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Power losses in a suspension of magnetic dipoles under a rotating field
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Energy absorption due to viscous friction in a dilute suspension of single-domain ferromagnetic particles
subjected to a rotating field is considered. The problem is treated in the framework of kinetic approach. The
behavior of specific loss power (SLP) as a function of the field amplitude and frequency is studied. It is shown that
for either of these parameters (while the other is kept constant) SLP first grows quadratically and then saturates.
The cases of a rotating field and oscillating fields are compared, and the essential differences are revealed. The
results obtained enable one to assess the allowable or optimal field parameters for a given magnetic suspension
intended for rotational magneto-inductive heating.
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I. INTRODUCTION

Theory of the magneto-inductive hyperthermia (MIH) is
rapidly developing nowadays. It is natural that, as the technique
becomes closer to practical use, the theory specializes. The set
of concepts and models, increasing in number, separates into
trends, which differ in essential details: the use of either super-
paramagnetic or magnetically rigid particles, heat generation
in either highly or low viscous or viscoelastic media, etc. On
the other hand, the principal criterion for any MIH method
or its modification is the specific loss power (SLP) attained.
Conventionally, the value of this parameter is determined with
respect to a unit mass of a ferrite or ferromagnet particles,
which are the MIH mediators, i.e., microgenerators of heat.
An important aspect of the MIH technique is the type of field
acting on the particles embedded into the object intended for
heating. As the literature shows, in the overpowering majority
of laboratory and practical experiments the inductor is a single
solenoid generating a uniform linearly polarized alternating
field (AC) [1–7]. Accordingly, this configuration is adopted
in theoretical modeling of magneto-inductive heating, see
Refs. [2,8,9], for example. Meanwhile, since very recently an
interest to heat generation under a rotating field has emerged
because of promising estimates of the attainable SLP; see
Ref. [10], where an experiment of such a kind is reported.
The goal of the present paper is to show that the theory of
MIH with a rotating field has some unique features and by no
means is exhausted by a simple doubling of the acting field
strength.

The key point for investigation of the effect of a rotating
field on a magnetic suspension (magnetic fluid) is the equation
of motion for magnetization of the system. Its derivation
requires a mesoscopic consideration: one needs to solve the
problem of rotation of a magnetic Brownian particle in a
viscous fluid.1 This issue was addressed many times from
both phenomenological [13,14] and kinetic [15–17] positions.
However, until now the solutions obtained were aimed at and
used mostly for investigations of either the magnetoviscous
effect or the induction of magnetic fluid hydrodynamic flows.

1As follows from the hydrodynamics of magnetic fluid under
rotating field [11,12], if the fluid in a vessel does not have free
surfaces, no macroscopic rotation is induced.

As a result, heat generation under a rotating field and the
dependencies of the energy absorption on the main field and
particle parameters were not consistently studied whatsoever.
In the present paper, on the basis of a kinetic model we
analyze the response of a dilute assembly of magnetically
rigid Brownian particles, suspended in a fluid, to a rotating
magnetic field and analyze the behavior of SLP with respect
to field amplitude and frequency and to temperature. Special
attention is given to the limit of “large” particles, viz. the
situation, where the Brownian motion is vanishingly small.
This case is important both fundamentally and practically in
view of numerous laboratory experiments where the particles
more coarse than those of magnetic fluids are employed [2,4].

II. THEORETICAL MODEL

Consider a magnetic suspension that is dilute to such
an extent that the single-domain particles residing therein
might be treated as independent. Then the problem of MIH
reduces to the one of heat generation in a statistical ensemble
of noninteracting particles suspended in a quiescent linearly
viscous medium. The orientation-dependent part of the energy
that each particle acquires under an external field H is

U = −μH (e · h), (1)

where μ = MSVm is the magnetic moment, Vm the volume of
the particle magnetic “core,” and MS the ferromagnet mag-
netization. The magnetic anisotropy (magnetic rigidity) of the
particle is assumed to be sufficiently high, so that the magnetic
moment is always aligned with the easy magnetization axis,
i.e., the particle is in fact a nanosize permanent magnet. Due
to that, a unit vector e in Eq. (1) denotes, equivalently, both the
direction of the particle magnetic moment and the direction of
the particle geometry axis. We define the laboratory coordinate
frame by superimposing its plane with the plane of rotation of
the field H , so that a unit vector has the components

h = (cos ωt, sin ωt,0), (2)

with ω being the frequency of the field rotation; as seen, the
field (2) is right-handedly circularly polarized. To obtain a
steady solution, it is convenient to pass from the laboratory
frame to the one rotating with the field; this is done by setting
φ = ϕ − ωt . In this representation the major vectors of the
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problem expressed in terms of spherical coordinates (the polar
axis is normal to the field rotation plane) are

h = (1,0,0), e = (sin θ cos φ, sin θ sin φ, cos θ ), (3)

while the particle energy (1) takes the form

U = −μH sin θ cos φ, (4)

which does not explicitly depend on time.
For nanosize particles, Brownian motion is an essential fac-

tor. An ensemble of such particles, provided their interactions
are negligible, is described by a single-particle distribution
function W (e,t) that obeys the orientational diffusion (Fokker-
Planck) equation, see [18], for example. In the rotating frame,
this equation takes the form

2τB[∂/∂t − (ω Ĵ)]W = ĴW Ĵ(U/kBT + ln W ), (5)

where Ĵ = e × ∂/∂e is the infinitesimal rotation operator,
τB = 3ηVh/kTB is the timescale of Brownian rotary diffusion,
η the fluid viscosity, and Vh the “hydrodynamic” volume of the
particle that allows for the presence of a nonmagnetic surface

layer and an outer (surfactant or other) shell. When the system
attains a steady state, the time derivative in Eq. (5) becomes
zero.

The dimensionless parameters of the problem are intro-
duced as follows:

τB = τ0ξ, τ0 = 3ηVh/μH, ξ = μH/kBT , (6)

and steady distribution function is presented in the form of a
series

W (θ,φ) =
∞∑
l=0

k=l∑
k=−l

bl,kYl,k(θ,φ), (7)

with respect to normalized spherical harmonics Yl,k defined as

Yl,k(θ,φ) = (−1)k
√

(2l + 1)(l − k)!

4π (l + k)!
P k

l (cos θ )eikφ ;

(8)−l � k � l, Y ∗
l,k = (−1)kYl,−k.

Substitution of Eq. (7) in (5) with allowance for Eq. (8), renders
an infinite chain of two-index recurrence equations

−2ikωτBbl,k + l(l + 1)bl,k = ξ

2

[
(l + 1)

√
(l − k − 1)(l − k)

(2l − 1)(2l + 1)
bl−1,k+1 + l

√
(l + k + 2)(l + k + 1)

(2l + 1)(2l + 3)
bl+1,k+1

− (l + 1)

√
(l + k − 1)(l + k)

(2l − 1)(2l + 1)

′

bl−1,k−1 − l

√
(l − k + 2)(l − k + 1)

(2l + 1)(2l + 3)
bl+1,k−1

⎤
⎦ , (9)

that is convenient to solve with the aid of matrix sweeping
method [19]. For the problem under study, the issue of prime
interest is the coefficient b1,1 because it defines the projection
of the ensemble magnetization onto the plane of rotation of
the field. In a normalized form, this two-dimensional vector is
expressed in terms of b1,1 as

m = (m‖,m⊥), m‖ = 〈sin θ cos φ〉 = −
√

8π

3
Reb1,1,

(10)

m⊥ = 〈sin θ sin φ〉 =
√

8π

3
Imb1,1,

where subscripts indicate the directions with respect to
vector h and angular brackets denote the statistical ensemble
averaging. There are two main cases, when the kinetic equation
(5) has analytical solutions. Assuming ξ 	 1 (low field
amplitudes and/or high temperatures) and retaining in Eq. (9)
the harmonics with l � 1, one finds

m = m‖ − im⊥ = ξ

3

1

1 + iωτB

; (11)

evidently, for a field rotating in opposite direction, Eq. (11)
should be replaced by its complex conjugate. In the athermal
limit (vanishing Brownian motion, ξ → ∞) the dynamics of

the particle is determined by the combined action of the viscous
and magnetic torques and is described by a set of equations

∂φ

∂t
= ω − 1

2τ0

sin φ

sin θ
,

∂θ

∂t
= 1

2τ0
cos θ cos φ. (12)

When the low-frequency condition 2ωτ0 < 1 holds, the steady
(∂/∂t = 0) solution takes the form

θ = 1
2π, φ = arcsin(2ωτ0). (13)

In this regime, the normalized magnetization takes the form

m‖ =
√

1 − 4ω2τ 2
0 , m⊥ = 2ωτ0 (14)

evidencing that in the rotating frame vector m remains constant
and is tilted to the direction of the field under the angle φ

defined by Eq. (13). In the case of high frequencies the particle
magnetic moment may assume any of the accessible variety
of orbits, all of which are isochronous. The period of the
occurring precession differs from that of the field and equals
[20,21]

T = 2πτ0√
(2ωτ0)2 − 1

. (15)

A first asymptotic (ξ → ∞) solution for m was given
in Ref. [20]. There the authors determined the ensemble
magnetization by averaging over the period (15) and assuming
that all the magnetic moment orbits are equiprobable. As it was
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shown later by Hinch and Leal [21], this conjecture holds only
for the time intervals shorter than τB , when the system had
not yet “forgotten” completely the initial conditions. Due to
this reason, the solution given in [20] is not entirely steady. In
Ref. [21] it is found that in the true steady state of the athermal
limit the distribution of the magnetic moments over the set

of orbits is nonuniform. The authors obtained a solution for
t → ∞ by imposing a requirement that the flux density of the
representing points at the surface of a unit sphere turns to zero
in the direction normal to the “orbital” motion of vector e. In
our notations (6) and (10), the components of vector m found
in [21] are

m‖ = 0, m⊥ = 2ωτ0 − 4ω2τ 2
0 − 1

2
√

3ωτ0

ln

⎛
⎝

√
8ω2τ 2

0 + 1 + √
3√

8ω2τ 2
0 + 1 − √

3

⎞
⎠

⎡
⎣ln

⎛
⎝

√
8ω2τ 2

0 + 1 + 1√
8ω2τ 2

0 + 1 − 1

⎞
⎠

⎤
⎦

−1

. (16)

In the high-frequency limit m⊥ can be expanded in the
asymptotic series

m⊥ = 1

3

1

ωτ0
+ 7

360

1

(ωτ0)3
+ 23

15120

1

(ωτ0)5
+ · · · , (17)

whose first term coincides with the high-frequency limit of
Eq. (11).

In Fig. 1 the transverse magnetization m⊥ evaluated
numerically with the aid of Eq. (9) is presented for several
reference values of ξ . As seen, all the lines corresponding
to finite temperatures lie inside the limiting contour formed
by the athermal low-frequency (14) and high-frequency (16)
branches, which meet at ωτ0 = 1/2. The ascending (low-
frequency) parts of all the plots have initial linear behavior,
whose tangent for any value of ξ can be written in the form

m⊥/ω = τ⊥L(ξ ), (18)

where L(ξ ) is Langevin function and τ⊥ is the relaxation time
of the normal to the field magnetization component determined
under a constant (ω = 0) field. A full numeric evaluation of
τ⊥ is given in Ref. [22], where it is denoted as τ

(1)
eff . In the same

FIG. 1. Frequency dependence of the transversal magnetization
for the rotating field amplitudes ξ = 2 (1), 5 (2), 10 (3), 25 (4), and
the athermal limit ξ = ∞ (dashed).

work it is shown that in the entire ξ range the exact τ⊥ with
good accuracy is reproduced by a simple expression

τ⊥ = 2ξL

ξ − L
τ0, (19)

obtained in Ref. [23] in a so-called effective-field approxi-
mation. As is easy to see, the relaxation time (19) changes
from ξτ0 = τB at ξ 	 1 (high temperatures) to 2τ0 at ξ → ∞
(low temperatures). In the latter case, formula (18) reduces to
the afore-obtained athermal limiting value (14) for m⊥. With
expression (19) the tangents of the curves in Fig. 1 are given by

m⊥/ωτ0 = 2ξL2(ξ )

ξ − L
=

{
1
3ξ 2 for ξ 	 1,

2 − 2/ξ for ξ � 1.
(20)

III. ENERGY ABSORPTION

The viscous torque acting on a field-driven rotating particle
causes its magnetic moment to lag behind the field. The lag
angle between vectors e and H is directly connected to the
dissipation that accompanies this motion. Indeed, the heat
generation by one particle (the work of viscous forces) per
cycle of the field is given by formula

A = μ

∮
(e · d H) = μ

∫ 2π/ω

0
(e · Ḣ)dt ; (21)

note that in a nonconducing suspension of magnetically rigid
particles this viscous dissipation is the only source of heating.

To evaluate integral (21), we get back to the laboratory
frame, where the components of unit vectors e and h explicitly
depend on time. After integration over the rotation period
2π/ω one gets

A = 2πμH 〈sin θ sin φ〉 = 2πμHm⊥. (22)

As mentioned above, the specific-loss power is defined per
unit mass of the particle. Using formula (22), one finds

SLP = ωA

2πρVm

= 1

ρ
ωMSHm⊥; (23)

here ρ is the specific-mass density of the particle. In below, it
is convenient to rescale SLP according to the relation

S = ρVmτB

kBT
× (SLP) = ξωτBm⊥, (24)
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(a) (b)

FIG. 2. Specific loss power for rotating (a) and oscillating (b) fields; function S is normalized according to Eq. (24).

and express it as a function of the dimensionless parameters
ξ and ωτB . The advantage is that with this choice the
field and frequency arguments of S are independent under
isothermal conditions; the variable ωτ0 employed in Fig. 1 is
convenient only for the analysis with respect to the athermal
limit.

The above-obtained approximations for m⊥ readily deliver
the behavior of S in two important asymptotic cases. Namely,
for ωτB/ξ � 1, that means low fields and/or high frequencies,
from Eq. (17) one gets

S = 1

3
ξ 2 + 7

360

ξ 4

(ωτB)2
+ 23

15120

ξ 6

(ωτB)4
+ · · · . (25)

Therefore, in the ωτB → ∞ limit SLP saturates with respect
to the frequency and scales quadratically with the field.

In the opposite case ωτB/ξ < 1/2, i.e., strong fields and/or
low frequencies, Eq. (20) renders

S = 2ω2τ 2
B

ξL2(ξ )

ξ − L(ξ )

 2ω2τ 2

B

(
1 − 1

ξ

)
(26)

indicating that SLP saturates with respect to the field amplitude
and is quadratic in the frequency parameter.

IV. DISCUSSION

In view of the MIH applications, the issue of prime interest
is to compare the obtained SLP dependencies for a rotating
field with those for an oscillating one. The overall shapes of
the surfaces S(ξ,ωτB) for these field configurations are shown
in Fig. 2; the surface in Fig. 2(b) presents the one given in
Ref. [9] transformed from the ωτ0 to ωτB coordinate.

A distinctive feature of the surface S(ξ,ωτB) for a rotating
field is a rather sharp edge “hovering” over the straight line
ωτB = ξ/2. The latter maps the position of the summit point
of Fig. 1 to the coordinates of Fig. 2. This straight line divides
the plane of parameters (ξ,ωτB) in two parts. In the weak
field region (ξ < 2/ωτB) the function S(ξ ) at any frequency
first grows quadratically with the field and then, after having
traversed the edge, saturates. Equation (25), where all the
terms are positive, indicates a specific limiting behavior of
the function S(ξ,ωτB). Namely, it approaches the saturation
level from above thus establishing that at high frequencies the
function passes a weak maximum.

On the other side of the border, i.e., in the ξ > 2ωτB half-
plane, similar behavior is displayed by the function S(ωτB):
at any ξ it increases quadratically before attaining the edge
but ceases to grow after having crossed it, see Eq. (26). Note
that here, i.e., with respect to the frequency, the function S
saturates monotonically.

All the above-mentioned features of SLP are clearly visible
in Fig. 3, where the exact (obtained from the numeric solution)
cross sections of the surface of Fig. 2(a) by the planes
ωτB = const and ξ = const are presented. One can see that
the functions S(ξ )|ωτB

and S(ωτB)|ξ , after having traversed
the edge, flatten the stronger, the greater is the value of the
argument that is kept constant. Comparison with the analog
logarithmic plots for the oscillating field case shown in Fig. 4
reveals that the main difference is in the field-parameter
behavior of SLP. Function S(ξ ) that saturates with ξ under
a rotating field, under an oscillating one only changes the rate
of its growth: from quadratic to linear, see Ref. [9].

Figure 2, compared in general, shows that, as expected, at
large values of the principal arguments the SLP in a rotating
field is about twice as high as that in an oscillating field.
However, for accurate comparison, cross sections are much
more instructive. In Fig. 5 the respective SLP functions for
two reference values of ξ are presented. In particular, this
plot allows one to clearly distinguish the region of the high-
frequency maximum of SLP, whose existence follows from the

(a) (b)

FIG. 3. Specific loss power in a rotating field as a function of
(a) magnetic field strength for ωτ0 = 0.2 (1), 1 (2), 2 (3), 5 (4) and
(b) field rotation frequency for ξ = 2 (1), 5 (2), 10 (3), 20 (4); in both
panes the asterisks mark the points corresponding to the condition
ωτ0 = 1/2.
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(a) (b)

FIG. 4. Specific loss power in an oscillating field as a function of
(a) magnetic field strength for ωτ0 = 0.2 (1), 1 (2), 2 (3), 5 (4) and
(b) field rotation frequency ξ = 2 (1), 5 (2), 10 (3), 20 (4).

form of the asymptotic expansion (25). A notable circumstance
is that, in contrary to the general prediction, at low frequencies
and strong fields the oscillating field is as good as the rotating
one and even better, see Fig. 5(b).

To clarify the occurrence of such a crossover between the
rotating and oscillating field SLP’s, we compare the respective
functions S by plotting them in Fig. 6 as functions of the
parameter ωτ0. One can see that in the ξ = ∞ limit, with
the decrease of ωτ0 the AC curve ascends, crosses that for
the rotating field and grows monotonically until ωτ0 = 0; the
crossing point is ωτ0 = 0.245. For lower frequencies/stronger
fields the absorption in an AC field is more efficient, while
for higher frequencies/weaker fields a rotating field heats better
that an AC one. To the right of the summit point, that is for
ωτ0 > 1/2, both lines descend coherently, the ratio between
their heat effects being 2 : 1. As seen from Fig. 6 for finite ξ ’s
the situation is qualitatively the same, i.e., in the low-frequency
region AC becomes more efficient. The only difference is
that, as the absorption is proportional to the out-of-phase
part of the magnetic response, both SLP curves tend to zero
at ωτ0 = 0.

We remark one formal circumstance related to the dashed
curve 2 (the athermal limit for the oscillating field case) in
Fig. 6. It is well known that in calculations of the dissipation
per cycle (dynamic hysteresis) the limits ξ = ∞ (T = 0) and
ω = 0 are noncommutative. In our case this means that if to
plot A as a function of the formal argument (ωτ0) increasing
ξ unboundedly but keeping ω �= 0, this sequence would finish

(a)

(b)

FIG. 5. Comparison of specific loss power vs frequency for
rotating (curves 1) and oscillating (curves 2) fields at ξ = 5 (a) and
10 (b).

FIG. 6. Energy absorption per cycle for a particle subjected to
a rotating (1) or oscillating (2) field; values of the field strength
parameter ξ are ∞ (dashed) and 10 (solid).

with a curve, which abuts on the ordinate axis at the value
2/π . On the other hand, if to perform the same calculation of
A decreasing ω to zero but keeping ξ �= 0, the final curve of this
sequence would come up to a maximum (that may be arbitrarily
close to the point ωτ0 = 0 in its position and to 2/π in its value)
but after that would fall down vertically to zero. Therefore,
for any ωτ0 �= 0 the curves of both types coincide differing
only in the infinitesimal vicinity of the limiting point. This
peculiarity of the function A, being important mathematically,
could hardly affect any real situation.

The developed model of energy absorption under a rotating
field is based on the assumption that the medium, which the
field works on, is nonconducting. Therefore, the condition
of its validity is a requirement that the magneto-inductive
thermal effect is greater than that of nonspecific “eddy current”
heating. The order of magnitude of the latter is σ (ωHD/c0)2,
where σ is conductivity, D the spatial scale of the field, i.e.,
the dimension of the induction zone, and c0 the velocity of
light. Comparing volumetric densities of the magnetic and
eddy current losses, one arrives at the restriction

f H <
nμm⊥
2πσ

(
c0

D

)2

, (27)

where f = ω/2π is cyclic frequency and n is the number
concentration of the ferromagnetic particles. For the regime of
maximal magnetic heating (ωτB = ξ/2) one should replace
m⊥ in Eq. (27) by unity. Equivalently, in this regime a
possibility to neglect the eddy current effect is expressed by
either of the inequalities

H <
c0

D

√
6nηVh

σ
, f <

c0μ

2πD

√
n

6σηVh

(28)

depending on what quantity is estimated.
Let us consider, as an example, a magnetic suspension

with volume fraction φ = 10% of ferrite (MS = 400 G)
particles so that the saturation magnetization is φMs ∼ 40 G.
Assuming σ ∼ 6 × 109 CGS = 0.7 S/m for the conductivity
of the carrier fluid (human blood at temperature 37 ◦C [24])
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and D = 30 cm for the induction zone size, from Eq. (27)
one gets f H < 109 Hz Oe = 8 × 1010 Hz A/m. For a typical
excitation frequency f ∼ 100 kHz, this yields H < 104 Oe.
Since the field amplitudes, which are really attainable in the
given frequency range, are at least an order of magnitude lower,
this estimate ensures a minor role of eddy current losses.

For medical applications of alternating magnetic fields
there exists an empiric restriction that defines physiologically
acceptable f H level. This bound is called Brezovich’s rule
and, as described in Ref. [25], for D = 30 cm it gives

f H < C, C 
 6 × 106 Hz Oe = 5 × 108 Hz A/m. (29)

Unlike Eq. (27) this expression is insensitive to the presence/
absence of ferromagnetic particles in the heated tissue.
Because of that, Brezovich’s rule is an independent restriction
on any MIH model. Comparing the numerical estimates of
the right-hand parts of Eqs. (27) and (29) for the above-
considered example, one finds that Brezovich’s restriction
is about two orders of magnitude stronger. Due to that, the
field range allowable for medical MIH ought to be estimated
from Eq. (29). Choosing again the optimal heating regime
ωτB = ξ/2 and substituting this relation in Eq. (29), one gets

H �
√

12πηC

MS

Vh

Vm

, (30)

cf. Eq. (28). Setting Vh/Vm ∼ 10 and η ∼ 10−2 Ps, one gets
from Eq. (30) quite a reasonable estimate H � 250 Oe 

20 kA/m. Transforming this to determine the frequency, one
finds f ∼ 20 kHz. Thus we see that the obtained optimal field
and frequency values fall well within the parameter ranges,
where MIH is performed [1–7].

As it follows from the presented results, to make the
magnetic heating more intense and frequency-sensitive, one
has to have the particle Langevin parameter considerably
greater than unity. To attain ξ � 5 at room temperature and
in a field of amplitude H ∼ 100 Oe, one needs the ferrite
particles of diameter ∼20–25 nm, which estimate agree well,
for example, with the recommendations of Ref. [3], where
oscillating-field MIH was discussed.

Finally, we remark on the validity of the dilute system ap-
proximation that we use. Apparently, the greater the particles,
the more probable is their aggregation due to the dipole-dipole
interactions. As the simulations reported in Ref. [26] have
revealed,2 under a rotating field a suspension of permanent
dipoles might split into well-separated flat monolayers of the
particles in the direction normal to the field plane. In the
occurring structure the layers repel each other, while inside
each layer the particle distribution is gas-like, i.e., resembling
that of a dilute system. The examples given in [26] show that
this “phase separation” takes place for ξ = 14 (and larger)
at the particle volume fraction 10 vol.% and higher. This
implies that for lower field parameters, e.g., ξ = 5, the dilute
system limit should hold at leat up to 10 vol.%.

2We are grateful to the referee of our paper for bringing this paper
to our attention.

V. CONCLUSIONS

Specific loss power for a dilute suspensions of magnetic
dipole particles in a viscous fluid is given, and the SLP
dependencies on the frequency and amplitude of a rotating
field are analyzed under isothermal conditions. The condition
of maximal absorption with plausible accuracy is given by the
relation ωτB = ξ/2. Being transformed back to dimensional
units, it enables one to assess the optimal ranges for real
parameters of rotational magneto-inductive heating on the
basis of the following simple rules:

(i) under fixed frequency of rotation the absorbed power
grows quadratically with field amplitude and attains a virtually
maximal value at H∗ 
 6ωηVh/MSVm; any further increase of
H is inefficient;

(ii) under fixed amplitude of the field the absorbed power
grows quadratically with field frequency and attains a virtually
maximal value at ω∗ 
 MSHVm/6ηVh; any further increase
of ω is inefficient.
The above-given estimates do not contain temperature ex-
plicitly, and as such are appropriate mostly for the high-
field/massive-particle case. More accurate considerations
bring in the thermal effect, which is the greater the higher
the temperature of the system. For example, as follows from
Fig. 3, at ωτB = 0.2 the quadratic behavior of SLP still
holds for the fields, which exceed H∗ by almost an order
of magnitude. Similar underestimation one encounters for
ω∗ as well, see in Fig. 3(b) the curve corresponding to
ξ = 2 that is the lowest of the values presented. However,
the mentioned deviations reduce rapidly with the temperature
decrease.

Comparison with the conventional case—linearly polarized
oscillating field—reveals a number of differences between the
field and frequency behaviors of heating. These differences are
caused by a specific mechanism inherent to the rotary motion
of a particle: dynamic crossover between the synchronous
and asynchronous regimes. The transition from one regime
to another can be induced, for example, by increasing the
field amplitude while keeping the frequency constant. In the
crossover point the system energy dissipation (absorption) is
maximal. Moreover, in the crossover region the rotational
magnetic heating is substantially more efficient and has
higher frequency selectivity than oscillatory heating. This
domination is not universal, however. Under off-maximum
conditions there is a sufficiently wide parameter domain (low
frequency and/or strong field), where the rotational absorption
is lower than that induced by an oscillating field of the
same amplitude and frequency. This is one of manifesta-
tions of a fundamental difference between the asymptotic
field dependencies of SLP: saturation for the rotation case
and linear increase for the oscillation one, cf. Figs. 3(a)
and 4(a).
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