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We report calculations of the density of maximally random jamming of one-component and binary hard-disk
fluids. The theoretical structure used provides a common framework for description of the hard-disk liquid-
to-hexatic, the liquid-to-hexagonal crystal, and the liquid to maximally random jammed state transitions. Our
analysis is based on locating a particular bifurcation of the solutions of the integral equation for the inhomogeneous
single-particle density at the transition between different spatial structures. The bifurcation of solutions we study
is initiated from the dense metastable fluid, and we associate it with the limit of stability of the fluid, which we
identify with the transition from the metastable fluid to a maximally random jammed state. For the one-component
hard-disk fluid the predicted packing fraction at which the metastable fluid to maximally random jammed state
transition occurs is 0.84, in excellent agreement with the experimental value 0.84 ± 0.02. The corresponding
analysis of the limit of stability of a binary hard-disk fluid with specified disk-diameter ratio and disk composition
requires extra approximations in the representations of the direct correlation function, the equation of state, and
the number of order parameters accounted for. Keeping only the order parameter identified with the largest peak in
the structure factor of the highest-density regular lattice with the same disk- diameter ratio and disk composition
as the binary fluid, the predicted density of maximally random jamming is found to be 0.84–0.87, depending on
the equation of state used, and very weakly dependent on the ratio of disk diameters and the fluid composition,
in agreement with both experimental data and computer simulation data.
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I. INTRODUCTION

Interest in the character of the so-called random close-
packed state [1–3] of matter has grown with the recognition
that it is relevant to the understanding of phenomena and
systems as diverse as jamming of granular particles, the glass
transition, and porous media [4–9]. A random close-packed
state of an assembly of spheres is pictured as a collection of
particles packed, without ordering, into the densest possible
configuration. Given that the spheres have nonzero volume,
the highest-density configuration cannot have a truly random
distribution of particle positions. In fact, when the spheres are
jammed together in a fashion that prevents movement, there
is short-range order and quasi-long-range pair correlations,
but not long-range order. For that reason, following Torquato
et al. [10,11], we prefer to refer to this particle configuration
as the maximally random jammed (MRJ) state. There are
several definitions that prescribe quantitative realizations of
the qualitative picture of the MRJ state presented above. In
this paper we focus attention on the two-dimensional (2D)
hard-disk fluid, and we identify the transition to the MRJ
state with the termination of the metastable branch of the
fluid, that is with the limit of stability of the metastable
fluid [12]. The theoretical structure we use provides a common
framework for description of the hard-disk liquid-to-hexatic,
the liquid-to-hexagonal crystal, and the liquid-to-MRJ state
transitions. We will discuss the transition to the MRJ state for
both one-component and binary hard-disk fluids.

Consider first the one-component hard-disk fluid. The
best available information from computer simulations and
theoretical analyses indicates that as its density is increased
the hard-disk fluid freezes in two steps, first to a hexatic
phase and then to a hexagonal crystal [13]. A theory of the
transition to the MRJ state should also be capable of accounting
for the fluid-to-hexatic and hexatic-to-crystal transitions and

be capable of bypassing those transitions so as to describe
the metastable fluid state. We previously described a theory
of the two-dimensional (2D) hard-disk fluid-to-hexatic [14]
and hexatic-to-crystal [15] transitions based on analysis of
the nonlinear integral equation describing the inhomogeneous
density distribution at phase equilibrium. That analysis takes
the form of a search for bifurcation points at which the
uniform density of the fluid becomes unstable relative to
the density-distribution characteristic of the hexatic and/or
hexagonal crystal phases. For a specified representation of the
structure of the ordered state, the fluid-to-ordered-state phase
transition is identified with the lowest-density bifurcation
point. This identification picks out the transition between
equilibrium states of the fluid and solid. The hard-disk fluid
densities at which these transitions occur, expressed as packing
fractions η = Nπσ 2/4A, are found to be ηHexatic = 0.691 and
ηXtal = 0.708, respectively, both in very good agreement with
the results obtained from simulations reported by Mak [13],
namely, 0.703 and 0.723, respectively. We show in this paper
that if the fluid solution for the density is followed past the
freezing transition into the region in which the fluid is unstable
relative to the crystal, another bifurcation point is found, which
we identify with the transition to the MRJ state. We find, for the
one-component hard-disk fluid, ηMRJ = 0.84, in quantitative
agreement with the experimental value, 0.84 ± 0.02 [16]. The
packing fraction of the 2D close-packed hexagonal lattice is
0.9069.

Consider now the binary hard-disk fluid and the binary hard-
disk solid. There are many binary hard-disk ordered crystals,
each characterized by a specific ratio of disk diameters and disk
mole fractions. We restrict attention to the case that the smaller
hard disk cannot fit in the interior space of three tangent large
disks, which is true for α ≡ σ2/σ1 � 0.155. A few examples
of such lattices are displayed in Fig. 1. For the structures
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FIG. 1. Six ordered binary hard-disk lattices (abstracted from Ref. [33]). These have the following values of the disk-diameter ratio, mole
fraction of small disks, and packing fractions. From left to right in the top row, then left to right in the lower row: α = 0.6372, 0.5333, 0.4142,
0.3492, 0.2808, and 0.2168; x2 = 0.500, 0.667, 0.500, 0.857, 0.667, and 0.800; ηCP = 0.9110, 0.9142, 0.9202, 0.9262, 0.9300, and 0.9331.

displayed in Fig. 1, α ranges from 0.637 (upper left) to 0.217
(lower right) and the corresponding mole fraction of small
disks ranges from 0.500 to 0.800, yet the packing fractions
only vary from 0.9110 to 0.9331. When the binary hard-disk
fluid has the same disk-diameter ratio and composition as an
ordered solid we expect freezing to that solid to occur; if
the composition of the fluid deviates from that of the ordered
solid, we expect freezing to generate two or more ordered solid
phases with different compositions, one of which may be pure
component 1 or 2. The observation we wish to emphasize is
that the densities of binary hard-disk crystals are so modestly
different that it is reasonable to anticipate that the densities
of the corresponding maximally jammed states of the system
will have little variation with disk-diameter ratio and mole
fraction. Indeed, Bideau and co-workers [17] have reported
the results of mechanical simulations of binary hard-disk fluids
for 0.8 � α � 0.2, and mole fraction of the larger disk 0.9 �
x1 � 0.1. They report that the transition to the MRJ state occurs
at ηMRJ

MIX = 0.84 ± 0.02, independent of fluid composition and
of ratio of disk diameters. Barker and Grimson [18] have
reported the results of extensive computer simulations of the
transition to the MRJ state in binary hard-disk fluids. Their
results also show that this transition occurs at a density that
is sensibly independent of fluid composition and ratio of disk
diameters, with ηMRJ = 0.818 for the one-component fluid and
with an average value ηMRJ

MIX = 0.815 for the composition range
0.01 � x1 � 1. Although we have used the words “sensibly
independent,” the simulation data are sufficiently precise to
show a very weak dependence of ηMRJ

MIX on fluid composition
and ratio of disk diameters. We regard the observation that
ηMRJ

MIX is nearly independent of fluid composition and ratio of
disk diameters to be more remarkable than the observation of

a very weak variation of ηMRJ
MIX with these parameters. Finally,

we note that the simulation calculations of ηMRJ
MIX show a very

weak dependence on the shape of the simulation box and the
number of particles, suggesting that the difference between
the simulated and experimental transition densities may not be
significant.

II. THEORETICAL ANALYSIS: GENERAL REMARKS

The starting point for our analysis is an exact equation for
the singlet density distribution, ρ(1), as a function of position in
space. This equation, derived independently by Arinshtein [19]
and by Stillinger and Buff [20], has the form

ln
ρ(1)

z
=

∞∑
k=1

1

k!

∫
Sk+1(1, . . . ,k + 1)

k+1∏
i=2

ρ(i)d(i), (2.1)

where Sk+1(1, . . . ,k + 1) is the sum of all irreducible Mayer
diagrams of order k + 1, z is the fugacity of the system, and
d(i) denotes integration over the coordinates of particle i. The
right-hand side of Eq. (2.1) is the generating functional for the
set of n-particle direct correlation functions:

cn(1, . . . ,n) = δn−1 ln (ρ(1)/z)
δρ(2) · · · δρ(n)

. (2.2)

Then, defining the generalized free-energy functional
F (1; ρ(1)) ≡ ln (ρ(1)/z), we can rewrite Eq. (2.2) in the form
of a functional Taylor series relating the position-dependent
densities in two phases that differ in mean density by �ρ.
When one of the phases is selected to be the liquid and the
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other is crystalline with reciprocal lattice vector set {G} and
unit cell volume �S , Eq. (2.1) assumesthe form

F (ρL,�ρ(r1)) = F (ρL,0) +
∞∑

n=1

1

n!

∫
cL
n (1, . . . ,n + 1)

×
n+1∏
i=2

ρ(i)d(i), (2.3)

ρL + �ρ(r) = ρL

(
1 + φ0 +

∑
G

φG exp(iG.r)

)
, (2.4)

in which cL
n (1, . . . ,n + 1) is the n-particle direct correlation

function of the liquid. The coefficients {φĜ},

φG = 1

�S

∫
�S

dr
�ρ(r)

ρL

exp(−iG.r), (2.5)

serve as the order parameters for the transition.
Our analysis of the transition from the metastable fluid to

the MRJ state draws on the results of a very detailed study,
by Mayer, of the general properties of integral equations for
equilibrium distribution functions, and on an interpretation
of the behavior of the metastable fluid [21]. Mayer derived a
number of exact relationships between distribution functions at
different fugacities, say, zα and zβ , and an interpretation of the
solutions of the integral equations for the distribution functions
under the conditions of phase equilibrium. In particular, he
showed that Eq. (2.1) and its generalization to nonfluid systems
possess unique solutions in the one-phase regions supported
by the system, and that the equations have solutions for all
values of z except those, zγ , at which phase changes occur.
The equations do not describe the two-phase region since
specification of the fugacity of a system does not determine
the amounts of the two phases in equilibrium. The unique
values of zγ for which phase transitions occur are obtained
from the eigenvalues of an equation involving a kernel that is
related to the correlation functions of the system. In general,
the distribution functions of the system are different in different
phases, and do not approach one another as zα or zβ approaches
zγ , the fugacity at the phase transition; when zα = zγ or zβ =
zγ the solutions to the integral equation change character. The
location of the phase transition can, therefore, be determined
by finding where the solution to the nonlinear integral equation
[Eq. (2.1)] for the distribution function, or a surrogate derived
from it, changes character, i.e., bifurcates with a discontinuity
in the density. Of course, the accuracy of this procedure is
compromised by any approximations that reduce the accuracy
of Eq. (2.1) or Eq. (2.3).

The interpretation of the behavior of the metastable fluid
we use is based on the nonlinear integral equation obtained
by truncation of the right-hand side of Eq. (2.3) at the level
of the pair-direct-correlation function. This nonlinear integral
equation has a number of properties, one of which is pertinent
to the subject of this paper. Bagchi, Cerjan, and Rice [22]
showed that if the fluid solution for the density is followed
past the bifurcation point associated with the liquid-to-crystal
transition, into the region in which the fluid is unstable relative
to the crystal, another bifurcation point is found. If the structure
of the crystal at the density of the second bifurcation point
is such that it generates maximum covering of the space,

that bifurcation point locates the limit of stability of the
metastable fluid. The density of the metastable fluid at that
bifurcation point is less than the density of the crystal that
maximally covers the space, which leads to the identification
of that bifurcation point with the transition to the MRJ state.
This interpretation is supported by the exact solution of the
nonlinear integral equation for the one-dimensional hard-rod
fluid, and by the numerical location of the bifurcation point for
the three-dimensional hard-sphere fluid. In the former case the
density at the bifurcation point corresponds to close packing
of the hard rods, in agreement with the absence of a phase
transition in a one-dimensional system of particles with hard-
core interaction and in agreement with identification of the
limit of stability of the liquid with a divergent elastic modulus.
In the latter case the theory predicts the volume fraction for
the transition to the MRJ state, in excellent agreement with
simulation data, namely, φMRJ = Nπσ 3/6V = 0.63. As will
be shown below, that theory, with some modern extensions,
when applied to the one-component hard-disk fluid, leads to
the prediction ηMRJ = 0.84, in quantitative agreement with the
experimental value, 0.84 ± 0.02.

III. BIFURCATION ANALYSIS: ONE-COMPONENT
HARD-DISK FLUID

To find the bifurcation of solutions to Eq. (2.3), which
is exact, we truncate the right-hand side at the level of the
pair-direct-correlation function. This approximation leads to
an error of order φ0, the density difference between the
phases at the transition point. The error is smaller than when
a similar truncation is made to generate the hypernetted
equation for the pair-correlation function in a homogeneous
liquid. In that case the truncation leads to neglect of bridge
diagrams that contribute over the entire range of particle
separations relevant to the determination of the pair-correlation
function. In the present case, the truncation of the right-hand
side of Eq. (2.3) neglects the contributions from the triplet-
direct-correlation function at discrete points in Fourier space,
namely, c%

3 (0,0), c%
3 (0,G), and c%

3 (G,G′) [23]. It is argued
that c%

3 (G,G′) is very small, and hence can be neglected [24],
from which it follows that the remaining correction terms are
of the order of φ0. Our calculations show that for the hard-disk
fluid this error is less than 0.5%. After truncation as described,
Eq. (2.3) becomes

ρL + �ρ = ρL exp

[∫
cL

2 (r12)�ρ(r2)dr2

]
, (3.1)

noting that cL
2 (r1,r2) = c2(r12) in the homogeneous liquid and

zL = zS at the transition point. The combination of Eqs. (2.4)
and (3.1) then leads to

1+ φ0 = 1

�S

∫
�S

dr1 exp(σ0) exp

(∑
G

σGψGξG(r1)

)
, (3.2)

ψGn
=

∫
�S

dr1ξGn
(r1) exp

(∑
G

σGψGξG(r1)

)
∫
�S

dr1 exp

(∑
G

σGψGξG(r1)

) , (3.3)
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ψG = φG

1 + φG
,

ξG(r) = exp(iG.r),

σ0 = ρLφ0

∫
drcL(r) = φ0

(
1 − 1

S(0)

)
, (3.4)

σG = ρL(1 + φ0)
∫

drξG(r)cL(r) = (1 + φ0)

×
(

1 − 1

S(G)

)
,

with Gn the nth reciprocal lattice vector, and S(0) and S(G) the
structure functions of the hard-disk system evaluated at zero
and at reciprocal lattice vector G.

A visualization of the conditions for the solution of Eq. (3.3)
is presented in Fig. 2 for the simplest case in which only
the term corresponding to the first reciprocal lattice vector is
retained in Eq. (2.3). The bifurcation condition is then

σG(ρL,φ0)= (1 + φ0)

(
1 − 1

S(G)

)
= σ ∗

G. (3.5)

Equation (3.5) locates σ ∗
G at the point of tangency of

Eq. (3.3) and the straight line with slope 1/σG. When higher
accuracy is sought, by inclusion of higher-order reciprocal
lattice vectors, one must solve Eq. (3.3) simultaneously with a
set of equations, one for each of the reciprocal lattice vectors
included. These equations are

σGn
(ρL,φ0)= (1+φ0)

(
1− 1

S(Gn)

)
= σ ∗

Gn
, n=1,2,. . . .

(3.6)

FIG. 2. (Color online) Illustration of the bifurcation
condition [see Eq. (3.5)]. Denoting x = σGψG and
y = ψG, Eq. (3.3) can be written in the form y = x/σG =∫

ξG(r) exp (xξG(r))dr/
∫

exp (xξG(r))dr. The first term on the
right-hand side is shown as the straight line (solid red) with slope
1/σG and the second term is shown as the dotted (blue) curve. As
the curve (dotted blue) is fixed, the liquid-crystal phase transition
requires a small enough slope, that is, by Eq. (3.5) a large enough
S(G) that the line (red) becomes tangent to the curve (blue).

As just described, this procedure and selection of the
lowest-density bifurcation point defines the liquid-to-crystal,
or liquid-to-hexatic transition. And, as mentioned in the
Introduction, when applied to the hard-disk fluid, with suitable
representations of the order in the hexatic phase and the order in
the hexagonal crystal phase, the predicted liquid densities at the
transition points, namely, ηHexatic = 0.691 and ηXtal = 0.708,
are in very good agreement with available simulation data [13],
namely ηHexatic = 0.703 and ηXtal = 0.723.

The transition to the MRJ state is different from the
liquid-to-hexatic and liquid-to-crystal transitions in that it
proceeds from the metastable fluid at a density greater than that
at either the fluid-to-hexatic or the fluid-to-crystal transitions.
The fluid-to-crystal transition generates an ordered solid with
density less than that at close packing of the particles. Although
the fluid-to-crystal transition can be located for any particular
crystal lattice, each lattice with different stability relative to the
fluid and other crystal lattices, our analysis of the transition
to the MRJ state requires that the particular fluid-to-crystal
transition that is bypassed involves the crystal structure that
maximally covers the space when the particles are in contact.
For the 2D hard-disk system this is the hexagonal close-packed
lattice.

A schematic illustration of the consequences of following
the metastable fluid branch of the nonlinear integral equation
is displayed in Fig. 3. Figure 3(a) compares the Landau free
energy, as described by the Landau theory of first-order phase
transitions, as a function of an order parameter q. The dotted
(blue) line in this figure represents the Landau free energy at a
first-order transition point, with F (0) = F (q∗) and both q = 0
and q = q∗ minima of the Landau free energy. The solid (red)
line represents the Landau free energy at the limit of stability
of the fluid; the derivative of the free energy with respect to
q is zero at q = 0 and that point is not a local minimum
of the Landau free energy. Figure 3(b) displays a sketch of
Eq. (3.3) for the same conditions; the slope of the dotted (blue)
line gives the bifurcation condition for the liquid-to-crystal
transition and the slope of the solid (red) line +, which is
equal to 1, gives the condition for the limit of stability. The
conditions that define the limit of stability are Eq. (3.2) and

σG1 (ρL,φ0) = (1 + φ0)

(
1 − 1

S(G1)

)
= 1,

(3.7)

σGn
(ρL,φ0) = (1 + φ0)

(
1 − 1

S(Gn)

)
= σ ∗

Gn
for n � 2.

We have generated numerical solutions to Eqs. (3.2)
and (3.7) for several choices of sets of reciprocal lattice
vectors, using the Baus-Colot representation [25] of the direct-
correlation function of a two-dimensional hard-disk fluid. This
representation of the direct-correlation function is known to be
very accurate in the super-cooled fluid regime. The result of
our calculation is the prediction that the transition to the MRJ
state occurs at a packing fraction

ηMRJ = 0.84, φ0 = 0.003, S(G) ≈ 300, (3.8)

in excellent agreement with available experimental data [17],
ηMRJ = 0.84 ± 0.02. The calculated value of ηMRJ and the
value of S(G) at the first peak of the structure function are
found to be insensitive to the number of order parameters
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FIG. 3. (Color online) A comparison between (a) an illustration
of the Landau theory of a first-order transition and (b) an illustration
of the bifurcation conditions Eq. (3.5) for the liquid-to-crystal phase
transition [dotted (blue) line] and Eq. (3.7) for the limit of stability
[solid (red) line plus symbols].

included in the calculation (see Table I). We also note that our
calculations show that there is negligible change in density
at the transition to the MRJ state, justifying our truncation
of Eq. (2.3).

IV. THEORETICAL ANALYSIS: BINARY
HARD-DISK FLUID

Application of our analysis to the binary hard-disk fluid
requires information concerning the structure factor of the
fluid and, for the specified diameter ratio of the disks
and composition of the binary fluid, the structure of the
ordered phase with greatest coverage of the plane. The latter
information is required because our analysis of the transition
to the MRJ state implies that the particular fluid-to-crystal
transition that is bypassed involves the crystal structure that
maximally covers the space. Our analysis of the transition to

TABLE I. Dependence of fluid-to-maximally-random jammed
(MRJ) state transition density on number of order parameters.

ηMRJ S(G)

One order parameter 0.8407 ∼300
Three order parameters 0.8407 ∼300
Five order parameters 0.8408 ∼300

the MRJ state in a binary hard-disk fluid is more approximate
than for the pure hard-disk fluid because of uncertainties in
the fluid direct-correlation function and because we are able
to carry out the calculations only to the one order parameter
level, corresponding to locating the largest amplitude peak
of the structure function of the binary crystal structure that
maximally covers the space.

We restrict attention to binary hard-disk mixtures that have
disk diameter ratio and disk mole fractions corresponding to
an ordered binary hard-disk crystal. Then the extension of
Eq. (2.4) is the set of equations (i = 1, 2)

ρi(r) = ρL
i + �ρL

i (r)=ρL
i

(
1 + φi0+

∑
G

φiG exp(iG.r)

)
,

(4.1)

and Eq. (2.2) is generalized to

cij (r1,r2) = δ ln (ρi(r1)/z)
δρj (r2)

, (4.2)

and Eq. (3.1) becomes the set of equations (i = 1, 2)

ρL
i +�ρi(r1) =ρi exp

⎡
⎣∑

j=1, 2

∫
cij (r1,r2)�ρi(r2)dr2

⎤
⎦ .

(4.3)

The liquid-to-crystal phase transition of the one-component
liquid is identified with the bifurcation point of Eq. (3.5) at
which the density distribution changes from a constant to a
periodic function. Similarly, the liquid-to-crystal transition
of a binary mixture is identified with the density at which
simultaneous bifurcations of the two equations in the set (4.3)
occur. When only the term corresponding to the first reciprocal
lattice vector is retained in Eq. (4.1), this condition is met for
the binary mixture when λσ (G) = 1, where λσ (G) is the largest
eigenvalue of the matrix(

σ11G σ12G
σ21G σ22G

)
; σijG = ρL

i (1 + φi0)c̃ij (G);

c̃ij (k) =
∫

dr exp(ik.r)cij (r). (4.4)

Our analysis of the transition to the MRJ state in the
one-component hard-disk fluid revealed that the location of
the bifurcation point is primarily determined by the dominant
peak in the structure factor S(k), as shown (Table I) by the
insensitivity of ηMRJ and the peak value of S(k) to the number
of order parameters included in the calculation. We assume
the same insensitivity will be characteristic of the transition to
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TABLE II. Predicted values of ηMRJ obtained with various equations of state, with the direct correlation function obtained by the
procedure of Barrat et al., except that developed by Rosenfeld, which is a linear interpolation of the analytical solutions to the equation of
state under the Percus-Yevick approximation in one dimension and three dimensions. All of the equations of state, except that developed by
Rosenfeld, predict ηMRJ = 0.841 when α=1. However, only the equation of state represented in Eq. (4.7) provides an accurate prediction
of ηMRJ when α = 0.8.

Equation of state α=1 ηMRJ S(k) at MRJ α = 0.8 ηMRJ λS(k) at MRJ

Barrat et al. [26] 0.841 ∼300 0.902 ∼300
Henderson [31] 0.841 ∼300 0.893 ∼300
Jenkins-Mancini [29] 0.841 ∼300 0.897 ∼300
Rosenfeld [32] 0.754 ∼300 0.789 ∼300
Santos-Yuste-Lopez [30] 0.841 ∼300 0.903 ∼300
Xu-Rice [Eq. (4.7)] 0.841 ∼300 0.842 ∼300

the MRJ state of a binary mixture. To carry out the calculation
we introduce the matrix of structure factors defined by

[S(k)] =
(

S11(k) S12(k)
S21(k) S22(k)

)
; [S(k)]ij = [I − C(k)]−1

ij ;

(4.5)
[C(k)]ij = (ρiρj )1/2c̃ij (k).

It is the largest eigenvalue of [S(k)], denoted λS(k), that
determines the location of the bifurcation to the MRJ state.
Indeed, it is sufficiently accurate to assume that λS(k) = 300
because in the vicinity of the packing fraction corresponding to
this value of λS(k) an increase of 0.1% of the packing fraction
doubles the value of λS(k).

To obtain the matrix of structure factors of a given binary
mixture of hard disks we use a procedure proposed by Barrat
et al. [26]. This procedure is a generalization to binary mixtures
of the rescaling protocol of the Baus-Colot representation of
the pair-direct-correlation function of a one-component hard-
disk fluid. The protocol has two decoupled steps: (1) a guess of
the form of the direct-pair-correlation function, and (2) a guess
of the form of the equation of state. Consider, for example, the
one-component hard-disk fluid. The direct correlation function
is first written in the form c(r) = c(r = 0)f (r/a(η)), in which
c(r = 0) sets the overall scale of the function and f (r/a(η))
is a rescaling of the exact low-density expression for the
direct-correlation function with scaling factor a(η) a function
of the packing fraction. With the additional assumption that∫

c(r)g2(r)dr = 0, both c(r) and f (r/a(η)) can be calculated
from the equation of state. We note that this assumption is
exact in the Percus-Yevick approximation. Baus and Colot
then show that using the parametrized equation of state

p

ρkBT
= 1 + c1η + c2η

2

(1 − η)2
(4.6)

to calculate a(η), with c1 and c2 calculated to yield the
correct second and third virial coefficients, yields very good
predictions of the structure and the liquid-to-crystal transition
density. As shown in Sec. III, it also yields a very good
prediction of the density at which the transition to the MRJ
state occurs.

We have used the same rescaling procedure with the
direct-correlation functions proposed by Barrat et al. for
the binary hard-disk mixture. However, representations of
the equation of state of the binary hard-disk mixture are less
accurate than those for the one-component hard-disk fluid. It is

known that when extended to the binary hard-disk mixture the
analog of Eq. (4.7) overestimates the pressure at small packing
fraction and underestimates the pressure close to the MRJ
state [27,28]. Several different forms of equation of state
have been proposed to reduce these discrepancies [29,30].
We propose the following approximate equation of state for
the binary hard-disk mixture, expected to be accurate in the
regime close to the MRJ density:

p

ρkBT
= 1 + c1η + c2η

2

(1 − η〈σ 2〉/〈σ 〉2)2
. (4.7)

In Eq. (4.7), 〈σ 〉 = x1σ1 + x2σ2 and 〈σ 2〉 = x1σ
2
1 + x2σ

2
2 .

Using Eqs. (4.6) and (4.7) we have generated numerical values
of the matrix elements Sij (k) for binary mixtures with x1 =
x2 = 0.5 and various disk-diameter ratios. By replacing S(G)
in Eq. (3.4) with λS(G), the largest eigenvalue of the matrix
[S(k)] at k = G, we are able to predict, at the one-order
parameter theory level, the value of ηMRJ for a binary hard-disk
mixture with a specified disk diameter ratio. The value found
for the mixture with α = 0.8 and x1 = x2 = 0.5, ηMRJ = 0.84,

FIG. 4. Calculated values of ηMRJ for a binary hard-disk mixture
with composition x1 = x2 = 0.50 for the diameter ratio range 1 �
α � 0.7. The calculations of the composition-dependent structure
factors of the binary mixture were based on the procedure proposed
by Barrat et al. [26] with Eq. (4.7).
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is in excellent agreement with the experimental value obtained
by Bideau et al. [17]. The superiority of predictions based
on Eq. (4.7) to those obtained with several other choices of
equation of state is demonstrated by the entries in Table II.

We now focus attention on predictions of the MRJ packing
fraction, as a function of disk-diameter ratio, obtained using
Eq. (4.7). Figure 4 shows these predictions of ηMRJ for
a mixture with x1 = x2 = 0.5 for the range 1 > α > 0.7.
Clearly, ηMRJ is found to be almost independent of α except
for the range 0.72 � α � 0.76. A study of the position of
the peak of λS(k) as a function of α (see Fig. 5), and of the
structures of possible binary disk crystal lattices as a function
of α, reveals that the lattice that maximally covers the plane
changes in this range of α. We infer that the deviation from a
nearly constant value of ηMRJ seen in Fig. 4 is a consequence of
competition between these two lattices and the corresponding
peaking values of λS(k) in the range 0.72 � α � 0.760, which
is not accounted for by the one-order parameter theory we have
used.

The inference that there is a change in the structure of the
binary crystal that maximally covers the plane in this diameter-
ratio regime is supported by results reported by Fejes Toth [33].
He examined a large number of ordered arrangements of binary
disk mixtures with various diameter ratios that he considered to
be “good” in the sense that they appear to maximally cover the
plane. For the range 1 � α � 0.645 all the ordered structures
have the packing fraction π/

√
12 = 0.9069. In the range

0.645 � α � 0.637 there is a continuous transition between
two ordered lattices that differ only in the percolation of
contacts of the large disks, and the packing fraction increases
to 0.9110. We suggest that this transition between most densely
packed binary lattices is the one responsible for the competing
maximum eigenvectors that leads to the deviation seen in
Fig. 4 and the discontinuity seen in Fig. 5. We attribute the
difference between the diameter ratio at which the transition

FIG. 5. Calculated values of the peak position, K∗, of λS(k)
for a binary hard-disk mixture with composition x1 = x2 = 0.50
for the diameter ratio range 1 � α � 0.7. The calculations of the
composition-dependent structure factors of the binary mixture were
based on the procedure proposed by Barrat et al. [26] with Eq. (4.7).

FIG. 6. Calculated values of ηMRJ for a binary hard-disk mixture
with mole fraction composition given by the values of ηCP determined
by Fejes Toth for the densest covering of the plane. The calculations
of the composition-dependent structure factors of the binary mixture
were based on the procedure proposed by Barrat et al. [26]
with Eq. (4.8).

occurs obtained from our one-order parameter analysis and
that found by Fejes Toth to the approximations in our theory
and the restriction of the bifurcation analysis to the one-order
parameter level.

There is another approach to approximating the equation of
state of the hard-disk binary mixture, to be used as above to
calculate ηMRJ, that is worth discussing. Stillinger, Torquato,
and co-workers [10,34] have shown that the MRJ state exhibits
hyperuniform long-range order that is characterized by van-
ishing infinite-wavelength local volume fraction fluctuations
and divergent elastic moduli. The latter feature is captured by
the free volume equation of state [10]

p

ρkBT
= 2

1 − η/ηCP
, (4.8)

where we take ηCP to be the packing fraction of the close-
packed lattice as calculated by Fejes Toth [33]. There is
numerical evidence (quoted in Ref. [10]) that near the MRJ
density the free-volume model yields an accurate hard-disk
equation of state. The use of Eq. (4.8) and the procedure
described above yields sensible structure factors near ηMRJ

for binary mixtures with different α, and makes plausi-
ble predictions for ηMRJ at all α, albeit with a slightly
different value, ηMRJ = 0.857 at α = 1, from that found
in Sec. III.

V. DISCUSSION

A feature of the analysis presented in this paper is the
inclusion, in a common formalism, of the hard-disk liquid-to-
hexatic, liquid-to-crystal, and metastable liquid-to-MRJ state
transitions. This analysis is consistent with the views presented
by Stillinger, Torquato, and co-workers [10] concerning the
existence of a range of jamming densities rather than a
unique jamming density. Our formalism identifies particular
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bifurcations of the solutions of the integral equation for
the inhomogeneous single-particle density with particular
structural transitions. In each case, having selected the ordered
structure against which the fluid stability is tested, it is
the bifurcation point at lowest density that is identified
with the liquid-to-hexatic, liquid-to-crystal, and liquid-to-MRJ
state transitions. The liquid-to-hexatic and liquid-to-crystal
transitions are between states at equilibrium. That is not the
case for the liquid-to-MRJ state transition. That transition is
accessed by exploiting the fact that bypassing the bifurcation
point corresponding to the fluid-crystal transition that occurs
at lowest density, and thereby ignoring the transition to the
distribution of particles that has the lowest free energy, allows
the constrained metastable fluid to be described up to the limit
of stability of the fluid phase. Because all jammed states
lie outside the domain of stability of the fluid phase, our
identification of the density of the transition to the MRJ state
does not exclude the existence of jammed states with higher
density, as shown by Stillinger, Torquato, and co-workers.

There are subtle but distinctive differences between the
pair-correlation functions of the metastable fluid and the
MRJ state, a necessary condition for our analysis. As far as
short-range order is concerned, typically, the pair-correlation
function of an amorphous solid, or glass, has a fairly sharp
first peak, a split second peak, and third and subsequent
peaks that, although broad, are more pronounced than in
the parent liquid. Arguably more important, as shown by
Stillinger, Torquato, and co-workers, the MRJ state exhibits
quasi-long-range pair correlations and associated divergences
of elastic constants [10,34]. Given that several equations of
state represented in Eqs. (4.6), (4.7), and (4.8) all predict
a divergence of the pressure, albeit at different packing
fractions, the procedure described in Sec. IV to determine
the direct-correlation function of the dense metastable fluid
likely builds in, at some level of approximation, the latter

feature of the MRJ state. We note that Eq. (3.7) is a condition
of the several S(Gn) that have contributions from all particle
separations, and at the transition to the MRJ state the value of
S(G1) ≈ φ−1

0 becomes very large. That large value results from
the large separation behavior of the pair-correlation function.

Finally, we recall that Kozak, Brzezinski, and Rice [35]
have examined the conjecture that in a 2D system of hard
disks the densities at which the fluid-to-hexatic and hexatic-
to-crystal transitions occur can be correlated with the packing
densities of tessellations (patterned networks) that span the
2D space, and they describe possible tessellations that meet
this criterion. They argue that said tessellations do not actually
occur in the 2D hard-disk fluid, but that the densities at which
the fluid-to-hexatic and hexatic-to-crystal transitions occur
might be signatures of the existence of nearby tessellations
that completely span the 2D space, i.e., ghost configurations
that parallel the change in character of the solutions to the
integral equation for the inhomogeneous density-distribution
function. Taking the same point of view, we note that
Williams [36] has argued that a tessellation of 2D space
with rhombuses that have average internal angles of 105◦
and 75◦, uniformly distributed within the ranges 90◦–120◦
and 90◦–60◦, respectively, has a packing density of 0.813.
Williams identifies this packing density with the MRJ state.
The bifurcation from the metastable fluid to the MRJ state
might then be regarded as the signature of the nearby irregular
rhombic tessellation that spans the 2D space.
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