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Validity criterion of the radiative Fourier law for an absorbing and scattering medium
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For radiative heat transfer applications, in particular in homogenized phases of porous media, an exhaustive
and accurate validity criterion of the radiative Fourier law, depending only on the logarithmic derivative of the
temperature field and an effective absorption coefficient, accounting for possible multiple scattering phenomena,
has been established for a semitransparent medium. This effective absorption coefficient is expressed as a function
of the absorption coefficient, the albedo, and the scattering asymmetry parameter. The criterion can be applied to
semitransparent media that do not follow Beer’s laws related to extinction, absorption, and scattering.
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I. INTRODUCTION

In many applications, semitransparent media are often
optically thick at a spatial scale δ for which they are practically
isothermal. In these conditions, the simplest and most common
model to calculate the radiative flux and power field within
medium is based on a radiative Fourier law, historically called
the Rosseland approximation [1]; this model is widely applied
in many fields [2], such as foams [3], insulate fibers [4,5],
powder bed [6,7], and core nuclear reactor [8], without clear
criterion on the temperature gradient field, to our knowledge.

This model, in particular, is often used for homogenized
phases of porous media commonly assumed to follow Beer’s
laws related to extinction, absorption, and scattering. The
radiative conductivity or conductivity tensor are then
expressed as functions of extinction and scattering coeffi-
cients and a scattering phase function. The Fourier law is
often obtained from simple linearization approaches; see, for
instance, Ref. [9]. A physical perturbation approach of the
radiative transfer equation (RTE) has been developed by Bellet
et al. [10], and directly leads to the radiative conductivity
model.

However, in the cases of most of the statistically anisotropic
porous media [10,11] and of many statistically isotropic porous
media of low or intermediate porosity [12], Beer’s law is no
longer valid. In these cases, a generalized radiative transfer
equation (GRTE) has been recently developed by Taine et al.
[11]. This equation degenerates into a classical RTE for media
of large optical thicknesses (i.e., in the application conditions
of the radiative Fourier law [11]).

The validity of the diffusion approximation applied to
biomedical engineering applications has been studied by an
electromagnetic approach, which is a similar problem [13,14]
or has been limited to the calculation of the reflection
properties of a body [15]. Other studies deal with the diffusion
approximation in photonics, either for laser technology [16]
or for nuclear applications [17]. To our knowledge, no clear
and accurate criterion of validity of the Fourier law has been
introduced for radiative heat transfer calculations (i.e., the
determination of the radiative fluxes or radiative powers per
unit volume in a semitransparent medium).
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The aim of the present paper is to establish a simple and
accurate validity criterion of the radiative Fourier law for
radiative transfer, valid even for a non-Beerian semitransparent
medium. This criterion depends on the temperature field and
the physical parameters involved of the RTE (or GRTE). The
radiative Fourier law is not valid in the boundary layer of
the semitransparent medium since the intensity field strongly
depends in this layer on the radiative boundary conditions
applied to the whole medium [18]. The width of this layer
also depends on these conditions [19] and can be determined
case by case. Consequently, the present study is limited to
the establishment of the validity criterion in the core of a
semitransparent medium.

Section II deals with the physical analysis that allows us
to introduce the framework of the criterion and to define a
monodimensional benchmark case. The reference models and
the model based on the Fourier law are developed in Sec. III. In
Sec. IV, the validity criterion of the Fourier law is established.
It is expressed versus both the albedo ω and the asymmetry
parameter of scattering g of the medium.

II. PHYSICAL ANALYSIS

A. Perturbation method

In the general case of a homogenized medium that does
not follow Beer’s law (for instance, homogenized phases of
many porous media), the variation of the intensity Iν , in the
direction (θ,ϕ) between the point M of abscissa s ′ and the
point of abscissa s ′ + ds ′, is given in the core of the medium
by the GRTE [11]

dIν

ds ′ (s ′,θ,ϕ) = −
∫ s ′

sb

Sν(s,θ,ϕ)
dGext ν

ds ′

× (s ′ − s,θ,ϕ)ds + Sν(s ′,θ,ϕ). (1)

The first term of the second member of Eq. (1) corresponds
to the extinction in the range [s ′,s ′ + ds ′] of the sum of
the contributions, from the boundary s = sb to s = s ′, of the
source terms Sνds of the current ranges [s,s + ds]. Gext ν is
the extinction cumulated distribution function from s to s ′ in
the direction (θ,ϕ). The second term of the second member of
Eq. (1) Sν is the sum of an emission term Se

ν and a scattering
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source term Ssc
ν , at the point M of abscissa s ′, in the direction

(θ,ϕ),

Sν(s ′,θ,ϕ) = Se
ν(s ′,θ,ϕ) + Ssc

ν (s ′,θ,ϕ). (2)

The emission term is given by

Se
ν(s ′,θ,ϕ) = Kνn

2
νI

◦
ν [T (s ′,θ,ϕ)], (3)

where I ◦
ν is the equilibrium radiation intensity in vacuum,

given by Planck’s law, and Kν is the generalized absorption
coefficient at equilibrium; nν is the effective refractive index
that depends on the direction (θ,ϕ) if the medium is stochasti-
cally anisotropic [11]. The scattering source term in the range
[s ′,s ′ + ds ′] at the point M of abscissa s ′ in the considered
direction (θ,ϕ), given by

Ssc
ν (s ′,θ,ϕ) =

∫ 4π

0

∫ s ′
1

s1b

dPscν

ds ′
1

(s ′
1 − s1,θ1,ϕ1)

× pν(θ1,ϕ1,θ,ϕ)

4π
Sν(s1,θ1,ϕ1)ds1d�1, (4)

is due to the cumulated effect of radiations issued from any
current direction (θ1,ϕ1) of the whole space; pν is the scattering
phase function from the direction (θ1,ϕ1) to (θ,ϕ). From the
point of view of the current incidence direction (θ1,ϕ1), the
radiation scattered in (θ,ϕ) is issued from the contributions of
all the source terms Sνds1 of the current ranges [s1,s1 + ds1],
from a boundary s1 = s1b to s1 = s ′

1; s ′
1 is the abscissa of the

same point M in the direction (θ1,ϕ1). Pscν is the scattering
cumulated probability from s1 to s ′

1 in the direction (θ1,ϕ1).
Finally, the radiative flux at a point M of coordinate xk , in
tensorial notation, is obtained from the intensity field at M by

qj (xk) =
∫ ∞

0

∫ 4π

0
Iν(xk,θ,ϕ)ujd�dν, (5)

where uj is the unit vector associated with the direction i.
In the case considered here of a semitransparent medium

that is optically thick on a spatial scale δ, considered as
isothermal, it has been established that the GRTE degenerates
into a classical RTE based on generalized extinction, absorp-
tion, and scattering coefficients at equilibrium, respectively
called Bν(θ,ϕ), Kν(θ,ϕ), and 	ν(θ,ϕ) [11]. Consequently,
even in a case of a strongly anisotropic porous medium, we
only use in the following a classical RTE. For the sake of
simplicity we also consider that the extinction, absorption,
and scattering coefficients, respectively called βν , κν , and
σν , and the refractive index nν , are independent of the
direction (θ,ϕ). Moreover, we assume that the scattering phase
function pν only depends on the scattering angle cosine u′ · u,
where u′ and u are the unit vectors of the incidence and
scattering directions, respectively. We will consider here the
classical Henyey-Greenstein approximation. In the case of an
anisotropic medium, the results associated with the three main
directions have to be considered. The nondimensional RTE,
associated with the previous assumptions, is

1

βνδ
uj

∂Iν

∂x+
j

(x+
k ,u) + Iν(x+

k ,u)

= (1 − ων)n2
νI

◦
ν [T (x+

k )] + ων

4π

∫
4π

pν(u′ · u)Iν(x+
k ,u′) d�′,

(6)

where ων = σν/βν is the albedo, the nondimensional abscissa
x+

j is equal to xj/δ, and uj∂Iν/∂x+
j stands for the tensorial

notation of dIν/ds+. It worth noticing that the quantity (βνδ)−1

is the ratio of an extinction length lext ν to the spatial scale δ.
That is, in fact, an extinction Knudsen number

Knext
ν = lext ν

δ
= 1

βνδ
, (7)

similar to the molecular Knudsen of the Boltzmann transport
theory [20,21]. Since the medium is optically thick for the
thickness δ, Knext

ν is small in front of unity and the RTE can
be solved by a perturbation method, as the similar Boltzmann
equation. The intensity is then written

Iν(xk) = I (0)
ν (xk) + I (1)

ν (xk) with I (1)
ν (xk) � I (0)

ν (xk), (8)

where I (0)
ν (xk) is the solution of the RTE of zero order vs Knext

ν

(i.e., independent of Knext
ν ), that is equal to the equilibrium

intensity n2
νI

◦
ν [T (xk)] [18,22]. The contribution to the radiative

flux of the zero-order solution is null, since it corresponds to
the local thermal equilibrium (LTE) conditions of the radiative
field, similar to the common LTE of a material system used in
heat transfer.

The first-order solution I (1)
ν (xk), proportional to the pertur-

bation parameter Knext
ν , is equal to

I (1)
ν (xk,u) = −n2

ν

βν

uj

∂I ◦
ν

∂T
(T )

∂T

∂xj

(xk)

+ σν

4πβν

∫
4π

I (1)
ν (xk,u′)pν(u′ · u) d�′. (9)

It is worth noticing that the zero-order solution of the RTE
has been used in the first term of the first member of Eq. (6);
indeed, the contribution of the perturbation order larger than
one is neglected. The only contribution to the radiative flux
in Eq. (5) is issued from I (1)

ν (xk,u). The solution at first-order
perturbation I (1)

ν of the implicit Eq. (6) is proportional to the
opposite of the first term of the first member of Eq. (6).
Consequently the radiative flux, given by Eq. (5), can be
written

qF
j (xk) = −k

∂T

∂xj

(xk), (10)

which is a radiative Fourier law, characterized by a radiative
conductivity k. Under the previously considered assumptions,
it is given by

k = 4π

3

∫ ∞

0

n2
ν

κν + σν(1 − gν)

∂I ◦
ν

∂T
[T (xk)] dν, (11)

as established in Ref. [22] and Appendix B of Ref. [11]; gν is
the asymmetry parameter of scattering defined by

gν = 1

4π

∫
4π

pν(u′ · u) cos θ d�. (12)

For determining the validity criterion of the radiative Fourier
law in the core of the semitransparent medium, the study is lim-
ited in the following to a slab of very large absorption optical
thickness, characterized by a monodimensional temperature
field T (x). The geometry is axisymmetrical of axis Ox; θ

is the angle of a current direction u with Ox. The physical
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quantity that is useful in radiative heat transfer is the radiative
power per unit volume, calculated from the Fourier law

P F = d

dx

(
k
dT

dx

)
. (13)

B. Research of criterion

In the simple case of an emitting and absorbing, but
not scattering, semitransparent medium, the physical validity
condition of the Fourier law in any propagation direction is
that the transport term of Eq. (8) (i.e., the first term of its first
member) is small in front of the other terms, in particular the
emission term; that is, in dimensional quantities

n2
ν cos θ

dI ◦
ν

dT
(T )

dT

dxj

(xk) � κνn
2
νI

◦
ν (T ). (14)

The corresponding hemispherical fluxes are obtained by
multiplying each member of Eq. (14) by cos θ and integrating
them over the half space, associated with cos θ > 0; that is,

2π

3

dI ◦
ν

dT
(T )

dT

dxj

(xk) � κνπI ◦
ν (T ). (15)

By integrating over the whole spectrum, Eq. (15) becomes

1

T

dT

dx
� κP(T ), (16)

where κP(T ) is Planck’s mean absorption coefficient [18,22].
We consider now an emitting, absorbing, and scattering

semitransparent medium, of refractive index n equal to unity,
because n does not play any role in Eqs. (15) and (16). The
physical role of scattering is only indirect in the considered
conditions. The emission-absorption phenomena, which still
remain the keys of the local radiation thermalization, are now
considered along all the path of a ray, which possibly under-
goes multiple scattering phenomena, before total absorption.
This broken path length, denoted la, is shown in Fig. 1. Due to
scattering phenomena, the effective distance EA traveled up to
total absorption is drastically reduced as shown in Fig. 1, and
the size of the smallest effective optically thick volume element
is now smaller than δ. We consider only monodimensional
transfer between elementary layers k and q (see Fig. 2);

FIG. 1. Emitting, absorbing, and scattering medium; broken path
of a power bundle from emission in E, up to absorption in A; la: total
length of the path before absorption; leff

a : effective traveled distance
along x axis.

FIG. 2. Considered system and temperature profile. k and q

denote the cell indexes.

therefore only the projection leff
a of the distance EA over the

x axis is considered. At this step, we estimate that an effective
absorption coefficient κeff accounting for multiple scattering
phenomena can be associated with an averaged value of leff

a .
On the basis of the previous analysis, we research, espe-

cially for a scattering medium, a quantitative criterion that
generalizes Eq. (16), of the type

1

κeff

1

T

dT

dx
� 1, (17)

where κeff has to be determined as a function of the absorption
coefficient κ , the albedo ω, and the scattering phase function
of the medium. More precisely, we search then to express
(P − P F)/P , the relative accuracy on the radiative power per
unit volume P , as a function of the local parameter χ

χ = 1

κeff

1

T

dT

dx
. (18)

If the previous physical analysis is true and κeff has a physical
meaning, the quantitative validity criterion of the Fourier law
should not vary in the core of any semitransparent medium
characterized by a uniform value of the logarithmic derivative
of the temperature field (i.e., by an exponential temperature
profile). For this reason we study in the following, as shown
in Fig. 2, the temperature fields of the type

T (x)

Tmax
= exp

[
γ

(
x − ηmax

κ

)]
with γ = 1

T

dT

dx
, (19)

in slabs of absorption optical thickness κL, equal to 2ηmax,
where L is the width of the slab; x varies in the range
[−ηmax/κ; ηmax/κ]. It is worth noticing that for a given medium
characterized by κeff , the exponential temperature profile
characterized by γ and given by Eq. (19) is, at any point x,
the limit associated with a given value μ of (P − P F)/P . Real
temperature profiles are not exponential. A temperature profile
that verifies the criterion (P − P F)/P < μ must exhibit, at any
point x, a slope weaker than the one of this exponential profile.

III. REFERENCE AND APPROXIMATED MODELS

The aim of this section is to build an accurate reference
database of the radiative power field within the considered
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slab in order to define the validity criterion of the radiative
Fourier law from comparisons with results issued from this
law. All of the analysis is based on Planck’s average absorption
coefficient; consequently, calculations will be carried out in
the following by considering a gray slab characterized by
an absorption coefficient κ , an albedo ω, and an asymmetry
parameter g. For the sake of simplicity, the scattering phase
function p is chosen of the Henyey-Greenstein type:

p(θsc) = 1 − g2

(1 − 2g cos θsc + g2)3/2
, (20)

where θsc is the scattering angle. Consequently the study will
be carried out with the temperature field, defined by Eq. (19)
vs κ , ω, and g.

The slab of absorption optical thickness equal to 2ηmax

is discretized in N volume elements i of width d equal
to 2ηmax/(Nκ). Since this study is focused to the core of
the medium, we will not carry out an exhaustive study of
the boundary conditions. Nevertheless, two types of radiative
boundary conditions will be considered: (i) gray opaque walls
of emissivity ε, characterized by a diffuse reflection law,
in the restrictive case of a purely absorbing medium and
(ii) in all cases, external cold and passive media (i.e., absorbing
but nonemitting and nonscattering media). The temperature at
the boundaries are deduced from Eq. (19), that is, Tmax and
Tmax exp(−2ηmaxγ /κ).

A. Reciprocal Monte Carlo approach

The reference model for calculating the radiative power
within the considered system is a fully reciprocal Monte Carlo
transfer approach, based on a huge number of realizations of
optical paths. The reciprocity principle is valid for an emitting,
absorbing, and scattering medium with or without partially
reflecting walls [23]. It states that the ratio of Pea

kq , power
emitted by a cell k (volume or surface element) and absorbed
by another cell q, to Pea

qk , power emitted by q and absorbed by
k, is given, under the considered gray assumptions, by

Pea
kq

Pea
qk

=
(

Tk

Tq

)4

. (21)

The radiative power in a cell q is then

Pq =
N∑

k=1

(
Pea

kq − Pea
qk

)
. (22)

In Eq. (22), the summation includes the two possible gray
boundary walls; it is limited to the N volume elements, when
the external medium is cold.

Any realization r is characterized by a developed broken
path from a source point O. The probability of scattering
between the curvilinear abscissa s and s + ds is given by

d�sc = exp

[
−

∫ s

0
κ(s ′) ds ′

]

×
{

exp

[
−

∫ s

0
βω(s ′) ds ′

]
βω(s) ds

}
. (23)

The absorption and scattering events are statistically indepen-
dent; therefore, absorption can be treated in a deterministic

manner and scattering can be stochastically treated [22]. More
precisely, for a given realization, a point where a scattering
phenomenon occurs is stochastically determined by using the
scattering distribution function fsc(s); fsc(s) ds is the last
factor in braces of Eq. (23). The distance lsc at which the
next scattering phenomenon occurs is obtained by solving the
equation

∫ lsc

0 fsc(s) ds = a, in which a is a randomly generated
number in the range [0; 1], according to a uniform law [18,22].
Along a given path, multiple scattering phenomena can occur
before total absorption. Any scattering direction (θsc,ϕsc) is
also stochastically characterized from the scattering phase
function, that is, in fact, a scattering probability. Consequently,
the optical path associated with a realization r is characterized
by a set of consecutive segments; each of them, from the
second one, begins and ends with a reflection or a scattering
phenomenon. Each segment is divided in elements associated
with crossing of cells k, characterized by assumed uniform
conditions; c stands for the segment index and Fc the point
associated with an impact on the cell k or a scattering event in
the cell k. τr (EFc) is then the cumulated transmissivity from
the emission point of the path E to the reflection or scattering
point Fc. The quantity αkcr , equal to 1 − exp(−κlkc), is the
absorptivity associated with a segment of length lkc; lkc is the
distance within the cell k, from the point Fc, that is an entry
point or a scattering point, to the next scattering point or exit
point, as shown in Fig. 3.

In these conditions Pea
qk , that appears in Eq. (21), is

calculated by a stochastic approach, at the limit of a large
number Nr of realizations. For any realization r , all the power
Pe

q is assumed emitted by a cell q, and we obtain

Pea
qk = 1

Nr

Nr∑
r=1

Pea
qkr , (24a)

Pea
qkr = Pe

q

(
Mc∑
c=1

τr (EFc)αkcr

)
. (24b)

It is worth noticing that the pseudorandom number gener-
ator used here is the Mersenne Twister algorithm (MT19937),
based on the multiple-recursive matrix method and developed
by Matsumoto and Nishimura [24]. This algorithm provides
a huge period of 219937 that is suitable for Monte Carlo
simulations.

The previous calculations lead to the stochastic determina-
tion of Pea

kq , and consequently of Pea
qk , by using the reciprocity

principle given by Eq. (21). In practice, when the external
medium is cold and nonscattering (T = 0), which corresponds

FIG. 3. Path of a power bundle with scattering.
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to the strongest limitation of the Fourier law, a universal
and symmetrical function Pea

kq has been built with 8 × 106

realizations from the same cell, and cut for an absorption
optical thickness ηmax equal to 10. The relative standard
deviation σ (Pea

kq)/Pea
kq is typically equal to 2 × 10−3 for a

number of volume cell equal to 1000. When the boundaries are
opaque gray walls, specific functionsPea

kq have been calculated,
that take into account the reflection by these walls.

Obviously, all the calculations have been carried out by
using nondimensional quantities. Tmax has been chosen as
reference temperature. The dimensional reference for the flux

in any boundary cell or the power per unit area is equal to
4κdσST

4
max, where σS is the Stefan-Boltzmann constant. As

the width d of any cell is equal to 2ηmax/(Nκ), this reference
is 8ηmaxσST

4
max/N .

B. Reference model for an emitting and absorbing medium

The monodimensional radiative power field of an emitting,
absorbing, nonscattering semitransparent medium slab, sur-
rounded by gray opaque walls of emissivity ε, is given by an
analytical expression [22]

P An = 4κσST
4

max

{
1

2
E2(ηmax − η)

∫ ∞

0

πI1ν(ηmax)

σST 4
max

dν + 1

2
E2(η)

∫ ∞

0

πI2ν(−ηmax)

σST 4
max

dν + 1

2

∫ η

−ηmax

E1(η − η′)
[
T (η′)
Tmax

]4

dη′

+ 1

2

∫ ηmax

η

E1(η′ − η)

[
T (η′)
Tmax

]4

dη′ −
[
T (η)

Tmax

]4
}

, (25)

where I1ν and I2ν are the intensities leaving the boundaries 1 and 2, respectively; they are given by∫ ∞

0
πIjν(ζj )dν = σS

1 − [(1 − ε)E3(2ηmax)]2

{
εT 4

j + ε(1 − ε)E3(2ηmax)T 4
i + 2κ(1 − ε)2E3(2ηmax)

∫ ηmax

−ηmax

E2(η′ − ζj )T 4(η′)dη′

+ 2κ(1 − ε)
∫ ηmax

−ηmax

E2(ζi − η′)T 4(η′) dη′
}

, (26)

where En are the n order exponential integral functions [25]
and ζj corresponds to +ηmax or −ηmax. In the case of cold
nonscattering external media the two first terms within the
largest brackets in Eq. (25) vanish.

C. Model based on the Fourier law

The power per unit volume P F associated with the use of
the Fourier law, given by Eq. (13), applied to the exponential
temperature profile of Eq. (19), is simply

P F = 4σST
4

max
16γ 2(1 − ω)

3κ(1 − ωg)

[
T (x)

Tmax

]4

. (27)

IV. RESULTS AND DISCUSSION

In the following we compare three kinds of solutions:
(i) analytical, issued from Eq. (25) for nonscattering media;
(ii) obtained by Monte Carlo simulation in Sec. III A, and
(iii) issued from Eq. (27) (Fourier law), for scattering and
nonscattering media.

A. Emitting and absorbing medium

An example of radiative power per unit volume P within a
nonscattering slab of absorption optical thickness ηmax = 10,
surrounded by an external cold and nonscattering medium,
is shown in Fig. 4. The reference Monte Carlo method of
Sec. III A exhibits a good agreement with the analytical solu-
tion, deriving from Eq. (25); the relative standard deviation of
Monte Carlo calculations is around 0.01%. The shapes of these

curves in the radiative boundary layers [−10; −4] and [3; 10],
where the Fourier law is not valid, are due in the considered
case to the fact that the external medium does not emit.

The radiative power per unit volume, corresponding to
cases of gray opaque boundaries of different emissivities, is
also shown in Fig. 4. The Monte Carlo simulation, carried
out for ε = 0.8, fits the analytical solution given by Eq. (25),

FIG. 4. Purely absorbing medium. Nondimensional radiative
power P/(80n2σST

4
max/N ), vs κx, for an external cold medium

(N = 1000) or for different values of wall emissivity (N = 200).
γ /κ = κ−1(T −1dT /dx) = 0.025. Calculations from Monte Carlo
approach (MC); analytical from Eq. (25) (An), and from the Fourier
law (F).
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with a relative standard deviation of about 0.005. Calculations
based on the Fourier law are also in good agreement with
this reference model in the core of the medium. It is worth
noticing that the discrepancy from the Fourier law is practically
independent of the emissivity value, for all the range [0; 1].
There is no difference between analytical calculations and
the Monte Carlo calculations, if we account for the standard
deviation of this Monte Carlo calculation of about 0.006, as
shown in the case ε = 0.8. The failure of the conduction model
in the radiative boundary layers is again highlighted here. The
widths of the radiative boundary layers are much smaller in
these last cases than in the case of a cold external medium
that does not emit. Consequently we only consider, in the
following, the more restrictive case of a cold external medium.

B. Emitting, absorbing, and scattering medium

In order to quantify the validity conditions of the radia-
tive Fourier law, the relative discrepancy (P − P F)/P has
been exhaustively calculated for an emitting, absorbing, and
scattering medium, as a function of the albedo ω varying in
the range [0; 0.99] and the asymmetry parameter g varying
in the range [−0.99; 0.99]. For instance, (P − P F)/P is
plotted as a function of ω in Fig. 5(a), for an isotropically
scattering medium (g = 0). It clearly appears that (P − P F)/P
is uniform in the core of the medium whatever the value

FIG. 5. External cold medium (N = 1000). γ /κ = 0.025. Refer-
ence calculations from Monte Carlo approach (MC) for a scattering
medium, or analytical from Eq. (25) (An) for a nonscattering medium.
(a) Relative discrepancy on radiative power vs ω. (b) Relative
discrepancy on radiative power vs g.

of the albedo ω, when 1/T dT /dx is uniform. This fact is
coherent with the criterion given by Eqs. (17) and (18) of
Sec. II B. When ω increases, the Fourier law validity criterion is
increasingly better verified; indeed, the scattering phenomena
shorten the mean free effective path of absorption κeff−1, as
shown in Fig. 1; the effective absorption thickness of the
medium increases for the same distance, projected in axis x.
Therefore, the relative discrepancy profile is flat in this optical
thickness range for high albedo values, and the influence of
the boundaries on the power within the core of the medium
strongly vanishes.

Then the calculations have been performed for an
anisotropic scattering, characterized by the asymmetry para-
meter g. For instance, Fig. 5(b) shows the relative discrepan-
cies as a function of g, for ω = 0.5 and γ = 0.025. Here again
the uniformity of (P − P F)/P in the core of the medium is
coherent with the criterion of Sec. II B. The comparison of
the different curves of Fig. 5(b) shows that the asymmetry
parameter g also strongly influences the validity of the Fourier
law. For given values of both the albedo ω and the temperature
field parameter γ , the boundary influences are increasingly
stronger in the case of forward scattering, when g increases
in the range [0; 1]; indeed, the effective free mean path κeff−1

increases vs g. For larger values of the asymmetry parameter g,
the cosine of scattered angle θ ′

sc in the local basis is frequently
close to 1 and the absorption effective distance, taking into
account scattering κeff−1, tends to κ−1. It is consistent with the
fact that the quantity κ + σ (1 − g) that appears in the radiative
conductivity k tends to κ , when g is close to 1. On the contrary,
in the case of backward scattering, the effect of boundaries
vanishes when g decreases in the range [−1; 0]. Finally, the
free mean path κeff−1 is drastically reduced compared to κ−1. It
is worth noticing that when the porous medium is characterized
by a small value of ω and a large value of g (i.e., g tends
to one), the medium is weakly scattering, as illustrated in
Tables I and II.

Figure 6(a) shows the relative discrepancy between
radiative power calculated from the Fourier law and reference

0

FIG. 6. External cold medium (N = 1000). g = −0.2. Reference
calculations: analytical (nonscattering medium ω = 0); from Monte
Carlo approach (scattering medium ω �= 0). (a) Relative discrepancy
on radiative power for different values of ω vs γ /κ . (b) Universal
relative discrepancy on radiative power vs (γ /κ)/C(ω,g).
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TABLE I. Ratio κeff/κ vs the scattering albedo ω and the asymmetry parameter of scattering g.

ω

g 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

−0.99 1. 1.10 1.21 1.35 1.51 1.71 1.98 2.36 2.99 4.45 6.61 16.7
−0.9 1. 1.10 1.21 1.35 1.52 1.74 2.05 2.48 3.23 5.00 7.52 18.0
−0.7 1. 1.10 1.21 1.35 1.53 1.76 2.08 2.54 3.32 5.06 7.46 17.2
−0.5 1. 1.09 1.21 1.34 1.52 1.74 2.05 2.49 3.23 4.85 7.10 16.3
−0.3 1. 1.09 1.19 1.32 1.49 1.70 1.98 2.40 3.08 4.58 6.65 15.1
−0.2 1. 1.08 1.18 1.31 1.46 1.66 1.94 2.33 2.98 4.43 6.41 14.6
−0.1 1. 1.08 1.18 1.29 1.44 1.63 1.89 2.26 2.89 4.26 6.15 13.9

0.0 1. 1.07 1.16 1.28 1.41 1.59 1.84 2.19 2.78 4.08 5.88 13.3
0.1 1. 1.07 1.15 1.26 1.38 1.55 1.78 2.11 2.67 3.89 5.59 12.6
0.2 1. 1.06 1.14 1.24 1.35 1.51 1.72 2.03 2.54 3.69 5.29 11.9
0.3 1. 1.06 1.13 1.21 1.32 1.46 1.66 1.94 2.41 3.47 4.97 11.2
0.5 1. 1.04 1.10 1.16 1.25 1.35 1.51 1.73 2.12 3.00 4.23 9.48
0.7 1. 1.03 1.06 1.11 1.16 1.23 1.34 1.49 1.77 2.41 3.35 7.38
0.9 1. 1.01 1.02 1.04 1.06 1.09 1.13 1.19 1.31 1.62 2.11 4.34
0.99 1. 1.01 1.01 1.01 1.01 1.01 1.02 1.03 1.04 1.08 1.16 1.68

Monte Carlo results, as a function of γ /κ [i.e., (κT )−1dT /dx]
for different values of ω and g = −0.2, at the center of the
whole medium (η = 0). The value g = −0.2 is a typical
value of backward scattering in a porous medium. The use
of the Fourier law is increasingly more valid, when the albedo
increases.

The key result is that all of the curves related to scattering
media characterized by ω and g, in the ranges [0; 0.99] and
[−0.99; 0.99], respectively, are affine and merge with the curve
associated with a nonscattering medium (ω = 0), by replacing
κ by an effective absorption coefficient κeff = C(ω,g)κ . κeff

is, in particular, independent of γ , which characterizes the
temperature profile. At this step, the analysis of Sec. II B is
validated.

The set of values of C(ω,g) are given in Table I, versus
the albedo ω and the asymmetry parameter g. An example
is given in Fig. 6(b) for g = −0.2. The universal curve of

Fig. 6(b) is of practical interest to determine a quantitative
validity criterion of the radiative Fourier law. For instance, the
qualitative criterion for a relative discrepancy on the radiative
power per unit volume, due to the use of the Fourier law,
smaller than 0.01, is simply

γ = 1

T

dT

dx
< 0.033 κeff(ω,g), (28)

where κeff is the Planck average of an effective absorption
coefficient, which accounts for scattering phenomena (see
Sec. II B). The constant of Eq. (28), here equal to 0.033,
obviously depends on the required relative precision.

A real temperature profile is generally not exponential. It
fulfills the criterion (P − P F)/P < 0.01, if and only if (i) at
any point, its slope is smaller than that of the exponential
characterized by γ = 0.033 κeff(ω,g), (ii) the considered
points do not belong to a radiative boundary layer. The width

TABLE II. Ratio κeff/[κ + σ (1 − g)] vs the scattering albedo ω and the asymmetry parameter of scattering g.

ω

g 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

−0.99 1. 0.90 0.81 0.72 0.64 0.57 0.49 0.42 0.33 0.23 0.17 0.08
−0.9 1. 0.90 0.82 0.74 0.67 0.60 0.53 0.45 0.37 0.27 0.20 0.09
−0.7 1. 0.92 0.85 0.78 0.72 0.65 0.58 0.51 0.42 0.31 0.22 0.10
−0.5 1. 0.94 0.88 0.82 0.76 0.69 0.63 0.55 0.46 0.33 0.24 0.10
−0.3 1. 0.95 0.90 0.85 0.79 0.73 0.67 0.59 0.49 0.36 0.25 0.11
−0.2 1. 0.96 0.91 0.86 0.81 0.75 0.69 0.61 0.51 0.37 0.26 0.12
−0.1 1. 0.96 0.92 0.88 0.83 0.77 0.71 0.63 0.53 0.39 0.28 0.12

0.0 1. 0.97 0.93 0.89 0.85 0.79 0.73 0.65 0.55 0.40 0.29 0.13
0.1 1. 0.97 0.94 0.90 0.86 0.81 0.76 0.68 0.58 0.42 0.30 0.14
0.2 1. 0.98 0.95 0.92 0.88 0.84 0.78 0.70 0.60 0.45 0.32 0.14
0.3 1. 0.98 0.96 0.93 0.90 0.86 0.81 0.73 0.63 0.47 0.34 0.15
0.5 1. 0.99 0.98 0.96 0.93 0.90 0.86 0.80 0.70 0.54 0.40 0.18
0.7 1. 1.00 0.99 0.98 0.97 0.95 0.92 0.88 0.80 0.65 0.50 0.24
0.9 1. 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.94 0.85 0.72 0.39
0.99 1. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.84
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of the radiative boundary layer of the whole medium strongly
depends on the environment and the type of radiative boundary
condition. It can only be determined case by case, as has
been done here for gray boundaries or an external cold and
nonscattering medium.

It is worth noticing that the criterion of Eq. (28) must be
verified at any spatial scale, in particular at scales smaller
than 1/β. For instance, for a foam of typical β value equal
to 1 mm−1, a typical asymmetry parameter of scattering g =
−0.2 (see Ref. [26]) and an albedo equal to 0.99, κeff is equal
to 14.6 mm−1 and the condition becomes, at 300 K, dT /dx <

146 K mm−1. More precisely, this condition must be verified
at any scale, for instance a temperature variation smaller
than 1.5 K for a distance 10 μm. The spatial scale at which
temperature is defined in a porous medium could be another
limitation.

For degraded rod bundles of a nuclear core at the beginning
of a severe accident, the extinction coefficient is typically
equal to 0.1 mm−1, with ω = 0.2 and g = −0.2. For these
radiative conditions, the temperature gradient must not exceed
1550 K m−1 and 6200 K m−1, at 500 K and 2000 K, respec-
tively, but also, at lower scale, 155 K cm−1 and 62 K cm−1,
respectively.

It worth noticing, from Tables I and II, that the effective
absorption coefficient κeff accounting for multiple scattering
phenomena verifies the inequality

κ � κeff � κ + σ (1 − g), (29)

where [κ + σ (1 − g)]−1 is the characteristic length, for which
a collimated ray becomes isotropic. In particular, for g = 0 in
Table I, we obtain

κ � κeff � β. (30)

Consequently, if Knext = (βδ)−1 has been chosen as a pertur-
bation parameter, 1/β is not the exact length scale associated
with the Fourier law. Moreover, if the conductivity is expressed
vs κ + σ (1 − g) [see Eq. (11)], neither is [κ + σ (1 − g)]−1 the
pertinent scale.

V. CONCLUSION

An accurate validity criterion of the radiative Fourier law
has been determined for both Beerian and non-Beerian media.
It is only expressed versus the local temperature gradient at any
point of the medium and an effective absorption coefficient,
accounting for possible multiple scattering phenomena. This
effective absorption coefficient κeff has been determined versus
the real absorption coefficient κ , the albedo ω, and the
scattering asymmetry parameter g of the medium. It is worth
noticing that this effective absorption coefficient is larger than
the real absorption coefficient and smaller than the quantity
κ + σ (1 − g) that appears in the Fourier law (i.e., smaller than
the extinction coefficient β in the case of an isotropic scattering
phase function). Neither extinction β nor κ + σ (1 − g) are the
pertinent parameters that govern the validity criterion of the
Fourier law.
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