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Consistent thermodynamics for spin echoes
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Spin-echo experiments are often said to constitute an instant of antithermodynamic behavior in a concrete
physical system that violates the second law of thermodynamics. We argue that a proper thermodynamic treatment
of the effect should take into account the correlations between the spin and the translational degrees of freedom of
the molecules. To this end, we construct an entropy functional using Boltzmann macrostates that incorporate both
spin and translational degrees of freedom. With this definition there is nothing special in the thermodynamics
of spin echoes: dephasing corresponds to Hamiltonian evolution and leaves the entropy unchanged; dissipation
increases the entropy. In particular, there is no phase of entropy decrease in the echo. We also discuss the definition
of macrostates from the underlying quantum theory and we show that the decay of net magnetization provides a
faithful measure of entropy change.
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I. INTRODUCTION

The spin-echo effect [1] has received significant attention
in relation to the foundations of statistical mechanics [2–11]. It
arguably provides a (partial) physical realization of
Loschmidt’s velocity inversion paradox [12], albeit in the
context of nuclear magnetism rather than of gases. For this
reason, it is often stated that the spin-echo effect constitutes an
instance of a physical system manifesting antithermodynamic
behavior. More complex echo phenomena, for example,
Refs. [13,15], provide a fuller realization of the Loschmidt
inversion; that is, they involve the full many-body interactions.
Moreover, echo phenomena are a testing ground for ideas on
the origin of the irreversibility in macroscopic and mesoscopic
systems. However, the issue of providing a quantitatively
precise thermodynamic description arises even in the simplest
case of Hahn echoes [1].

The importance of the echo effects originates from the fact
that, after the inversion of spins by the action of external pulses,
a macroscopic system seems to evolve spontaneously from
a disordered state into an ordered one. This would appear
to contradict the non-equilibrium version of the second law
of thermodynamics. Many researchers express the opinion
that this contradiction is only apparent; the evolution is
truly irreversible and the decay of magnetization provides a
measure of entropy change during an echo. However, it is
difficult to make this statement quantitatively precise. The
usual notions of entropy (coarse-grained Gibbs entropy or
Boltzmann entropy), when applied to a spin system, show a
decrease in entropy after spin inversion [9,10]. Moreover, they
bear no relation to the echo decay that is thought to provide
a measure of irreversibility. In this paper, we emphasize the
necessity of a precise thermodynamic description, where the
entropy functional always remains a nondecreasing function
of time during an echo experiment.

To this end, we follow Boltzmann’s definition of entropy
and we specify macrostates relevant to the system. We argue
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that a consistent definition of macrostates cannot separate the
spin from the translational degrees of freedom, because they
become nontrivially correlated in the course of a spin-echo
experiment. Hence, by adapting Boltzmann’s coarse-graining
we define an entropy functional that provides a thermodynamic
description of spin-echo experiments, with no violation of the
second law. Furthermore, using simple quantum open-system
dynamics for the description of relaxation, we show that the
entropy increase is indeed a monotonically decreasing function
of magnetization decay in an echo.

For the description of the Hahn spin echoes it suffices, as
a first approximation, to treat the thermodynamic system as
an assembly of noninteracting microsystems. Interactions are
essential for the understanding of irreversibility, but they do
not affect the issue whether there is a phase of decreasing
entropy after spin inversion [10]. We, therefore, consider
an assembly of classical magnetic dipoles precessing in a
magnetic field. The assembly consists of N particles with
magnetic moments mi = m(cos θ sin φ, cos θ cos φ, sin θ ), in
terms of the spherical coordinates θ and φ; m is a constant equal
to gs, where g is the gyromagnetic ratio and s the magnitude
of the particle’s classical spin vector.

The total magnetization of the system is M = ∑
i mi . If

a constant magnetic field B is applied along the z axis, the
equilibrium configuration at temperature β−1 consists of all
dipoles oriented along the direction of the field, provided that
βmB � 1. A π

2 pulse is then applied to the system, rotating the
magnetic moments by π

2 so that they become oriented along
the x axis. At this moment (t = 0), the magnetic moment of
each dipole equals mi = m(1,0,0) and a strong magnetization
M(0) = Nm(1,0,0) along the x axis is measured.

The dipoles then precess around the z axis according to the
equation

ṁi = gmi ∧ Bi , (1)

where g is the gyromagnetic ratio. Each dipole precesses with
a different value Bi of the magnetic field, reflecting the fact that
the magnetic field B is not homogeneous within the material.

By solving Eq. (1) we obtain

m(t) = m(cos ωit, sin ωit,0), (2)
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where ωi = gBi is the angular frequency of precession for
the dipole i. The x component of the magnetization is then
Mx(t) = m

∑
i cos ωit . Assuming that the angular frequencies

ωi are randomly distributed in an interval [ωmin,ωmax], Mx(t)
rapidly becomes vanishingly small because of dephasing.

At t = τ , a π pulse is applied to the system, so that the
dipoles’ configuration is transformed as

m(cos ωiτ, sin ωit,0) → m(cos ωiτ, − sin ωiτ,0), (3)

that is, the pulse inverts the dipoles’ orientation on the x-y
plane. After inversion the dipoles precess freely. Hence,

mi(t) = m(cos(ωit − 2ωiτ ), sin(ωit − 2ωiτ ),0). (4)

At t = 2τ , Eq. (4) predicts that mi = m(1,0,0); that is,
there is strong magnetization in the x direction, the same as
at time t = 0. Apparently, the system starts from an “ordered”
state, it evolves into a “disordered” one at time t = τ , but after
the inversion it evolves back to the initial ordered state. Hence,
it seems as though the system evolves from a disordered into
an ordered state, without any external action during the time
interval [τ,2τ ].

The quantification of the latter statement requires the
definition of a nonequilibrium entropy function for the system.
If the entropy is defined in terms of the dipole degrees of
freedom alone, then the inevitable conclusion is that the
disordered state at t = τ is of higher entropy than the ordered
state at t = 2τ ; see Refs. [9] and [10] and, also, Sec. II.
It follows that during the time interval [τ,2τ ] the system
evolves spontaneously to states of lower entropy. This is a
manifestation of antithermodynamic behavior.

In spin-echo experiments, the cause of dephasing is the
spatial inhomogeneity of the magnetic field. In statistical
mechanics, an external magnetic field is treated as a constraint
external to the thermodynamical system. In particular, in
spin echoes the magnetic field constraint distinguishes the
dipoles by their position. Position is not an abstract label;
it is as much a physical degree of freedom as spin is.
The treatment of the dipole degrees of freedom in isolation
presupposes (i) a decoupling between translation and dipole
degrees of freedom and (ii) that any correlations between them
are insignificant. Condition i is not satisfied, however, the
translational degrees of freedom can be considered—to a good
approximation—as a bath inducing dissipation and noise on
the dipoles’ evolution. Condition ii is more problematic in the
sense that the inhomogeneity of the field creates correlations
between position and dipole degrees of freedom. The isolation
of the dipole degrees of freedom is a drastic simplification
because it removes all information about such correlations
from the entropy function.

The above argument strongly suggests that a consistent
thermodynamic description of the spin-echo effect should
involve a state space that also incorporates translational
degrees of freedom. We demonstrate that, in this case, we can
define a Boltzmann entropy that accounts for the correlations
between magnetic moments and position. Hence, we conclude
that in a spin-echo experiment, the information of the ordered
initial state is transferred into information about nontrivial
correlations [4]. After the application of the π pulse, this
information in correlations is again transferred to information

about spin order. Hence, a phase of decreasing entropy never
appears.

The structure of this paper is the following. In Sec. II,
we present the definition of an entropy function in terms of
Boltzmann macrostates that include translational degrees of
freedom; this definition leads to a description of spin echoes
with no apparent violation of the second law of thermodynam-
ics. In Sec. III, we define this version of Boltzmann entropy
function in quantum theory. In Sec. IV, we show that the
Boltzmann entropy is an increasing function of time when
relaxation effects are also taken into account. Finally, in Sec. V,
we summarize and discuss our results.

II. BOLTZMANN ENTROPY AND MACROSTATES
FOR A SPIN SYSTEM

In this section, we define an entropy function for spin
systems that provides a consistent thermodynamic description
of the spin-echo experiments. As explained in Sec. I, the key
idea is that the entropy should also incorporate the correlations
between spin and translational degrees of freedom, for the
molecules.

First, we examine the evolution of Boltzmann entropy for
the model in Sec. I, where the translational degrees of freedom
are ignored. The assembly of dipoles is labeled by the abstract
index i. Since the dipoles are independent, their statistical
behavior can be described by a distribution function f (θ,φ),
defined on the two-sphere S2 of directions in space.

Assuming that at t = 0 all dipoles are oriented along
the x axis, then the distribution function for a single dipole
approximates a delta function δS2 (θ − π

2 ,φ) on the sphere S2.
The dipole’s precession preserves θ ; hence, the delta function
evolves as δ(θ − π

2 )
∑∞

n=−∞ ein(φ−ωi t). Since the dipoles are
independent, the system’s macrostate is described by the
averaged density

f (θ,φ) = 1

N
δ

(
θ − π

2

) ∑
i

∑
n

ein(φ−ωi t). (5)

The detailed evolution of f depends on the distribution of
frequencies. We assume a Gaussian distribution around a mean
frequency ω̄—corresponding to the mean magnetic field—
with a deviation σω � ω̄. Then

f (θ,φ,t) = δ

(
θ − π

2

)
1√

2πσ 2
ω

∑
n

∫
dωe

− (ω−ω̄)2

2σ2
ω

+in(φ−ωi t)

= δ

(
θ − π

2

)∑
n

ein(φ−ω̄t)− n2σ2
ωt2

2 . (6)

Equation (6) corresponds to a diffusive evolution equation,

∂f

∂t
= −ω̄

∂f

∂φ
+ σ 2

ωt
∂2f

∂φ2
, (7)

which is entropy increasing:

ṠB = σ 2
ωt

∫
d2s

1

f

(
∂f

∂φ

)2

� 0. (8)

For the case of dipoles that are distinguished by variables
external to the system, that is, the label i, we employ
an averaging procedure that leads to an entropy-increasing
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evolution equation for the probability density. It follows that
the entropy at time t = τ , when the pulse is applied, is larger
than the entropy at time t = 0. Hence, when the system retraces
its past evolution after t = τ , the entropy decreases.

As mentioned earlier, the actual distinction of the dipoles
arises from the inhomogeneity of the field in space, that is,
from interactions involving translational degrees of freedom
of the molecules. Therefore, the translational degrees of
freedom should also be incorporated into the definition of
the macrostates describing the system.

To this end, we recall Boltzmann’s prescription for the
macrostates and entropy of rare gases. For a rare gas of
N particles, microstates correspond to points of the state space
� = R6N . Macrostates correspond to distribution functions
f (x,p) on the state space of a single particle �1 = R6.

The Boltzmann macrostates are constructed as follows [16]:
one splits the �1 space into cells Ca of volume (�x)3(�p)3 �
1. To each macrostate ξ = (x1,p1; x2,p2; . . . ; xN,pN ) ∈ �, we
assign the sequence of numbers n(Ca) corresponding to the
number of particles such that (x,p) ∈ Ca . The sequence n(Ca)
fully specifies a macrostate for the system. At the continuum
limit, the sequence n(Ca) defines a probability distribution
f (x,p) on �1. In what follows, it is convenient to choose
f (x,p) normalized to unity.

The Boltzmann entropy SB is the logarithm of the number
of microstates in each macrostate, hence for any sequence
n(Ca), SB ∼ ∑

a ln n(Ca). At the continuum limit,

SB[f ] = −N

∫
d3x d3p f (x,p) ln f (x,p) + N − N ln N.

(9)

The key point is that Boltzmann’s definition of macrostates
applies to any system of N particles, even when the particles
have degrees of freedom other than the translational ones. It
suffices that the state space of the system can be expressed
as � = �N

1 . The dipole degrees of freedom corresponds to
a classical spin vector s of constant norm s; that is, the
corresponding state space is the sphere S2 with area equal to
2s. The two-sphere is a symplectic manifold with symplectic
form � = s

2π
sin θdθ ∧ dφ. Hence, the equations of motion

for the dipole degrees of freedom are Hamiltonian.
It follows that the classical state space of a single

particle with spin is �1 = R6 × S2. The state space for
N particles with spin � = R6N × (S2)N consists of points
ξ = (x1,p1,s1; . . . ; xN,pN,sN ). Next, we apply Boltzmann’s
analysis in a straightforward way. At the continuum limit,
a macrostate is described by a distribution f (x,p,m) on μ,
normalized to unity. The Boltzmann entropy is then a func-
tional of f ,

SB[f ] = −N

∫
d3x d3p d2s f (x,p,s) ln f (x,p,s)

+N − N ln N, (10)

where d2s = s
2π

sin θdθdφ.
Next, we consider the dynamical evolution of the distribu-

tion f in accordance to the simplified model in Sec. I. We
assume that the particle system is subjected to an external
inhomogeneous magnetic field B(x) = B(x)ẑ. Here, we ignore
spin-spin and spin-lattice interactions, as well as the action of

the magnetic field on the translational degrees of freedom.
We also assume that the translational degrees of freedom are
initially in a state of thermal equilibrium. Then the distribution
f (x,p,s) changes in time only because of the spin’s precession
around the magnetic field’s axis. In terms of the spherical
coordinates θ,φ, the time evolution law for this class of states
is f (x,p,θ,φ) → f [x,p,θ,φ − gB(x)] or, equivalently,

∂f

∂t
= −gB(x)

∂f

∂φ
. (11)

The key difference between Eqs. (11) and (6) is that in Eq. (11),
x is a variable of f and not an external label. Hence, the
necessity to average over different values of f to obtain a
closed evolution equation does not arise. Substituting Eq. (11)
into Eq. (10), we obtain

ṠB[f ] = Ns

2π

∫
d3x d3p sin θdθ B(x)

×
(∫

dφ
∂(f ln f )

∂φ

)
= 0. (12)

Therefore, we showed that the Boltzmann entropy remains
constant, irrespective of whether there is dephasing or rephas-
ing of the transverse magnetic moments. Moreover, the action
of the π pulse does not change the entropy. Hence, the
Boltzmann entropy records no violation of the second law
of thermodynamics during the rephasing stage of a spin-echo
experiment. We therefore conclude that if the particle positions
are included in the definition of the system’s macrostates, the
system’s evolution is reversible.

While Eq. (11) is reversible, it does not coincide with
Liouville’s equation for a single dipole coupled to the
inhomogeneous magnetic field B(x). The Liouville equation
for the Hamiltonian H = −B(x) · m = −mB(x) sin θ involves
an additional term, −m∇B(x) · ∂f

∂p sin θ , on the right-hand-side
of Eq. (11).

We proceed to show that the additional term is small, so that
Eq. (11) well approximates the Liouville equation. Since we
assume that the translational degrees of freedom are in thermal
equilibrium, the momentum dependence of the distribution

f (x,p,θ,φ) is of the Maxwell-Boltzmann type ∼e−β
p2

2M , where
M is the particles’ mass. Denoting by A(f ) the right-hand-side
term in Eq. (11), and by C(f ), the additional term above,

we find that |C(f )/A(f )| is of the order of β
√

E/M

M
, where L

is the characteristic scale of inhomogeneities in the magnetic
field and E the mean kinetic energy of a particle. The latter is of
the order of β−1, hence, |C(f )/A(f )| ∼ √

β/M/L. Therefore,
the term C(f ) is negligible, if the scale of the inhomogeneities
of the magnetic field is much larger than the thermal de Broglie
wavelength λdeB ∼ √

β/M of the particles.

III. QUANTUM BOLTZMANN ENTROPY FOR
SPIN-ECHO SYSTEMS

The definition of the function f (x,p,s) that describes
the system’s macrostates incorporates Boltzmann’s coarse-
graining on the classical state space. However, spin is fun-
damentally a quantum variable, and unlike the translational
degrees of freedom, it has a discrete spectrum. The question
then arises how f (x,p,s) can be constructed in terms of the
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underlying quantum theory. The aim of this section is to
provide one such construction for the distribution function.
We also discuss some subtle points regarding the physical
meaning of the corresponding macrostates.

A. The description of spin-echo macrostates in quantum theory

In derivations of the Boltzmann equation for quantum
gases, the corresponding distribution function is usually
defined in terms of the single-particle reduced density
matrix [17,18]. In particular, let H = L2(R3) ⊗ C2s+1 be the
Hilbert space for a single particle of spin s = n

2 ,n = 1,2, . . ..
A system of N particles is described by vectors on
the Hilbert space (⊗H )N . The density matrix ρ̂ of the
N -particle system is totally symmetrized for bosonic particles
and totally antisymmetrized for fermionic particles. The
single-particle reduced density matrix on H is defined as
ρ̂1 = Tr(⊗H )N−1 ρ̂.

Given the single-particle density matrix ρ̂1, we construct
different versions of the functions f (x,p,s) according to
the theory of quantum quasiprobability distributions. In
derivations of the quantum Boltzmann equation for gases
the Wigner function is usually employed [17], mainly
because it simplifies the calculations. A Wigner function
on the single-particle state space �1 = R6 × S2 is indeed
defined from the reduced density matrix ρ̂1 [19]. How-
ever, Wigner functions are not positive valued in general;
therefore, (i) they do not have a physical interpretation
in terms of particle number as in Boltzmann’s defini-
tion of macrostates, and (ii) they cannot be used to de-
fine Boltzmann entropy according to Eq. (10). A coarser
quasiprobability distribution that is positive definite should
be used instead. In general, such distributions are constructed
from positive-operator-valued measures (POVMs) [20]. Any
family of positive operators �̂(x,p,s) normalized to unity
as ∫

dμ(x,p,s)�̂(x,p,s) = 1, (13)

for some invariant measure dμ on �1, defines
a mathematically appropriate probability distribu-
tion,

f (x,p,s) = Tr[ρ̂1�̂(x,p,s)]. (14)

The simplest case of such a POVM is obtained from the
coherent states |x,p,s〉 on H, setting �̂(x,p,s) =
|x,p,s〉〈x,p,s|, so that

f (x,p,s) = 〈x,p,s|ρ̂1|x,p,s〉. (15)

The density f (x,p,s) is the Husimi distribution associated
with the single-particle reduced density matrix ρ̂1 through the
coherent states |x,p,s〉.

The coherent states |x,p,s〉 are defined as the tensor
product |x,p〉 ⊗ |s〉, where |x,p〉 are the standard coherent
states on L2(R3) and |s〉 := |θ,φ〉 are the spin-coherent states
on C2s+1 [21]:

|θ,φ〉 =
s∑

ms=−s

(
2s

s + m

)
coss+ms

θ

2
sins−ms

θ

2
e−imsφ/2|ms〉.

(16)

In Eq. (16), |s,ms〉 are the eigenstates of the Ŝz generator
in the (2s + 1)-dimensional representation of SU(2). The
resolution of the unity for the spin-coherent states is

(2s + 1)
∫

sin θdθdφ

4π
|θ,φ〉〈θ,φ| = 1. (17)

Hence, the invariant measure d2s equals (2s + 1) sin θdθdφ

4π
and

the volume of the corresponding two-sphere is (2s + 1).
Since the particles are assumed to be independent, the

single-particle reduced density matrix evolves under the
Hamiltonian Ĥ = −gB(x̂)μŜz, where μ is the particle’s
magnetic moment. A spin coherent state |θ,φ〉 in an external
magnetic field along the z direction evolves into another
coherent state with parameters following the corresponding
classical equations of motion, that is, |θ,φ〉 → |θ,φ + gBt〉.
As in the classical case, the assumption that the inhomogeneity
scale of the magnetic field is much larger than the thermal de
Broglie wavelength of the particles suffices to guarantee that
the distribution f (x,p,s) evolves under Eq. (11).

B. Interpretation of the quasiclassical description

In Sec. III A we showed a suitable definition for the function
f (x,p,s) from the underlying quantum description. However,
we must elaborate here on the adequacy of the description
of a quantum system by a classical variable. We ignore the
translational degrees of freedom and focus on the spin ones,
so that we express the POVM (14) simply as �̂(s). The classical
state space for a single spin is the sphere S2. If C is a region
of S2, then we define �̂C = ∫

C
d2s�̂(s). The positive number

Tr (ρ̂1�̂C) is interpreted as an approximate probability that the
spin vector lies in the region C. Thus the assignment C → �̂C

defines an approximate correspondence between operators and
state-space regions. A necessary (but not sufficient) condition
for this correspondence to be meaningful is that the volume
[C] = ∫

C
d2s of the region C is much larger than unity [22].

A correspondence between quantum and classical observables
exists only for coarse-grained phase-space regions of volume
much larger than h̄. The area of the spin two-sphere is h̄(2s +
1), so a proper correspondence between operators and regions
is only possible for values s � 1.

Therefore, it seems that it is not possible to define a classical
description for particles with low values of spin—in particular,
spin s = 1

2 . The answer to this problem lies in the remark that
ρ̂1 is not the density matrix of a single particle, but the reduced
density matrix in a system of N particles. We express the
probabilities obtained from ρ̂1 in terms of the density matrix ρ̂

of the total system, and we obtain that Tr(ρ̂1�̂C) = Tr(ρ̂P̂C).

P̂C = �̂C ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ �̂C ⊗ · · ·
⊗1 + · · · + 1 ⊗ 1 ⊗ · · · ⊗ �̂C (18)

is a positive operator corresponding to the proposition that “the
spin of at least one particle takes values in the region C.” Trρ̂P̂C

is therefore the corresponding probability. The positive oper-
ator P̂C corresponds to the region C = (C × S2 × · · · × S2) ∪
(S2 × C × · · · × S2) ∪ · · · ∪ (S2 × S2 × · · · × C) within the
classical state space (S2)N for the N spins. The volume of
C is therefore

[C] = Tr P̂C = (N − 1)(2s + 1)[C]. (19)
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Hence, for systems with a large number of particles, the
volume of the region [C] can be significantly larger than
unity, and the approximate correspondence between positive
operators and state-space regions is meaningful.

C. Quantum definition of spin-echo Boltzmann entropy

The distribution f (x,p,s) is positive valued. Therefore, we
can define the Boltzmann entropy as in Eq. (10):

SB = −N

∫
d3xd3p

(2s + 1) sin θdθdφ

4π

× f (x,p,θ,φ) ln f (x,p,θ,φ) + N − N ln N. (20)

We note that the expression

SW [ρ̂1] = −
∫

d3xd3p
(2s + 1) sin θdθdφ

4π

× f (x,p,θ,φ) ln f (x,p,θ,φ) (21)

is the Wehrl entropy, associated with the coherent states
|x,p,θ,φ〉 [23]. Hence,

SB = NSW [ρ̂1] + N − N ln N. (22)

The description of macrostates in terms of the single-
particle reduced density matrix ρ̂1 does not accurately repre-
sent the Boltzmann definition of macrostates, as described in
Sec. II. The coarse-graining corresponding to ρ̂1 is determined
by the projectors Eq. (18), which represent the statement,
“At least one particle is characterized by values of the
observables that correspond to the region C ∈ �1.” In contrast,
Boltzmann macrostates are defined in terms of the number
of particles in C at a moment of time. The equivalence
between these coarse-grainings requires the assumption that
statistical fluctuations in the number of particles in C and
particle correlations are negligible; thus, the probabilities
Tr(ρ̂1P̂C) are indeed proportional to the number of particles in
C. The latter distinction is not specific to the construction
presented here, but it reflects the difference between the
original derivation of Boltzmann’s equation and the alternative
derivation through the truncation of the Bogoliubov-Born-
Green-Kirkwood-Yvon hierarchy of correlation functions. It
is in fact the reason why the two approaches employ different
physical conditions for the domain of validity of Boltzmann’s
equation.

We believe that Boltzmann’s coarse-graining is conceptu-
ally more satisfying, however, in this paper we have chosen
to work with the single-particle reduced density matrix. One
reason is the significant technical difficulty in implementing
Boltzmann’s coarse-graining in quantum theory. In particular,
an implementation of Boltzmann’s coarse-graining from first
principles requires a proof of decoherence (the corresponding
variables behave quasiclassically), a property that is likely to
require significant restriction to the initial states of the system;
see Refs. [22] and [24]. More importantly, the difference
above is not significant for the Hahn echoes studied here
because the π -pulse inversion does not affect the part of the
Hamiltonian that corresponds to the many-body interaction.
Hence, a detailed description of the generation of irreversibility
through spin-spin interactions is not necessary.

It is important to note that the difference between the two
coarse-grainings is more pronounced in spin systems than in
gases. In principle, it is possible that in some systems the
different coarse-grainings lead to different predictions. The
reason is that in Boltzmann’s coarse-graining, there is no
kinematical restriction on the distribution function f (s) on S2.
In contrast, the form of the distribution function f (s), cor-
responding to the single-particle reduced density matrix, is
constrained by the value of the spin s. f (s) belongs to the
subspaces of L2(S2) corresponding to s. For example, for spin
s = 1

2 , the function f (θ,φ) = 〈θ,φ|ρ̂1|θ,φ〉 can only be of the
form

f (θ,φ) = sin2 θ

2
+ x cos θ + r sin θ cos(φ + χ ) (23)

for some constants x,r,χ , while there is no restriction
in the form of f when defined in terms of Boltzmann’s
coarse-graining. Hence, evolution equations obtained through
Boltzmann coarse-graining may not have a representation in
terms of the single-particle reduced density matrix of the
system. This issue will be explored elsewhere, in relation to
the Loschmidt echoes.

Given the single-particle density matrix ρ̂1, one also has
the option of employing the von Neumann entropy SvN (ρ̂1) =
−NT r(ρ̂1 log ρ̂1). In particular, the irreversible evolution
equations considered in Sec. IV lead to an increase in the
von Neumann entropy. However, given the fact that the
Boltzmann coarse-graining in a spin system could lead to a
distribution function that does not correspond to the single-
particle density matrix, we consider that the Boltzmann
entropy, Eq. (22), is a better candidate for the nonequilibrium
entropy of the system.

IV. ENTROPY INCREASE IN SPIN ECHOES

A. Evolution equation for the distribution function

The description of the spin system given in Sec. II ignores
the relaxation effects that characterize the evolution of nuclear
spins. The inclusion of such effects requires the derivation of
effective equations for the evolution of the distribution function
f (x,p,s).

There are two main sources of irreversibility in the evolution
of the spin system: interactions between spins (dipole-dipole
coupling) and interactions between the spin and the trans-
lational degrees of freedom (spin-lattice interaction). The
former processes are responsible for the relaxation of the
transverse components of the magnetization. The latter pro-
cesses are responsible for the approach to thermal equilibrium.
We assume that the translational degrees of freedom are in a
state of thermal equilibrium, so that they essentially act as a
thermal reservoir for the spin variables.

Irreversible evolution is often described by a master
equation for the single-particle reduced density matrix ρ̂1. To
this end, one invokes a random field approximation, that is,
the assumption that each dipole evolves separately in a random
magnetic field b̂(t), generated by the other particles. Assuming
that the autocorrelation time of the random field is negligible,
one employs the Markov approximation to obtain a master
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equation of the Lindblad type [25]. The simplest such master
equation is [26]

∂ρ̂

∂t
= −igB[Ŝz,ρ̂] − �T

2
α([Ŝ−,[Ŝ+,ρ̂]] + [Ŝ+[Ŝ−,ρ̂]])

− �T

2
([Ŝ−,ρ̂Ŝ+] − [Ŝ+,Ŝ−ρ̂]) − �L

2
[Ŝz,[Ŝz,ρ̂]],

(24)

where �T and �L are phenomenological dissipation constants,
corresponding, respectively, to the transverse and longitudinal
components of the random magnetic field. The parameter α is
determined by the requirement that the stationary solution to
Eq. (24) is a thermal state at temperature β−1:

α = 1

eβgB − 1
. (25)

Equation (24) yields the phenomenological magnetic Bloch
equations for the macroscopic magnetization Mi = N〈Ŝi〉:

Ṁz = �T

[( − 1
2

) − (2α + 1)Mz

]
, (26)

Ṁ± = ∓igBM± − (
�T

(
α + 1

2

) + �L

)
M±. (27)

The Bloch equations are usually expressed in terms of the
spin-lattice relaxation time T1 and the spin-spin relaxation
time T2, which are identified from Eqs.(26) and (27) as

T1 = [�T (2α + 1)]−1, (28)

T2 = [
�T

(
α + 1

2

) + �L

]−1
. (29)

For the case s = 1
2 , we obtain the solutions to Eq. (24):

ρ11(t) = ρ00(t0)e−�T (1+2α)(t−t0)

+ α

1 + 2α
(1 − e−�T (1+2α)(t−t0)), (30)

ρ01(t) = ρ01(t0)e−igB(t−t0)−(�T (α+ 1
2 )+�L)(t−t0), (31)

ρ00(t) = 1 − ρ11(t). (32)

If we include the translation degrees of freedom and con-
sider an inhomogeneous magnetic field, Eq. (24) generalizes
to

∂ρ̂1

∂t
= −igB(x)[Ŝz,ρ̂1] − �T

2
α(x)([Ŝ−,[Ŝ+,ρ̂1]]

+ [Ŝ+[Ŝ−,ρ̂1]]) − �T

2
([Ŝ−,ρ̂1Ŝ+] − [Ŝ+,Ŝ−ρ̂1])

− �L

2
[Ŝz,[Ŝz,ρ̂1]], (33)

where in this case ρ̂1 is a density matrix on the Hilbert space
H = L2(R3) ⊗ C2s+1.

In Eq. (33) the parameter α depends on the position x due to
its dependence on the inhomogeneous magnetic field B as in
Eq. (25). However, the α term does not change the phases
generated during time evolution, which are the important
variables in the spin-echo experiment. Hence, assuming that
the field inhomogeneities are small, we may treat α as a
constant.

B. Time evolution of entropy

From Eq. (33) we construct the distribution f (x,p,s)
that describes the macrostates according to Eq. (15). The

corresponding Boltzmann entropy Eq. (22) is expressed in
terms of the Wehrl entropy. To compute the latter for spin
s = 1

2 , we exploit the fact that the Wehrl entropy is invariant
under SU(2) transformations [23]. An SU(2) transformation
can bring any density matrix ρ̂ to its diagonal form ρ̂ =
diag(x,1 − x), parameterized by the single mixing parameter
x ∈ [0,1]. Then

SW [ρ̂] = 1

2x − 1

[
(1 − x)2

(
ln(1 − x) − 1

2

)

− x2

(
ln x − 1

2

)]
. (34)

We now consider an evolution of the system according
to Eq. (33) together with the operation of the two external
pulses that characterize the spin-echo experiments. Initially,
the system of N dipoles occupies volume V and it is in a state
of thermal equilibrium in the presence of the magnetic field
B(x). The probability distribution factorizes as f (x,p,s) =
N
V

g(p)uth(θ,φ), where g(p) is the Maxwell distribution for the
momenta normalized to unity, and where uth corresponds to a
thermal state for the spin degrees of freedom at temperature
T = β−1:

uth(θ,φ) = 1

1 + 2α

(
α + sin2 θ

2

)
. (35)

At t = 0, a π
2 pulse acts on the system, sending the positive

z axis into the positive x axis. This induces a change uth → u0,
where

u0(θ,φ) = 1

2

(
1 + 1

1 + 2α
sin θ cos φ

)
. (36)

The system then evolves under Eq. (33). The p-dependent
component is unaffected, while u0 evolves to

ut (θ,φ,x) = sin2 θ

2
+

[
1

2
e−�T (1+2α)t

+ 1 + α

1 + 2α
(1 − e−�T (1+2α)t )

]
cos θ

+ 1

2

1

1 + 2α
e−(�T (α+ 1

2 )+�L)t sin θ cos[φ − ωp(x)t],

(37)

where ωp(x) = gμB(x). At t = τ , a π pulse acts by inverting
the spin’s direction; then the system evolves again under
Eq. (33). So for t > τ ,

ut (θ,φ,x) = sin2 θ

2
+

[
1

2
e−�T (1+2α)t

+ 1 + α

1 + 2α
(1 − e−�T (1+2α)t )

]
cos θ

+ 1

2(1 + 2α)
e−[�T (α+ 1

2 )+�L]t

× sin θ cos[φ − ωp(x)(t − 2τ )]. (38)

If �T > 0, Eq. (33) does not preserve the energy, since
the spin-lattice coupling transfers energy from the spin to
the translational degrees of freedom. First, we consider the
energy-preserving case �T = 0, and we calculate the evolution
of the Boltzmann entropy SB , Eq. (10). The dependence of
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SB on ωp(x) cancels out due to the invariance of the Wehrl
entropy under SU(2) transformations. This property is not
affected by the position dependence of the transformations.
We differentiate Eq. (10) with respect to time and we obtain

ṠB = N

2(2α + 1)
e−�Lt

∫
dθdφ

2π
sin2 θ cos φ(1 + ln u) � 0.

(39)

The last step follows from the fact that the terms multiplying
the positive values of cos φ are always larger than the terms
multiplying negative values of cos φ [u(θ,φ) � u(θ,π − φ),
for 0 � φ � π/2]. Therefore, we conclude that the Boltzmann
entropy is an increasing function of time, and the evolution is
genuinely irreversible.

Next, we consider the general case �T > 0. We assume that
the system is in contact with a thermal reservoir of temperature
β−1, coupling to the translational degrees of freedom. We also
assume that the relaxation time of the translational degrees of
freedom is much shorter than �−1

L . Hence, they always remain
in a thermal state. The energy �E lost by the spin degrees of
freedom is transferred to the thermal reservoir, and the entropy
of the reservoir increases by an amount �Sr � β�E. The total
entropy change �Stot satisfies the inequality

�Stot � �SB + β�E = �(SB − βH̄ ), (40)

where SB is the Boltzmann entropy and H̄ is the mean value
of the system’s Hamiltonian. From Eq. (37) we find

H̄ (t) = − ω̄p

1 + 2α
(1 − e−�T (1+2α)t ), (41)

where ω̄p = 1
V

∫
V

ωp(x) = gμB̄ is the spatial average of the
precession frequency.

Using Eqs. (22) and (34), we find that SB − βH̄ is an
increasing function of t for all values of relaxation time and
temperature. The behavior of SB − βH̄ is plotted in Fig. 1 for
different values of temperature. Consequently,

dStot

dt
� d(SB − βH̄ )

dt
� 0. (42)

a

b

c

0 5 10 15 20 25 30

t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S t
ot

/N

FIG. 1. (Color online) Minimum value of total entropy Stot =
SB − βH̄ plotted as an increasing function of time t , for �T /(gμB) =
0.05 and different values of temperature T . Curve a corresponds to
T = 0.3gμB; curve b, to T = 0.5gμB; and curve c, to T = gμB.
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FIG. 2. (Color online) The increase in total entropy �Stot during
an echo is a monotonously decreasing function of the magnetization
decay D(τ ) = Mx (2τ )

Mx (0) . Here, curve a corresponds to T1/T2 = 0.75;
curve b, to T1/T2 = 1.5; and curve c, to T1/T2 = 3.

Hence, the total entropy increases in time during the spin-echo
experiment: there is no antithermodynamic behavior and no
violation of the second law of thermodynamics.

The above results are valid for the Markovian master
equation, Eq. (38), which governs the evolution of the system.
The predicted decay of the echo at time t = 2τ , defined as

D(τ ) := Mx(2τ )

Mx(0)
= e−2[�T (2α+1)+�L]τ = e−2τ/T2 , (43)

is an exponential function.
The distribution Eq. (37) at time t = 2τ depends on τ only

through exponentials. Hence, we perform a change of variables
and we express the increase �Stot(τ ) in the total entropy as
a function of the decay D(τ ). �Stot is a strictly decreasing
function of D; see Fig. 2. Hence, the common conjecture
that the echo decay parameter provides a faithful measure of
entropy increase—for example, Refs. [4] and [15]—is verified.

C. Loschmidt echoes

Here we have considered Hahn spin echoes, where the
external pulses invert only the evolution by the free spin
Hamiltonian—they do not affect the spin-spin and spin-lattice
interactions. More complex pulse sequences may also achieve
the inversion of spin-spin couplings, whence a more complete
realization of Loschmidt’s idea is achieved [13]. Moreover,
echoes for localized excitations have been obtained. In general,
inversion is never perfect, and the echo signal decays with time.
We emphasize here the existence of systems with fast spin
dynamics, where the decay is determined not by any external
interactions (e.g., spin-lattice coupling) but by the reversible
spin dynamics itself [15] (Loschmidt echoes). In this case,
the function D(τ ) is best described by Gaussian rather than
exponential decay as in Eq. (43).

In this work, emphasis is placed on the construction of
a nonequilibrium entropy, according to Boltzmann, which
provides a consistent thermodynamic description of spin-echo
experiments. We have shown that this entropy is a monotonic
function of the echo decay D(τ ). We defined the entropy
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by adapting Boltzmann’s coarse-graining for rare gases into
the spin context: macrostates correspond to a distribution
function on the state space of a single particle. There seems
to be no difficulty in applying the same construction to
all echo experiments. In fact, we can take the analogy to
Boltzmann’s theory of rare gases one step farther. We can
construct an evolution equation for the macrostates, in analogy
to Boltzmann’s equation, where the spin-spin interaction is
incorporated in nonlinear collision terms. The possibility that
such an evolution equation could account for the Gaussian
decay law in Loschmidt-echo experiments is being explored
at present.

V. DISCUSSION

An important conclusion is drawn from the work presented
here: the interpretation of the spin-echo experiments depends
closely on the choice of macrostates one adopts for the
system. In particular, if the macroscopic description is at
the level of the spin degrees of freedom only, then the
conclusion that the spin echo manifests an antithermodynamic
behavior is inevitable. If, however, the macrostates refer
also to the translational degrees of freedom, then the loss of
information due to dephasing is compensated by nontrivial
correlations between the spin and the position variables. If the
chosen macrostates accommodate such correlations, then the
corresponding entropy does not exhibit a decreasing phase.
When dissipation effects are ignored, the entropy of the system
remains unchanged during time evolution. The evolution
law for the macrostates is reversible and the dephasing is
generated by volume-preserving Hamiltonian dynamics.

The main conclusion is strengthened by the consideration
of relaxation effects. The usual semiphenomenological Bloch
equations, describing relaxation in magnetic systems, corre-
spond to a description of irreversible dynamics in terms of
a Lindblad master equation. We have shown that the total
entropy strictly increases as a function of time under this
dynamics. In effect, there is nothing extraordinary in the

thermodynamic behavior of spin echoes: Hamiltonian effects
such as dephasing do not change the entropy and the relaxation
effects increase the entropy. There is no phase of decreasing
entropy.

Our results have some interesting implications in relation
to the foundations of statistical mechanics. The properties of
equilibrium thermodynamics are not always reliable guides
for the description of nonequilibrium processes. In one sense,
the apparent antithermodynamic behavior in the spin-echo
experiments is due to the fact that the concept of entropy
in equilibrium configurations is naively transferred into a
nonequilibrium context [8]. In an equilibrium spin system,
the presence of a net transverse magnetization is highly
“improbable,” hence it can be viewed as a witness of a
low-entropy state. If such a state were considered to arise
“spontaneously,” one would then say that we have a violation
of the second law of thermodynamics. However, in the
nonequilibrium context there is no one-to-one correspondence
between magnetization and entropy.

Our results also suggest that macrostates are not subjective:
they do not correspond to a description of the system in terms
of variables that are accessible to us through measurements of
macroscopic variables. In spin-echo experiments, the spin-
position correlations are not directly accessible, and one
is, therefore, tempted to ignore them in the treatment of
the system. However, this is an approximation. It turns out
that it is a drastic one: it ignores the correlations between
spin and position degrees of freedom, and consequently, it
misrepresents the thermodynamic behavior of the system.

We must emphasize that our definition of the macrostates
in the spin-echo system is not arbitrary. Boltzmann’s coarse-
graining in terms of the state space of a single particle
(with spin) can be immediately generalized to other setups,
including relativistic systems. It is a natural definition, in
the sense that the macrostates carry a representation of the
fundamental symmetries of the system, and they arguably
correspond to the external operations that can be effected on its
constituents.
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