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Joule-Thomson coefficient of ideal anyons within fractional exclusion statistics
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The analytical expressions of the Joule-Thomson coefficient for homogeneous and harmonically trapped
three-dimensional ideal anyons which obey Haldane fractional exclusion statistics are derived. For an ideal
Fermi gas, the Joule-Thomson coefficient is negative, which means that there is no maximum Joule-Thomson
inversion temperature. With careful study, it is found that there exists a Joule-Thomson inversion temperature
in the fractional exclusion statistics model. Furthermore, the relations between the Joule-Thomson inversion
temperature and the statistical parameter g are investigated.
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I. INTRODUCTION

The fractional exclusion statistics of Haldane is an
intermediate statistics between Bose-Einstein and Fermi-Dirac
statistics. It is also a generalized dimensional-independent
statistics based on state counting methods and is suitable
to describe interacting many-particle systems in condensed
matter [1–3]. By considering N particles in a d-dimensional
Hilbert space at fixed size and boundary conditions, the
linear relation between the changes of the single-particle
space �d and the changes of the particle number �N

is defined as �d = −g�N with a parameter g given by
Haldane [1].

In Haldane fractional exclusion statistics, the number
of microscopic quantum states W of N identical particles
occupying a group of G states is

W =
∏

i

[Gi + (Ni − 1) (1 − g)]!

Ni![Gi − gNi − (1 − g)]!
, (1)

which is interpolated by Johnson, Canright, and Wu [2,3]. It
corresponds to the result of Bose-Einstein statistics when the
weight factor g = 0 and to the one of Fermi-Dirac statistics
when g = 1. Here the statistical parameter g is described as
the change in the number of available states when one particle
is added to the system.

The anyon statistical model has been extensively stud-
ied in the literature [4–11]. The thermodynamic solution
of the one-dimensional ideal anyon gas which obeys the
Haldane statistics is equivalent to the Bethe ansatz solu-
tion of the Calogero-Sutherland model [12–15]. Further-
more, the thermodynamic extension to d � 1 dimensions
of the Calogero-Sutherland model is explored by Potter
et al. [4]. The Haldane’s fractional exclusion statistics is
widely used to describe the low-dimensional condensed-
matter physics. In the literature, the properties of spinons
are characterized in terms of the Haldane’s fractional
exclusion statistics with corresponding models (e.g., the
Haldane-Shastry model in which free spinons exist [16–18],
the one-dimensional supersymmetric t-J model in which
the thermodynamics of spinons is investigated [19–21],
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and the Wess-Zumino-Witten model [22–24]). Besides, the
Hubbard model with an infinite-range interaction is also
used to study particles obeying Haldane fractional statistics
[25,26].

In thermodynamics, the fact that the temperature changes
with the decrease of pressure during an adiabatic or throttling
expansion is called the Joule-Thomson effect. The adiabatic
expansion or Joule-Thomson process describes the procedure
that a gas is forced through a porous plug without heat
exchange with the environment. This effect can be described
by the Joule-Thomson coefficient uJT, which is the partial
derivative of temperature with respect to pressure at constant
enthalpy

uJT ≡
(

∂T

∂P

)
H

, (2)

where P is pressure, T is system temperature, and H is
enthalpy. If uJT > 0, it shows that the temperature of the
system decreases during the adiabatic expansion. On the other
hand, if uJT < 0, the temperature increases in the throttling
process. By setting uJT = 0, one can calculate the maximum
Joule-Thomson inversion temperature. In the following, this
inversion temperature, a free adiabatic expansion causes a
decrease in temperature, while it causes a temperature increase
above this inversion temperature [27].

There have been many works on the Joule-Thomson
coefficient. The Joule-Thomson coefficients of ideal quantum
systems are obtained by Ref. [28]. The corresponding results
for weakly interacting Fermi and Bose gases are given by
means of the pseudopotential method [29]. Recently, the
Joule-Thomson coefficient for a d-dimensional ideal Bose gas
was derived in a power-law potential [30]. The Joule-Thomson
coefficient for a strongly interacting Fermi gas was also
discussed within the quasilinear approximation framework
[31].

According to Landau’s phenomenological theory, there is
an important parameter called effective mass which is used
to characterize the quasiparticle and is determined by the
low-temperature isochore heat capacity. If ideal anyons are
considered as quasiparticles to describe interactions [32–36],
the effective mass is a significant physical quantity in the
fractional exclusion statistics model.
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In this paper, the analytical expressions of Joule-Thomson
coefficients for homogeneous and harmonically trapped three-
dimensional ideal anyons are derived within the Haldane frac-
tional exclusion statistics. Furthermore, the Joule-Thomson
inversion temperature varying with the statistical parameter g

is plotted and the effective mass is calculated. The outline is
as follows. In Sec. II, the distribution function of Haldane
fractional exclusion statistics is obtained by the method
of Lagrange multiplier. The Joule-Thomson coefficients of
homogeneous and harmonically trapped ideal anyons within
fractional exclusion statistics are derived analytically in
Sec. III. Effective mass is calculated in Sec. IV. The numerical
calculations and the Joule-Thomson inversion temperature
plotted as a function of parameter g are obtained in Sec. V. A
summary is given in the final section.

II. DISTRIBUTION FUNCTION OF HALDANE
FRACTIONAL EXCLUSION STATISTICS

Let us set two Lagrange multipliers α = −μ/T and β =
1/T , where μ is the chemical potential and the natural units
kB = h̄ = 1 are used. The average occupation number is
defined as N̄i ≡ Ni/Gi . According to the Lagrange multiplier
method δ ln W − αδN − βδE = 0, the most probable distri-
bution function can be derived as [3]

N̄ = 1

ω + g
, (3)

where the statistical parameter g and ω are related as

ε = μ + T [(1 − g) ln (1 + ω) + g ln ω], (4)

where ε is the single-particle energy. When g = 1, the
distribution function N̄ goes back to fermionic distribution
function, and when g = 0 it becomes a bosonic one. According
to Eq. (3), when the temperature is zero, one can get N̄ = 0
with ε > μ, and N̄ = 1/g with ε < μ, which indicates that
g characterizes the generalized Pauli principle since the
maximum value of the occupation number for a single-particle
state is 1/g.

We define the fugacity z in terms of the chemical potential
μ and introduce a parameter ω0 as follows:

z ≡ exp

(
μ

T

)
= (1 + ω0)g−1ω

−g

0 . (5)

Inserting Eq. (5) into Eq. (4), one obtains

ε = T

[
(1 − g) ln

(
1 + ω

1 + ω0

)
+ g ln

(
ω

ω0

)]
. (6)

III. THE JOULE-THOMSON COEFFICIENT GIVEN BY
THE FRACTIONAL EXCLUSION STATISTICS

A. Homogeneous gas

The density of states is D(ε) = (2m)3/2V ε1/2/(2π2) with
two degrees of the spin degeneracy for a homogeneous gas,
where m is the particle mass and V is the system volume.

The expression for the grand thermodynamic potential 


is [4–8]


 = −PV = −T

∫ ∞

0
D(ε) ln

(
1 + 1

ω

)
dε

= −T V (2m)3/2

3π2

[
ε3/2 ln

(
1 + 1

ω

)∣∣∣∣ε=∞

ε=0

−
∫ ∞

ω0

ε3/2d ln

(
1 + 1

ω

)]
. (7)

In the one-dimensional supersymmetric t-J model, three
species of particles will contribute to the grand thermodynamic
potential by applying an external magnetic field, respectively
[20]. In the literature, it is pointed out that the one-dimensional
supersymmetric t-J model is equivalent to Haldane fractional
statistics with properly fixed statistical parameters [20]. Here,
we limit to the three-dimensional free particles in terms of
the Haldane’s fractional exclusion statistics without magnetic
field. The corresponding thermodynamic potential is given by
Eq. (7).

With the help of Eq. (6), Eq. (7) can be reduced to

P = 2T

λ3
G5/2(z,g), (8)

where the thermal de Broglie wavelength is defined as λ =√
2π/(mT ) and

Gn(z,g) = 1

�(n)

∫ ∞

0

xn−1dx

ω + g
, (9)

is the Calogero-Sutherland integral function [4]. �(n) ≡
(n − 1)! = ∫ ∞

0 exp(−y)yn−1dy is the gamma function and
x = ε/T . The Calogero-Sutherland integral function has been
proved to satisfy the recurrence relation which is the same as
the Bose-Einstein and Fermi-Dirac integral functions [4]. The
recurrence relation is

z
∂

∂z
Gn(z,g) = Gn−1(z,g). (10)

By turning the variable ε into ω through Eq. (6), Eq. (9)
can be reduced to

Gn(z,g) = 1

�(n)
hn−1(ω0,g), (11)

where

hn(ω0,g) =
∫ ∞

ω0

dω

ω(ω + 1)

{
ln

[(
ω

ω0

)g(
ω + 1

ω0 + 1

)1−g]}n

.

(12)

The finite-temperature particle number density and internal
energy density can be represented as

n = 1

V

∫ ∞

0

D(ε)dε

ω + g
= 2

λ3
G3/2(z,g), (13)

E

V
= 1

V

∫ ∞

0

εD(ε)dε

ω + g
= 3T

λ3
G5/2(z,g) = 3

2
P. (14)

At zero temperature, the particle number is N =
(1/g)

∫ ẼF

0 D(ε)dε = (2mEF )3/2V/(3π2), where EF is the
uniform ideal Fermi energy and ẼF satisfies ẼF = g2/3EF . By
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replacing the particle number of the ground state into Eq. (13),
one can get

3π1/2

4

(
T

TF

)3/2

G3/2(z,g) = 3

2

(
T

TF

)3/2

h1/2(ω0,g) = 1

(15)

with the Fermi characteristic temperature TF for a uniform
ideal Fermi gas.

From Eq. (13), the partial derivative of particle number
density n with respect to temperature T at constant n is
written as(

∂n

∂T

)
n

= 2

(
m

2π

)3/2

T 1/2

[
3

2
G3/2(z,g) + T

(
∂G3/2(z,g)

∂T

)
μ

+ T

(
∂G3/2(z,g)

∂μ

)
T

(
∂μ

∂T

)
n

]
. (16)

By combining Eq. (16) with (∂n/∂T )n = 0, the partial deriva-
tive of chemical potential to temperature takes the form(

∂μ

∂T

)
n

= ln z − 3G3/2(z,g)

2G1/2(z,g)
. (17)

According to the constant total particle number N , one can
have(

∂P

∂T

)
V

=
(

∂P

∂T

)
N,V

= 1

λ3

[
5G5/2(z,g) − 3G2

3/2(z,g)

G1/2(z,g)

]
,

(18)(
∂V

∂T

)
P

= N

(
∂(1/n)

∂T

)
P

= Nλ3

4T G3/2(z,g)

[
5G5/2(z,g)G1/2(z,g)

G2
3/2(z,g)

− 3

]
.

(19)

To derive the expression of the Joule-Thomson coefficient,
the isochore heat capacity CV and isobar heat capacity CP per
particle are derived first as

CV

N
= 1

N

(
∂E

∂T

)
N,V

= 15G5/2(z,g)

4G3/2(z,g)
− 9G3/2(z,g)

4G1/2(z,g)
(20)

= 5h3/2(ω0,g)

2h1/2(ω0,g)
− 9h1/2(ω0,g)

2h−1/2(ω0,g)
, (21)

CP

N
= CV

N
+ T

N

(
∂P

∂T

)
V

(
∂V

∂T

)
P

= 5h3/2(ω0,g)

6h1/2(ω0,g)

[
5h3/2(ω0,g)h−1/2(ω0,g)

3h2
1/2(ω0,g)

− 3

]
. (22)

Furthermore, from the fundamental thermodynamic
relations and Eqs. (2), (19), and (22), the Joule-Thomson

coefficient can be given by

uJT = 1

CP

[
T

(
∂V

∂T

)
P

− V

]
= π1/2λ3

2

[
1

2h3/2(ω0,g)

− h−1/2(ω0,g)

5h3/2(ω0,g)h−1/2(ω0,g) − 9h2
1/2(ω0,g)

]
. (23)

B. Harmonically trapped gas

We define the geometric mean of the trap frequencies
as  = (ωxωyωz)1/3. The corresponding density of states
is D(ε) = ε2/ 3. In the similar way as described in the
homogeneous case, the Joule-Thomson coefficient of a trapped
gas is given as

uJT = V

6

(


T

)3 [
1

G4(z,g)
− G2(z,g)

4G4(z,g)G2(z,g) − 3G2
3(z,g)

]
= 1

T 3

[
1

h3(ω0,g)
− 2h1(ω0,g)

8h3(ω0,g)h1(ω0,g) − 9h2
2(ω0,g)

]
,

(24)

with V = −3 [8,37].
The corresponding analytical expressions for the particle

number and isobar heat capacity per particle are

N = 2

(
T



)3

G3(z,g), (25)

CP

N
= 4h3(ω0,g)

3h2(ω0,g)

[
8h3(ω0,g)h1(ω0,g)

3h2
2(ω0,g)

− 3

]
. (26)

At zero temperature, the particle number is

N = 1

3

(
EF



)3

. (27)

Substituting Eq. (27) into Eq. (25), one gets

6

(
T

TF

)3

G3(z,g) = 3

(
T

TF

)3

h2(ω0,g) = 1. (28)

IV. EFFECTIVE MASS

At very low temperature, the Gn(z,g) can be expanded
as [4,9–11]

Gn(z,g) = (ln z)n

g�(n + 1)

[
1 + π2

6

gn(n − 1)

(ln z)2
+ · · ·

]
. (29)

From Eqs. (20) and (29), the expression of the isochore heat
capacity at extremely low temperature can be given by

CV

N
= π2

2
g1/3

(
T

TF

)
+ · · · . (30)

The zero-temperature effective mass is

m∗

m
= CV

(CV )ideal
= g1/3, (31)
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FIG. 1. The Joule-Thomson coefficient uJT is plotted as a function
of the reduced temperature for homogeneous gases. The solid
curve denotes that for the ideal fermions, and the dashed curves
denote the ones for ideal anyons with different statistical parameter
g = 0.1, 8

27 ,0.5,0.7,0.9. Inset shows that the uJT with fixed g = 8
27

changes its sign at T/TF ≈ 0.4695. m = 1 and EF = 1 are chosen
for convenience.

where (CV )ideal = π2T N/(2TF ) is the isochore heat capacity
of an ideal Fermi gas at the first-order approximation and m is
the mass of noninteracting ideal fermions.

V. DISCUSSION

The numerical results will be given in this section.
The Joule-Thomson coefficient plotted as a function

of reduced temperature can be obtained from Eqs. (15)
and (23) for a homogeneous gas of anyons. It can also
be given by Eqs. (24) and (28) for a trapped anyon gas
numerically.

Figures 1 and 2 show that the Joule-Thomson coefficient
is larger for smaller values of g at the same temperature
for both homogeneous and trapped anyons. Besides, the
curves all tend to zero in the high temperature limit as a
Boltzmann gas and approach the minus infinity in the strong
degenerate limit T → 0. The Joule-Thomson coefficients
for both homogeneous and trapped ideal Fermi gases are
always negative, which means that there is no Joule-Thomson
inversion temperature for the ideal Fermi gas. During the
adiabatic expansion, the temperature always increases for an
ideal Fermi gas. For ideal anyons, however, there exists a
Joule-Thomson inversion temperature, which depends on the
parameter g in the fractional exclusion statistics model.
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8

27

0.3369
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T TF

u
J
T

g 0.1

g
8

27
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g 1

0.0 0.5 1.0 1.5 2.0
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0.0
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0.4

T TF

u
J
T

FIG. 2. The line styles are similar to the ones in Fig. 1 for
harmonically trapped gases. The uJT with g = 8

27 changes its sign
at T/TF ≈ 0.3369 in the inset. Here, EF = 1.
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1.2
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T
F

FIG. 3. The reduced Joule-Thomson inversion temperature T/TF

versus g. The dashed curve denotes the result of homogeneous anyon
gas and the solid curve represents that of trapped gas.

Recently, the strong interaction in two-component ultracold
fermions is a hot topic [38–43]. The strongly interacting Fermi
gas is called the unitary Fermi gas [40–43]. As a hypothesis,
the three-dimensional ideal anyons with fractional exclusion
statistics can be used to model the statistical behavior of a
real unitary Fermi system [32–36]. This fractional exclusion
statistics hypothesis is found to be in good agreement with the
experimental results in a harmonic trap [36].

The parameter g in the statistical model can be fixed as
g = ξ 3/2 = 8

27 [35,36], where the universal constant ξ = 4
9 is

given by the developed quasilinear approximation [44–49]. By
taking g = 8

27 as an example, the inversion temperature of a
homogeneous unitary Fermi gas is T/TF ≈ 0.4695, and it is
T/TF ≈ 0.3369 for a harmonically trapped unitary system as
indicated in Figs. 1 and 2.

It is evident from Fig. 3 that the reduced Joule-Thomson
inversion temperature increases with the increasing of the
statistical parameter g. Further, the reduced inversion tem-
perature of a homogeneous gas is higher than the corre-
sponding one of a trapped gas with the same value of g.
The difference in the reduced inversion temperatures between
a homogeneous gas and a trapped gas becomes larger as
g increases.

VI. SUMMARY

The Joule-Thomson coefficients of a homogeneous and
a trapped three-dimensional ideal anyon system have been
analyzed within the Haldane fractional exclusion statistics.
The results show that the Joule-Thomson coefficient of
anyons will overlap with that of the ideal Fermi gas in the
high-temperature Boltzmann regime and approach the minus
infinity in the strong degenerate limit whatever value of g is
chosen. The Joule-Thomson coefficient gets larger for smaller
values of the statistical parameter g at the same temperature
for both ideal homogeneous and trapped anyons. For ideal
fermions, the Joule-Thomson coefficient is negative, which
means that there is no Joule-Thomson inversion tempera-
ture. However, there exists an inversion temperature for the
system obeying Haldane fractional exclusion statistics. The
value of the Joule-Thomson inversion temperature depends
on the statistical parameter g in the fractional exclusion
statistics, and it increases with the increasing g. Besides,
the reduced inversion temperature of a homogeneous anyon
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gas is higher than the corresponding trapped one with
the same g. The deviation between the reduced inversion
temperature of a homogeneous gas and that of a trapped gas
will become larger and larger as g increases. The effective
mass is m∗/m = g1/3, which is a function of the statistical
factor g.
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