] − Q(x,h) = λ

kBT
, (A8)
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where λ is the Lagrange multiplier and the function Q(x,h) is
given by

Q(x,h) = − 1

kBT
[	hs(x,h) + 	 ′

hs(x,h)

+Uff (x,h) + Uf w(x,h)], (A9)

where

Uff (x,h)

=
∫ ∫

dx ′dh′ρ(x ′,h′)φff,y(|x − x ′|,|h − h′|), (A10)

	 ′
hs(x,h) =

∫ ∫
dx ′dh′ρ(x ′,h′)Wy(|x − x ′|,|h − h′|)

× ∂

∂ρ̄
	hs(ρ̄)|ρ̄=ρ̄(x ′,h′), (A11)

φff,y(|x − x ′|,|h − h′|) and Wy(|x − x ′|,|h − h′|) are

obtained by integrating the potential φff (|r − r′|) and the
weighted function W (|r − r′|) with respect to y from −∞ to
+∞.

When calculating the term Uff (x,h) of the Euler-Lagrange
equation arising due to the long-range fluid-fluid interactions,
a cutoff at a distance equal to four molecular diameters σff

for the range of Lennard-Jones attraction was employed. The
increase of this distance up to 10σff changed the results by
less than 1%.

In Eq. (A8), the Lagrange multiplier λ arises because of the
constraint of fixed average density of the fluid, which has the
form

ρav = 1

V

∫
V

dr ρ(r) (A12)

and leads to the following expression for λ :

λ = −kBT log

(
1

ρavV �3

∫
V

dreQ(x,h)

)
. (A13)

By eliminating λ between Eqs. (A8) and (A13), one obtains
an integral equation for the FDD ρ(x,h), which was solved by
iteration.

The initial FDD in the iteration procedure (initial guess)
was selected to be uniform inside the cavity, with a liq-
uidlike density (ρσ 3

ff ∼ 0.5). Outside the cavity, it was
taken as uniform with a vaporlike density (ρσ 3

ff ∼ 0.04 ÷
0.10). By changing the fluid densities inside and out-
side the cavity in the initial guess (i.e., by changing the
average density in the system), drops of various sizes could
be obtained.

To avoid the divergence of the iteration procedure, the input
density profile ρin

i (x,h) for the (i + 1)th iteration ρi+1(x,h),
generated by the Euler-Lagrange equation, was selected as
follows [26]:

ρin
i (x,h) = (1 − γ )ρin

i−1(x,h) + γρi(x,h), (A14)

where ρi(x,h) is the ith iteration and the constant γ = 0.1. As
a measure of the precision of the iterations, the dimensionless
quantity

δ =
∫

V

dx dh
[
ρi+1(x,h) − ρin

i (x,h)
]2

/

(∫
V

dx dh ρi(x,h)

)2

was introduced. The iterations were carried out on a two-
dimensional grid with a spacing equal to 0.1σff until δ

became smaller than ε = 10−7. The additional increase in
precision did not lead to appreciable changes in the density
profile.
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