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Dynamical percolation transition in the Ising model studied using a pulsed magnetic field
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We study the dynamical percolation transition of the geometrical clusters in the two-dimensional Ising model
when it is subjected to a pulsed field below the critical temperature. The critical exponents are independent of the
temperature and pulse width and are different from the (static) percolation transition associated with the thermal
transition. For a different model that belongs to the Ising universality class, the exponents are found to be same,
confirming that the behavior is a common feature of the Ising class. These observations, along with a universal
critical Binder cumulant value, characterize the dynamical percolation of the Ising universality class.
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I. INTRODUCTION

The thermal phase transition of the Ising model has been
extensively studied in geometrical terms of (correlated) perco-
lation. It was seen that the “geometrical” clusters, consisting of
nearest neighbor parallel spins, undergo a percolation transi-
tion [1–4] at the same critical temperature as the magnetization
in two dimensions [5,6]. In higher dimensions, however, the
transition point differs [1,7]. Even for the two-dimensional
case, although the critical points coincide, the critical behavior
does not [8,9]. Later, by redefining the clusters suitably [6] (the
so-called “physical” clusters), the critical point was made to
coincide in all dimensions along with the critical behavior [10].

Although the temperature-induced percolation transition
is well studied, very little is known about the percolation
transition induced by an external magnetic field. It is well
known [11–17] that a pure Ising system, below its static
critical temperature (T 0

c ), can undergo a field-pulse-induced
magnetization reversal transition. The field pulse is applied
to the Ising system in the direction opposite to that of the
existing order for a finite time (�t). Depending on the value of
the field amplitude (hp), temperature (T ), and pulse duration
(�t), the system can eventually undergo a transition from one
equilibrium state (with magnetization −m0) to the other (with
magnetization m0) after the field is withdrawn. Apart from its
theoretical interests, it has experimental realizations [18] as
well as industrial applications, such as in the recording and
switching industry (for review see Refs. [19,20]).

As there is a percolation transition associated with the ther-
mal one, here we also expect a similar percolation transition. In
the following study, we investigate this percolation transition
of the “geometrical” clusters at different temperatures, field
pulse amplitude, and field pulse widths. We find the critical
exponents associated with the percolation transition to be
significantly different from the percolation transition of the
“geometrical” clusters in the thermal (or static) transition.
These exponents remain invariant with change in temperature
and field pulse width. We have also measured the critical
Binder cumulant value [21] of the percolation transition order
parameter. Not only is this quantity useful in locating the
transition point, but its value at the critical point (which is
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independent of system size) indicates the universality class
to which the transition belongs. It is seen that this value is
different from the thermal counterpart and is very robust in the
sense that it remains unchanged with changes in temperature
and field pulse width.

It has been shown [22,23] for the static transition that
the percolation exponents of the geometrical clusters have
the same values for the models belonging to the same
universality class [the case of Ising and Z(3) symmetric models
were studied]. For all models belonging to the Ising class,
therefore, universal exponents were found. In our study of
dynamical percolation transition as well, if the exponents have
to characterize the dynamical percolation transition of the Ising
universality class, their values have to be same for all models
belonging to this class. We have checked for a different model
(in the Ising class) that the exponents and the critical Binder
cumulant value are the same.

For the magnetization reversal transition also, it was
claimed [11,20] that the universality class was different from
the static one. In that case, although the exponents were robust
with respect to changes in temperature and pulse width, we find
that the critical Binder cumulant value changes continuously
with temperature, leaving the claim incomplete. However, as
the associated percolation transition (occurring at the same
critical point within our numerical accuracy) clearly belongs
to a different universality class, one can probably say that the
claim of a different universality class there was actually true.
And the nonuniversal critical Binder cumulant value can be put
forward as yet another example of some special cases, which is
known to occur also for changes in boundary condition, lattice
shape, anisotropic effect, etc. [24–32].

The rest of the paper is organised as follows: In Sec. II
we define the model and the percolation transition of the
“geometrical” clusters. In Sec. III we measure the critical ex-
ponent and Binder cumulant values for different temperatures
and pulse widths and compare them with the magnetization
reversal transition. In Sec. IV we discuss our main results and
conclude.

II. FIELD-PULSE-INDUCED PERCOLATION TRANSITION

A. Pure Ising model

Here we have studied the percolation transition induced by
an external magnetic field pulse in the case of a pure two-
dimensional Ising model with nearest neighbor interaction.
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The Hamiltonian of the system reads

H = −
∑
{ij}

JijSiSj − h(t)
∑

i

Si, (1)

where Si (i = 1,2, . . . ,N ) are Ising spins on lattice site i and
Jij is the cooperative interaction between the nearest neighbor
spins. Since we have considered a square lattice, the static
critical point T 0

c = 2.269 . . . (in units of J/kB). A periodic
boundary condition is used along both directions. We keep
the temperature T of the system below this critical value
such that there is a spontaneous equilibrium magnetization.
The time-dependent external magnetic field h(t) is applied
for a finite duration in the direction opposite to that of the
equilibrium magnetization. Although spatially uniform, the
time dependence of this applied field is as follows:

h(t) =
{
hp, t0 � t � t0 + �t

0, otherwise.
(2)

In a given Monte Carlo (MC) update a spin is randomly
selected, and the energy difference (�E) caused for flipping
it is calculated. The flip is made if a random number is less
than exp(−�E/T ). L2 such updates make a single MC step.
Here we take the geometrical definition of the clusters where
the clusters are formed from parallel spins and each spin in a
cluster must have at least one of its neighbors parallel to it.
At t = t0, there is a spontaneous magnetization (e.g., in the
“downward” direction) in the system and one spanning cluster
(of “down” spins) is present. Then magnetic field is applied
in the opposite direction (“upward”) for a finite duration
(�t), and the absolute value of the magnetization as well as
the percolation order parameter Pmax = SL/L2 (where SL is
the size of the largest cluster and L is the linear size of the
system) decreases with time in that duration. For a particular
combination of T and �t at some hc

p(T ,�t), the system
undergoes a percolation transition as more and more spins flip
upward and the previously percolating cluster (of down spins)
becomes nonpercolating (see Fig. 1). In the following, we have

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

O
rd

er
 p

ar
am

et
er

hp

mw
Pmax

0

FIG. 1. (Color online) Variations of the order parameters in the
two transitions: (a) withdrawal point magnetization (mw) and (b) the
probability of largest cluster (Pmax) with the field pulse amplitude
(hp) in the case of the pure Ising model, where L = 100, T = 1.0,
and �t = 4.

studied the critical behavior of this percolation transition at
different points in the hp-�t phase boundary (details are shown
for one point only), which coincides with (within our numerical
accuracy) the phase boundary obtained previously [11] in the
magnetization reversal transition (where the order parameter
was defined [11] as the magnetization mw at which the field is
withdrawn).

B. Ising model with diagonal second-neighbor frustration

To verify if the transition mentioned above characterizes
the dynamical percolation of the Ising universality class, here
we study the dynamical percolation in a different model that
belongs to the Ising universality class. This model of Ising
spins has nearest neighbor (NN) ferromagnetic and (diagonal)
next nearest neighbor (NNN) (weaker) antiferromagnetic
coupling:

H = −J1

∑
NN

SiSj + J2

∑
NNN

SiSj + h(t)
∑

i

Si . (3)

We study this model for J2/J1 = 1/10 (as was chosen in
Ref. [22]) and h(t) following Eq. (2). The static (when
h(t) = 0) critical temperature for the order-disorder transition
in this model is Tc ≈ 1.945 [22] in the same units as before. We
perform the following study below this critical temperature (at
T = 1.0). At that temperature, the system is in ferromagnetic
order. As before, a magnetic field pulse is applied in the
direction opposite to this order for a finite duration. For a fixed
value of temperature and pulse width (four MC time steps), by
increasing the field pulse amplitude hp, the previously span-
ning cluster of parallel spins becomes nonspanning, and the
system undergoes a magnetization reversal transition (Fig. 2).

It should be mentioned that when there is no external
magnetic field, the thermal transition and the percolation
transition of the geometrical clusters can be shown [5,6] to
occur at the same critical point in two dimensions. In our
case, however, the transition is driven by a field that is time
dependent. Hence, the evidence of coincidence in this case is
entirely numerical.

III. CRITICAL BEHAVIOR: FINITE SIZE SCALING

The percolation transition is characterized by power-law
variation of different quantities. The order parameter i.e., the
relative size (Pmax) of the largest cluster, varies as

Pmax ∼ (
hc

p − hp

)β
. (4)

The correlation length diverges near the percolation transi-
tion point as

ξ ∼ (
hc

p − hp

)−ν
, (5)

where hc
p is the critical field amplitude.

The values of the critical exponents β and ν specify the
universality class of the transition. The other exponents can be
obtained from scaling relations [33].

However, the exponents are not determined from these
definitions due to finite size effects. The critical exponents are
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determined from the finite size scaling relations. For example,
the order parameter is expected to follow the scaling form

Pmax = L−β/νF
[
L1/ν

(
hc

p − hp

)]
, (6)

where F is a suitable scaling function. If we plot PmaxL
β/ν

against hp for different system sizes, then by tuning β/ν,
all the curves can be made to cross at a single point. The
field amplitude where this happens must be the critical field
amplitude (hc

p). To estimate ν, PmaxL
β/ν is to be plotted against

(hc
p − hp)L1/ν , and by tuning 1/ν, the curves are made to

collapse, giving an accurate estimate of the exponent ν.
To further verify the critical point and the universality class,

we study the reduced fourth-order Binder cumulant of the order
parameter, defined as [21]

U = 1 −
〈
P 4

max

〉
3
〈
P 2

max

〉2 , (7)

where Pmax is the percolation order parameter (as defined
before) and the angular brackets denote the ensemble average.
U → 2

3 deep inside the ordered phase and U → 0 in the
disordered phase when the fluctuation is Gaussian.

The Binder cumulant can also be used to find the correlation
length exponent as it follows the scaling form

U = U
((

hc
p − hp

)
L1/ν

)
, (8)

where U is a suitable scaling function.

A. Pure Ising model

In Fig. 3 (inset) we plot PmaxL
β/ν against hp for a given

temperature (T = 1.0) and field pulse width (�t = 4), where
the unit of time is measured by Monte Carlo steps (one
MCS being L2 spin updates). The curves for different system
sizes cross at a given point when β/ν = 0.20 ± 0.05, and the
crossing point (hc

p = 2.105 ± 0.005) gives the critical field
amplitude.
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FIG. 2. (Color online) Variations of the order parameters of
magnetization reversal (mw) and the percolation transition (Pmax)
with the field pulse amplitude (hp), where L = 100, T = 1.0, and
�t = 4 in the case of an Ising model with next nearest neighbor
frustration.
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FIG. 3. (Color online) Inset: PmaxL
β/ν plotted against the field

amplitude (hp) where T = 1.0 and �t = 4 for a pure Ising model.
The curves for different system sizes (L = 100, 200, 400, 500) cross at
hc

p = 2.105 ± 0.005 giving the critical point and β/ν = 0.20 ± 0.05.
Main figure: The value obtained for β/ν is used in the y axis, and
by tuning the value of 1/ν all the curves for different system sizes
were made to collapse on a single curve, thereby estimating 1/ν =
0.85 ± 0.05. Error bars are smaller than the symbol size.

To estimate the exponent ν, we plot for the same set,
PmaxL

β/ν , against (hc
p − hp)L1/ν (see Fig. 3). Now by tuning

the 1/ν term in the x axis only, all the plots are made
to collapse on a single curve. This gives us the estimate
of 1/ν = 0.85 ± 0.05. Again, the error bar is estimated by
changing the tuning parameter up to the point at which the
scaling is visibly worsened. These estimates differ significantly
from the corresponding static transition values reported in
Ref. [22] (βs/νs = 0.052 ± 0.002, νs = 1.004 ± 0.009).

It is known [33] that the largest cluster at the critical point
has a fractal nature. One can find its fractal dimension from the
relation SL ∼ LD , where SL is the size of the largest cluster
and D is its fractal dimension. The fractal dimension is related
to the spatial dimension of the lattice through the critical
exponents as D = d − β/ν, where d is the spatial dimension.
While for a static transition in the Ising model the fractal
dimension of the critical droplet is 1.875 (for a geometric
cluster in a static transition it is 1.947 ± 0.002 [22]), the best
fit (Fig. 4) of the largest cluster size with linear size in a log-log
plot gives the value to be 1.82 ± 0.02 in our case, which also
agrees well with our estimate of β/ν from finite size scaling
(0.18 and 0.20, respectively).

To check if the exponents vary with temperature or pulse
width, we have scanned the parameter space (�t,T ) in the
range T = 0.5 → 2.0 and �t = 4 → 10 with T = 0.5, 1.5, 2
and �t = 4, 6, 10 (all combinations) apart from the combina-
tion (1.0,4) the details of which are shown above. We find no
significant variation in the estimates of the critical exponents.

The crossing point of the different curves for different
system sizes gives the critical point (2.102 ± 0.002), which
is in good agreement with the previous estimation from finite
size scaling (2.105 ± 0.005). The value of U at the critical
point in this case is 0.52 ± 0.01 (see Fig. 5). This value
remains unchanged for different sets of (mentioned above)
temperatures and field pulse width. In the inset of Fig. 5 the
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FIG. 4. (Color online) Size of the largest cluster for various
system sizes (L = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000)
at the critical field (hc

p = 2.105) where T = 1.0 and �t = 4 for a pure
Ising model. The slope of the log-log plot gives the fractal dimension
to be D = 1.82 ± 0.01. The other two curves show the variation of
the same, below (hp = 2.07) and above (hp = 2.14) the critical field.

data collapse is shown. The same value of the exponent ν is
used as was obtained before.

Therefore, with the increase of temperature and/or field
pulse width we find no crossover behavior in the percolation
transition as was reported in Ref. [11] with the magnetization
transition (occurring within the range of the parameter space
scanned here). There is indeed a single regime as far as
the critical exponents and Binder cumulant values of the
percolation transition are considered.
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FIG. 5. (Color online) Fourth-order reduced Binder cumulant of
the percolation order parameter (Pmax) for different system sizes (L =
100, 200, 400, 500) is plotted for a pure Ising model; crossing point
determines the critical point (hc

p = 2.10 ± 0.01). The critical Binder
cumulant value (U ∗ = 0.52 ± 0.01) specifies the universality class.
Inset shows the data collapse for the same 1/ν as obtained before
(0.85).
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FIG. 6. (Color online) Inset: PmaxL
β/ν plotted against field am-

plitude (hp) for the Ising model with frustration, keeping T = 1.0
and �t = 4. The curves for different system sizes (L = 100, 200,
300, 400) cross at hc

p = 1.65 ± 0.01 giving the critical point for
β/ν = 0.20 ± 0.05. Main figure: The value obtained for β/ν is used
in the y axis, and by tuning the value of 1/ν all the curves for
different system sizes were made to collapse on a single curve, thereby
estimating 1/ν = 0.85 ± 0.05. Error bars are smaller than the system
size.

B. Ising model with second-neighbor frustration

The critical exponents of the dynamical percolation tran-
sition in this case also are found using the finite size scaling
analysis as is shown in the pure Ising case. The exponents
β/ν = 0.20 ± 0.05 and 1/ν = 0.85 ± 0.05 are found from
data collapse shown in Fig. 6.

The values compare very well with the estimates from the
pure Ising model. Figure 7 shows the behavior of the Binder
cumulant of the percolation order parameter near the critical
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FIG. 7. (Color online) Fourth-order reduced Binder cumulant of
the percolation order parameter (Pmax) for different system sizes
(L = 100, 200, 300, 400) plotted for the Ising model with frustration;
crossing point determines the critical point (hc

p = 1.65 ± 0.01). The
critical Binder cumulant value (U ∗ = 0.52 ± 0.01) specifies the
universality class. Inset shows the data collapse for the same 1/ν

as obtained before (0.85).
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point and its finite size scaling using Eq. (8). The critical Binder
cumulant value (0.52 ± 0.01) shows the expected agreement
with the pure Ising case, as well as the previously estimated
value of 1/ν is confirmed from the data collapse shown in the
inset.

IV. DISCUSSION AND CONCLUSION

It has been extensively studied that for a pure Ising model
in two dimensions, a phase transition in magnetization and
a percolation transition of the geometric clusters of nearest
neighbor parallel spins occur at the same critical point.
There have been successful attempts [22,23] to show that
this percolation transition is universal in the sense that its
exponents are the same for models in the same universality
class, providing a new set of exponents that are characteristic
features of Ising and other universality classes in terms of
percolation.

It is well known that a pure Ising model can undergo
a dynamical phase transition (magnetization reversal) when
subjected to competing pulsed magnetic field. This dynamical
phase transition was claimed to belong to a different univer-
sality class than the static transition. However, we find that
the critical Binder cumulant value reported in Ref. [11] in
not universal for that transition. It changes if the transition
is studied, for example, in a different temperature or pulse
duration, etc.

Here we have studied the same transition in terms of
the percolation properties of the geometric clusters. The
dynamical transition exponents were found using finite size
scaling analysis. The values of these exponents reported here
(β/ν = 0.20 ± 0.05 and ν = 1.2 ± 0.1), differ significantly
from those (βs/νs = 0.052 ± 0.002 and νs = 1.004 ± 0.009)
obtained in Ref. [22] for the case of the static transition.

Therefore, the dynamical percolation transition is in a different
universality class than the static one.

Further, the critical Binder cumulant value, which was
found to be nonuniversal for magnetization (crossover be-
havior was reported), is found to be universal (does not
change with temperature and/or field pulse width, and micro-
scopic details of the models in the same universality class)
when studied in terms of the percolation order parameter
(within a reasonable range of the parameter space; see
Sec. III B), which is the expected behavior (having a unique
value for a given universality class) of the critical Binder
cumulant.

Also, to see if the exponents reported here indeed charac-
terize the dynamical transition in Ising universality class, we
have repeated the same analysis for another model (diagonal
next nearest neighbor frustration) belonging to the Ising
universality class. It is found that the exponents obtained in
this model match very well with those of the pure Ising model.
The critical Binder cumulant value also takes the expected
universal value. Therefore it is concluded that the dynamical
percolation behavior reported here is also a characteristic
feature of any model belonging to the Ising universality class.

Finally, we would like to point out that the values of the
critical exponents obtained in our study are in remarkable
agreement with those obtained in Ref. [34], in which the
authors study percolation properties of randomly distributed
growing clusters using finite size scaling analysis.

ACKNOWLEDGMENTS

The authors acknowledge many fruitful discussions and
suggestions of Prof. B. K. Chakrabarti and Dr. A. Chatterjee.
The computational facilities of CAMCS of SINP were used in
producing the numerical results.

[1] H. Müller-Krumbhaar, Phys. Lett. A 48, 459 (1974).
[2] E. Stoll, K. Binder, and T. Schneider, Phys. Rev. B 6, 2777

(1972).
[3] H. Müller-Krumbhaar and E. P. Stoll, J. Chem. Phys. 65, 4294

(1976).
[4] K. Binder and D. Stauffer, J. Stat. Phys. 6, 49 (1972).
[5] A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo, Commun.

Math. Phys. 51, 315 (1976).
[6] A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).
[7] D. W. Heermann and D. Stauffer, Z. Physik B 44, 339

(1981).
[8] M. F. Sykes and D. S. Gaunt, J. Phys. A: Math. Gen. 9, 2131

(1976).
[9] A. L. Stella and C. Vanderzande, Phys. Rev. Lett. 62, 1067

(1989).
[10] C.-K. Hu, Phys. Rev. B 29, 5103 (1984).
[11] A. Chatterjee and B. K. Chakrabarti, Phys. Rev. E 67, 046113

(2003).
[12] M. Acharyya, J. K. Bhattacharjee, and B. K. Chakrabarti, Phys.

Rev. E 55, 2392 (1997).

[13] A. Misra and B. K. Chakrabarti, Physica A 246, 510 (1997).
[14] A. Misra and B. K. Chakrabarti, Phys. Rev. E 58, 4277

(1998).
[15] R. B. Stinchcombe, A. Misra, and B. K. Chakrabarti, Phys. Rev.

E 59, R4717 (1999).
[16] A. Misra and B. K. Chakrabarti, J. Phys. A 33, 4249 (2000).
[17] A. Misra and B. K. Chakrabarti, EPL 52, 311 (2000).
[18] A. Misra, P. B. Visscher, and D. M. Apalkov, J. Appl. Phys. 94,

6013 (2003).
[19] B. K. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71, 847

(1999).
[20] A. Chatterjee and B. K. Chakrabarti, Phase Transitions 77, 581

(2004).
[21] K. Binder and D. Heermann, Monte Carlo Simulations in

Statistical Physics (Springer, Berlin, 1988).
[22] S. Fortunato, Phys. Rev. B 66, 054107 (2002).
[23] S. Fortunato, Phys. Rev. B 67, 014102 (2003).
[24] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
[25] G. Kamieniarz and H. W. J. Blote, J. Phys. A 26, 201

(1993).

021109-5

http://dx.doi.org/10.1016/0375-9601(74)90623-9
http://dx.doi.org/10.1103/PhysRevB.6.2777
http://dx.doi.org/10.1103/PhysRevB.6.2777
http://dx.doi.org/10.1063/1.432838
http://dx.doi.org/10.1063/1.432838
http://dx.doi.org/10.1007/BF01060201
http://dx.doi.org/10.1007/BF01617925
http://dx.doi.org/10.1007/BF01617925
http://dx.doi.org/10.1088/0305-4470/13/8/025
http://dx.doi.org/10.1007/BF01294172
http://dx.doi.org/10.1007/BF01294172
http://dx.doi.org/10.1088/0305-4470/9/12/017
http://dx.doi.org/10.1088/0305-4470/9/12/017
http://dx.doi.org/10.1103/PhysRevLett.62.1067
http://dx.doi.org/10.1103/PhysRevLett.62.1067
http://dx.doi.org/10.1103/PhysRevB.29.5103
http://dx.doi.org/10.1103/PhysRevE.67.046113
http://dx.doi.org/10.1103/PhysRevE.67.046113
http://dx.doi.org/10.1103/PhysRevE.55.2392
http://dx.doi.org/10.1103/PhysRevE.55.2392
http://dx.doi.org/10.1016/S0378-4371(97)00371-3
http://dx.doi.org/10.1103/PhysRevE.58.4277
http://dx.doi.org/10.1103/PhysRevE.58.4277
http://dx.doi.org/10.1103/PhysRevE.59.R4717
http://dx.doi.org/10.1103/PhysRevE.59.R4717
http://dx.doi.org/10.1088/0305-4470/33/23/303
http://dx.doi.org/10.1209/epl/i2000-00440-4
http://dx.doi.org/10.1063/1.1607522
http://dx.doi.org/10.1063/1.1607522
http://dx.doi.org/10.1103/RevModPhys.71.847
http://dx.doi.org/10.1103/RevModPhys.71.847
http://dx.doi.org/10.1080/01411590410001672576
http://dx.doi.org/10.1080/01411590410001672576
http://dx.doi.org/10.1103/PhysRevB.66.054107
http://dx.doi.org/10.1103/PhysRevB.67.014102
http://dx.doi.org/10.1103/PhysRevLett.47.693
http://dx.doi.org/10.1088/0305-4470/26/2/009
http://dx.doi.org/10.1088/0305-4470/26/2/009


BISWAS, KUNDU, AND CHANDRA PHYSICAL REVIEW E 83, 021109 (2011)

[26] W. Janke, M. Katoot, and R. Villanova, Phys. Rev. B 49, 9644
(1994).

[27] X. S. Chen and V. Dohm, Phys. Rev. E 70, 056136 (2004).
[28] W. Selke and L. N. Shchur, J. Phys. A: Math. Gen. 38, L739

(2005).
[29] W. Selke, Eur. Phys. J. B 51, 223 (2006).
[30] W. Selke, J. Stat. Mech.: Theory Exp. (2007) P04008.

[31] V. Dohm, Phys. Rev. E 77, 061128 (2008).
[32] W. Selke and L. N. Shchur, Phys. Rev. E 80, 042104

(2009).
[33] D. Stauffer and A. Aharony, Introduction to Percolation Theory,

2nd ed. (Taylor & Francis, London, 1994).
[34] N. Tsakiris, M. Maragakis, K. Kosmidis, and P. Argyrakis, Phys.

Rev. E 82, 041108 (2010).

021109-6

http://dx.doi.org/10.1103/PhysRevB.49.9644
http://dx.doi.org/10.1103/PhysRevB.49.9644
http://dx.doi.org/10.1103/PhysRevE.70.056136
http://dx.doi.org/10.1088/0305-4470/38/44/L03
http://dx.doi.org/10.1088/0305-4470/38/44/L03
http://dx.doi.org/10.1140/epjb/e2006-00209-7
http://dx.doi.org/10.1088/1742-5468/2007/04/P04008
http://dx.doi.org/10.1103/PhysRevE.77.061128
http://dx.doi.org/10.1103/PhysRevE.80.042104
http://dx.doi.org/10.1103/PhysRevE.80.042104
http://dx.doi.org/10.1103/PhysRevE.82.041108
http://dx.doi.org/10.1103/PhysRevE.82.041108

