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Partial annealing of a coupled mean-field spin-glass model with an embedded pattern
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A partially annealed mean-field spin-glass model with a locally embedded pattern is studied. The model consists
of two dynamical variables, spins and interactions, that are in contact with thermal baths at temperatures TS and
TJ , respectively. Unlike the quenched system, characteristic correlations among the interactions are induced
by the partial annealing. The model exhibits three phases: paramagnetic, ferromagnetic and spin-glass. In the
ferromagnetic phase, the embedded pattern is stably realized. The phase diagram depends significantly on the
ratio of the two temperatures, n = TS/TJ . In particular, a reentrant transition from the embedded ferromagnetic
to the spin-glass phase with TS decreasing is found only below a certain value of n. This indicates that above the
critical value nc the embedded pattern is supported by a local field from a nonembedded region. Some equilibrium
properties of the interactions in the partial annealing are also discussed in terms of frustration.
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I. INTRODUCTION

Spin-glass (SG) models [1,2] have been extensively applied
to widespread fields for describing random or randomized
spin systems. In such a system, there are two dynamical
variables, fast and slow variables that are spins and inter-
actions in a spin model, respectively. The latter is usually
assumed to be quenched for simplicity and is distributed
independently and identically according to a given distri-
bution. This is based on the fact that the relaxation time
of the interactions is considerably larger than that of the
spins. As a result of the quenched randomness, the state
of the interactions is not affected at all by the fluctuation
of spins. The randomness of the interactions causes many
competitions between the spins, and sometimes there is no
way for eliminating them completely. This competition, called
frustration, provides rich and interesting phenomena in random
systems.

The quenched randomness is an appropriate assumption
for a spin-glass problem as a magnetic material. In some
interesting systems, however, the fluctuation of the spin
variables has a large influence on the interaction variables. For
example, the interactions of amino-acid sequences provide a
globally stable state in the protein. The existence of such global
attraction in the folding process was proposed as a consistency
principle [3] or funnel landscape [4]. The characteristics of
interactions are not expected in randomly constructed inter-
actions. It is supposed that such characteristics are acquired
through an evolutional process under some fluctuations of
the fast variables. In the case of a protein, the fluctuation
is due to the folding dynamics of the amino-acid sequences.
Similar properties have also been discovered in gene reg-
ulatory networks [5] and transcriptional networks [6]. The
formation mechanism of the funnel landscape is still not fully
understood.

Recently, an adiabatic two-temperature spin model has
been studied as a model of evolution by using Monte Carlo
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simulations [7,8]. In the model, interactions evolved so as
to increase the probability of spins to find a specific pattern
of local spins. Interestingly, adapted interactions that exhibit
funnel-like dynamics with some robustness have been found
only in an intermediate temperature region. This type of
interactions has no frustration around the local spins and
retains some frustrations in the rest, implying that the local
spin pattern is stabilized in the adapted interactions by
energetic and entropic effects. Note that there is no explicit
driving force for constructing interactions outside the local
spins. Unfortunately, since numerical simulations are often
hampered by finite-size effects, and thermodynamic properties
and phase structure have not yet been understood well.
We consider it worthwhile to clarify the nature of such
self-organized interactions with an local spin pattern under
the thermal fluctuations from the viewpoint of statistical
mechanics.

In contrast to the quenched system, feedback from the
fast variables to the slow ones is taken into account for
studying such systems. The feedback effect is essential for
the emergence of some functional feature in the evolutionary
process. Under the assumption of complete separation of time
scales between the fast and slow variables, the adiabatic elim-
ination of fast variables has been employed in nonequilibrium
and nonlinear physics [9,10]. One such approaches is partial
annealing [11], introduced by Penney et. al. [12], whereby
a nonequilibrium system with the fast and slow variables is
mapped onto a particular equilibrium statistical-mechanical
system with two temperatures. This partial annealing approach
has been applied to many areas: glasses [13], charged systems
[14], spin-lattice gases [15], neural networks [16], protein-
folding [17], liquid crystals [18], and evolution [19,20].

In this paper, we study a coupled mean-field spin-glass
model [21] with partial annealing. In this model, two fully-
connected mean-field systems are coupled to each other
through spin-glass interactions. One of them is a ferromagnetic
system regarded as a local region in which a ferromagnetic
pattern is embedded. The other is a spin-glass system providing
redundant interactions together with the coupled interactions.
We formulate the mean-field theory for this model with partial
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annealing and discuss how the redundant interactions are
modified by the thermal fluctuation of spins.

This paper is organized as follows. In Sec. II, we intro-
duce the mean-field spin-glass model and give a theoretical
formulation of the model with partial annealing by using the
replica method. In Sec. III, we present a phase diagram of
the model and discuss the equilibrium state of interactions
through frustration. Finally, Sec. IV is devoted to conclusions
and providing an outlook for further developments.

II. MODEL AND REPLICA METHOD

We study a coupled mean-field spin-glass model of two
fully connected spin systems, which consists of N1 Ising spins
{S1,i}(i = 1, . . . ,N1) and N2 Ising spins {S2,i}(i = 1, . . . ,N2).
The spin variables of the two systems and the interactions
between two spins are denoted by S and J for short,
respectively. The Hamiltonian of the model is given by

H (S|J) = −
2∑

p=1

∑
i<j

Jp,ij Sp,iSp,j −
∑
i,j

J3,ij S1,iS2,j , (1)

where the summation in the first term is over all pairs within
each spin system and the summation in the second term is over
all i and j . {J1,ij } and {J2,ij }, denoted hereafter by J1 and J2,
respectively, are the intra-interactions within each system and
{J3,ij }, denoted by J3, are inter-interactions between these two
systems. A schematic picture of the model is shown in Fig. 1. In
a quenched system, they are assumed to be independently and
identically distributed according to the Gaussian distribution
with mean J0,p and variance Jp,

P0(Jp,ij ) =
√

Np

2π (Jp)2
exp

{
− Np

2(Jp)2

(
Jp,ij−J0,p

Np

)2}
, (2)

where the order of interactions Jp,ij is scaled as N
1/2
p for

keeping the Hamiltonian extensive and N3 is set to be the
geometrical mean of N1 and N2 as N3 = √

N1N2 [21].
In this paper, we consider that an ordering pattern is

embedded in one system (system 1) and no a priori pattern is
introduced in the other system (system 2). This is represented
by a specific case of the model Hamiltonian, in which system 1
and system 2 are pure ferromagnetic and spin-glass systems,

System 1
System 2

23b

3a

J1 J2

J3

FIG. 1. (Color online) A schematic representation of a coupled
mean-field spin-glass model. Spins and interactions are defined on
vertexes denoted by circles and edges between vertexes, respectively.
The three triangles represent index of frustration parameters, dis-
cussed in Sec. III C.

respectively, and they are coupled to each other through
spin-glass interactions. Explicitly, the model is given as

J0,1 = J0(>0), J0,2 = J0,3 = 0,
(3)

J1 = 0, J2 = J3 = J (>0).

Note that in the model with these parameters the interactions
J2 and J3 are expected to be modified by the partial annealing
while J1 is kept fixed to the pure ferromagnetic interaction. A
size ratio r between the two systems is defined as

N1/N2 = 1/r2, (4)

yielding N1 = N/(1 + r2) and N2 = Nr2/(1 + r2) with a
total number of spins N = N1 + N2. The two limiting cases
r = 0 and r = ∞ correspond to the Husimi-Temperley model
and the Sherrington-Kirkpatrick model, respectively.

In the partial annealing system, the interactions J as well as
the spin variables S are treated as dynamical variables. Time
scales associated with J are extremely slow and it is assumed
that the time scale is separated from that of the spin variables.
Then, the equilibrium distribution of the spins at an inverse
temperature βS = 1/TS is given by

P (S|J) = 1

Z( J)
exp[−βSH (S|J)], (5)

where Z( J) is a partition function under a given J . The
distribution function of J at an inverse temperature βJ =
1/TJ , different from βS , is given by

P ( J) = 1

Z exp(−βJ HJ ), (6)

where HJ is a Hamiltonian of J and Z is the total partition
function. The Hamiltonian of J is generally expressed in terms
of equilibrium quantities of S and the bare distribution of
Eq. (2). Although the explicit form of HJ can be arbitrarily
chosen, in this study, as in [11,12], we set it as

HJ ( J) = F ( J) − TJ log P0( J), (7)

where F ( J) is the free energy defined by F ( J) =
−TS log Z( J) and P0( J) = ∏3

p=1

∏
i<j P0(Jp,ij ).

Then, the equilibrium distribution P ( J) and the total
partition function are rewritten as

P ( J) = 1

Z P0( J)Zn( J), (8)

Z = [Zn( J)]0, (9)

where n is the ratio between two temperatures, n = TS/TJ ,
and [· · ·]0 means the average over J according to the bare
distribution P0( J). When n = 0, the distribution P ( J) is
identical to P0( J) and the system corresponds to the quenched
one. For finite n and βJ , the interactions J with a lower free
energy likely occur.

In the quench limit, the model is reduced to that studied
by Takayama [21,22]. The coupled mean-field model has been
introduced in order to study inhomogeneity of interactions
between spins in real SG materials [21,22]. Thus, the previous
studies focused attention only on the quenched system. In
this work, we rather pay attention to the system with partial
annealing, in which the interactions except for the embedded
one in system 1 are adiabatically affected by fluctuations of
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spins. Our main purpose is to study the partial annealing
effect on the stability of the embedded ferromagnetic ordering
in system 1 and to clarify characteristics of the resultant
interactions by partial annealing.

The total free energy per spin f at two inverse temperatures
βS and βJ can be written as

f (TS,TJ ) = − 1

βS

lim
N→∞

1

N
log[Zn( J)]0. (10)

Following the standard procedure of the replica method [1],
the quantity [Zn]0 is calculated for a positive integer n and an
analytic continuation to a real value given by two temperatures
is taken after the calculation. Within the assumption of replica
symmetry (RS), the free-energy density is described in terms of
order parameters q1, q2, and m1, and their conjugate parameters
q̂1, q̂2, and m̂1, as

f (TS,TJ ) = −TS

[
− n(n − 1)

2

2∑
p=1

npqpq̂p − n1nm1m̂1

+ J0βSn1n

2
m2

1 + J 2β2
Sn2n(n − 1)

4
q2

2 + J 2β2
Sn2

4

+ n̂3J
2β2

Sn(n − 1)

2
q1q2 + J 2β2

Snn̂3

2

+ n1 log
∫

Dz2 coshn(
√

q̂1z + m̂1) − q̂1nn1

2

+ n2 log
∫

Dz2 coshn(
√

q̂2z) − q̂2nn2

2

]
, (11)

where np = Np/N (p = 1,2), n̂3 = N3/N , and
∫

Dz =∫ +∞
−∞ dze−z2/2/

√
2π . The order parameters follow the self-

consistent equations,

qp(TS,n) =
∫

Dz tanh2 �p coshn �p∫
Dz coshn �p

(12)

and

m1(TS,n) =
∫

Dz tanh �1 coshn �1∫
Dz coshn �1

, (13)

where �1 = √
q̂1z + m̂1 and �2 = √

q̂2z. The conjugate
parameters, q̂1, q̂2, and m̂1, are then given by

q̂1 = β2
SJ

2(rq2), q̂2 = β2
SJ

2(q1/r + q2), m̂1 = βSJ0m1.

(14)

By solving the self-consistent equations we have the follow-
ing solutions: a paramagnetic solution (q1 = q2 = m1 = 0), a
ferromagnetic one (q1 > 0,q2 > 0,m1 > 0), and a spin-glass
one (q1 > 0,q2 > 0,m1 = 0). The transition temperatures
between two of the phases corresponding to these solutions
are given by

T FM−SG
S = J0[1 + (n − 1)q1], (15)

T PM−SG
S =

√
(1 +

√
5)/2J ≡ √

αJ, (16)

T PM−FM
S = J0, (17)

where PM, FM, and SG mean paramagnetic, ferromagnetic,
and spin-glass phase, respectively. The phase boundary

between the paramagnetic phase and the spin-glass one and
that between the paramagnetic phase and the ferromagnetic
one are independent of r and n. Thus, the multicritical point
located at (J0/J,TS/J ) = (

√
α,

√
α) in the J0/J − TS/J plane

is independent of r and n. This is consistent with the results of
previous work in the quench limit [21].

By following the stability analysis of the RS solutions of
de Almeida and Thouless (AT) [23], the stability condition is
derived as

1 − β2
SJ

2(1 − 2q2 + r2) − β4
SJ

4(1 − 2q1 + r1)

× (1 − 2q2 + r2) > 0, (18)

where

rp =
∫

Dz tanh4 �p coshn �p∫
Dz coshn �p

(p = 1,2). (19)

III. RESULTS

A. Phase diagram

As shown in the previous section, the transition temperature
T FM−SG

S between the ferromagnetic and spin-glass phases
depends on the characteristic parameters r and n of our model.
Here we carefully discuss the r and n dependence of the
phase boundaries. To completely obtain the phase boundary
of T FM−SG

S , we should numerically solve the self-consistent
equations (12) and (13). Some limiting cases around the
multicritical point and near TS = 0 can be argued by an
expansion of the order parameters.

At sufficiently low TS , the spin-glass order parameters qp

for p = 1 and 2 behave as

qp(n) �

⎧⎪⎨
⎪⎩

1 − 4 exp
[−2β2

SJ
2cp(n − 1)

]
, for n > 1,

1 − exp
( − β2

SJ
2n2cp/2

)
(1 − n)βSJ

√
cp

for n < 1,
(20)

where c1 = r and c2 = 1 + r−1. They decrease from 1 ex-
ponentially in βS for n > 1 and linearly in TS for n < 1.
Substituting them into Eq. (15), we find that T FM−SG

S =
nJ0 around J0 = TS = 0, irrespective of r , and that the RS
solution at TS = 0 always satisfies the stability condition (18).
Therefore, at TS = 0 the ferromagnetic phase stably exists
for any J0 and n > 0 and it vanishes at n = 0. The latter is
recovered in the quench limit studied in [21]. At sufficiently
low TS , the partial annealing effect yields ferromagnetic
ordering even for weak J0 and for small ratio r by appropriately
selecting J2 and J3. The stability of the ferromagnetic phase
near TS = 0 is a particular feature of the partial annealing
system of the coupled mean-field model.

Near the multicritical point, the spin-glass order parameters
can be expressed as

q1(n) �
⎧⎨
⎩

2(2α−1)
(2−n)(α−1)(αc2−1) (TS − √

α) for n < 2,√
6r2(2α−1)

r2(α−1)+α3 (TS − √
α)1/2 for n = 2,

(21)

q2(n) � q1(n)α

r
. (22)

The critical exponent of the spin-glass order parameter is 1
at n < 2 and 1/2 at n = 2. For n > 2, the order parameter is
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difficult to obtain by an expansion because the transition is of
first order. The phase boundary around the multicritical point
significantly depends on r , in contrast to that around TS = 0.

The phase diagrams at n = 2 for r = 1/3 and r = 3 are
shown in Fig. 2 as an example for n > 1. The obtained phase
diagram weakly depends on r; for J0/J >

√
α, as TS decreases

the transition from the paramagnetic to the ferromagnetic
phase occurs at T PM−FM

S , and for J0/J <
√

α, the spin-glass
phase appears at T FM−SG

S < TS < T PM−SG
S . All the phases

found for n > 1 fulfill the stability condition (18). In particular,
the obtained spin-glass phase is correctly described by the
RS solution. It is interesting to see that the region of the
spin-glass phase for r = 3 is reduced as compared with that for
r = 1/3. More concretely, the transition temperature T FM−SG

S

around the multicritical point for r = 1/3 is lower than that
for r = 3. This is a counterintuitive result because in the case
with r = 3 the majority spins in system 2 connect with each
other through the spin-glass interactions while the majority
spins are ferromagnetically coupled in system 1 in the case
with r = 1/3. We shall discuss this point later.

In addition to the phases found for n > 1, other phases
appear for n < 1: These are a mixed phase characterized
by the AT instability with m1 > 0 and a spin-glass phase
with replica symmetry broken (RSB). The phase diagram at
n = 0.1 as a typical example for n < 1 is shown for r = 1/3
and r = 3 in Fig. 3. The mixed phase is found between the
ferromagnetic and spin-glass phases and the region of the
mixed phase enlarges with increasing r . The region of the

 SG

 PM

 FM

 (a)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

T
S 

/J

J0 /J

 SG

 PM

 FM

 (b)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

T
S 
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FIG. 2. (Color online) Phase diagram of a coupled mean-field
model for (a) r = 1/3 and (b) r = 3 with the ratio of two temperatures
being n = 2. The notations PM, FM, and SG mean the paramagnetic,
ferromagnetic, and spin-glass phases, respectively. The points • are
the transition temperature T FM−SG

S obtained by solving the saddle-
point equations numerically.
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FIG. 3. (Color online) Phase diagram of a coupled mean-field
model with n = 0.1 for (a) r = 1/3 and (b) r = 3. The open and
closed circles represent the phase boundary between RSB SG and
mixed phases, and between FM and mixed phases, respectively. The
dashed line is a boundary between RS SG and RSB SG phases.

spin-glass phase also enlarges with r and a broken replica
symmetric phase exists in the intermediate-TS region in the
spin-glass phase, in contrast to that observed for n = 2. For
r = 3, a reentrant transition (PM→FM→Mixed) occurs at
J0/J >

√
α. Furthermore, the transition from the spin-glass

or mixed phase to the ferromagnetic phase occurs at lower TS ,
because the ferromagnetic phase is always stable at TS = 0 in
our model for any finite n. Hence, we can see three successive
transitions, PM→FM→Mixed→FM for J0/J >

√
α.

B. Reentrant transition

While a characteristic feature of our model is found near
TS = 0, another feature is present around the multicritical point
in the phase diagram. As seen in Fig. 3(b), a reentrant transition
from the ferromagnetic to mixed and spin-glass phases occurs
near the multicritical point for J0/J >

√
α. This means that

the embedded ferromagnetic ordering of system 1 described
by the RS solution becomes unstable as TS decreases. Such a
reentrant transition has already been reported for the quenched
system with n = 0 [21]. In this work, we study a partial
annealing effect, namely with finite n, on the stability of the
embedded ferromagnetic ordering. The gradient of T FM−SG

S

at the multicritical point is regarded as an indicator of the
“reentrant transition.” Namely, the negative slope of T FM−SG

S

at the multicritical point implies the existence of the reentrant
transition, although the existence of a reentrant transition at a
temperature lower than the multicritical point is not completely
ruled out even in the case with positive slope of T FM−SG

S .
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The reentrant transition can occur when the condition

dJ c
0 (TS)

dTS

∣∣∣∣
MCP

< 0 (23)

is satisfied; here J c
0 (TS) = TS/[1 + (n − 1)q1(TS)] and

“MCP” means the multicritical point. Note that the order
parameter q1 is a function of TS . The RS solution for q1 is
sufficient for evaluating the boundary, because the RS solution
is always stable at the multicritical point. From Eq. (23), the
region of r where the reentrant transition occurs is derived as

r > rc(n), for n < nc � 0.8396 . . . , (24)

where the critical ratio rc(n) is given by

rc(n) = (2 − n)(1 + α)

2(1 − n)(2α − 1) − (2 − n)(α − 1)
. (25)

For n > nc, the reentrant transition occurs at r < rc(n) with
rc(n) being a negative value; hence it is unphysical. The
derivation of rc(n) is based on the assumption that the transition
is of second order. Certainly the transition is of second order for
n � 2, which is larger than nc. Therefore, the reentrant transi-
tion occurs only for n < nc. We show the n dependence of rc(n)
in Fig. 4. At smaller n, the reentrant transition occurs at smaller
r . Eventually, rc reaches 1.618 · · · in the quench limit n = 0,
which is consistent with the results in Ref. [21]. Furthermore, it
is found that the gradient dJ c

0 (TS)/dTS at the multicritical point
is a monotonically increasing function of r for n > nc, and this
fact yields the shrinking of the spin-glass phase as r increases,
as shown in Fig. 2. Thus, the stability of the embedded
ferromagnetic ordering of system 1 depends quantitatively on
the value of the relative temperature n = βJ /βS .

Here, we argue a typical feature of the partially annealed
interaction J3 from the obtained phase diagram and the critical
ratio rc(n). In equilibrium of the partial annealing system, the
interactions Jij are in general proportional to n〈SiSj 〉 given
as a most probable value in P ( J). Supposing that the order
parameter q2 of system 2 has a finite value at sufficiently
low temperature TS , the spins in system 1 are subjected
to an effective field r

√
q2 caused by system 2 through the

interactions J3. For n < nc, the interactions J3 are considered
to be almost random according to the bare distribution P ( J0),
and hence an effective field is a random field for system 1. This
random effective field also does not favor the ferromagnetic

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

r c
(n

) reentrant

no reentrant

n

FIG. 4. (Color online) n dependence of the critical ratio rc above
which the reentrant transition can occurs. The ratio rc diverges at
nc � 0.8396 · · ·, which is shown by the broken line, with increasing n.

order of system 1, and the spin glass phase is enhanced as
r increases. As a consequence of the competition between r

and J0, the reentrant transition at J0/J >
√

α is found at rc.
For n > nc, the interactions J3 likely have the same sign as
〈S1,iS2,j 〉. Then, the effective field from system 2 to system 1
is not random but it supports the ferromagnetic order in
system 1. Therefore, the ferromagnetic ordering is stabilized
even as r increases and system 2 with the spin-glass couplings
dominates. The reentrant transition does not occur for any r

for n > nc.

C. Local structures of frustration

In this section, we discuss equilibrium properties of the cou-
pled mean-field model from the viewpoint of interactions J .
Frustration is a key quantity that characterizes the structure
of the interactions in spin glasses and related random spin
models. It is defined as a product of Jij s along a minimal loop,
whose length is three in the fully-connected model studied
in this work. If the interactions among the three spins satisfy
the condition JijJjkJki < 0, then the three terms of the local
energy cannot be minimized simultaneously. Such interactions
are said to have frustration [24]. Meanwhile, interactions
satisfying JijJjkJki > 0 do not have frustration and the energy
of the spins attains a global minimum value although the
relative directions of the spins are not aligned totally. This
type of interaction is called a Mattis model [25] and all of
the interaction sets can be reduced to the pure ferromagnetic
model by local gauge transformation [2].

In the coupled mean-field model, we should consider three
distinct frustration parameters originating from three types of
interactions, as shown in Fig. 1:

�(2) =
∑

i<j<k

J2,ij J2,jkJ2,ki , (26)

�(3a) =
∑
i<j,k

J1,ij J3,jkJ3,ki , (27)

�(3b) =
∑
i,j<k

J3,ij J2,jkJ3,ki . (28)

In equilibrium, these parameters are to be taken as averages
over the equilibrium distribution P ( J) in Eq. (6) as [�(2)]n,
[�(3a)]n and [�(3b)]n with [· · ·]n being the average with respect
to J . For the limit n → 0 with βS kept finite, the distribution
P ( J) is identical to the bare distribution P0( J) and the
average [· · ·]n is reduced to [· · ·]0. In this limit, the frustration
parameters become zero. If the frustration parameters take a
positive finite value at finite n, this indicates that the frustration
is decreased as a consequence of the correlation of J .

When the bare distribution of the interactions is Gaussian,
the averaged frustration parameters are expressed in terms
of the order parameters [11,26]. In this model, the averaged
frustration parameters under the RS ansatz are described as
follows:

[�(2)]n = β3
S

{
λ3

2 + (n − 1)μ3
2

}
, (29)

[�(3a)]n = β2
SnJ0λ2m

2
1, (30)

[�(3b)]n = β3
S

{
λ1λ

2
2 + (n − 1)μ1μ

2
2

}
, (31)

where λp = 1 + (n − 1)qp and μp = 1 − qp are the eigenval-
ues of the n × n matrix Qp whose diagonal components are
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1 and off-diagonal components are qp. We can also derive the
frustration parameter with a multiple-step RSB, which does
not yield a significant quantitative change [26].

At finite n, [�(2)]n and [�(3b)]n take a finite value depending
on βS , while [�(3a)]n is zero in the paramagnetic phase. This
moderate decrease of the frustration is considered to be due
to an emergence of “short-range” correlation of J induced
by partial annealing. A considerably qualitative change of the
frustration parameters is accompanied by phase transitions.
In the spin-glass phase with q1 > 0, q2 > 0, and m1 = 0, the
frustration parameters [�(2)]n and [�(3b)]n largely increase, but
[�(3a)]n is still zero. Therefore, the frustration is nonuniformly
distributed in the system and a “local” structure of frustration
is formed; the frustrations in system 2 and a part of J3

decrease, but a remaining part of J3 has frustration as
high as for the randomly constituted interactions. The local
structure prefers to decrease selectively the frustration of
system 2 in the spin-glass phase, and it does not cooperatively
support the ferromagnetic state of system 1. Meanwhile, all
of the frustration parameters take a positive value in the
ferromagnetic phase, because in this phase all order parameters
are finite. In this case, all interactions J2 and J3 decrease the
energy of the ferromagnetic state of system 1, meaning that
the effective field from system 2 energetically supports the
ferromagnetic state of system 1. This type of interactions is
similar to that of the Mattis states [25]. These observations of
the frustration parameters certify the validity of the argument
of rc(n) and nc in the previous section.

Before closing this section, we discuss the order of the
frustration parameters. The interactions are of order of N−1/2

in the bare distribution. When the frustrations completely
vanish when keeping the order of Jij , the order of the frus-
tration parameters become O(N3/2) by definition. However,
the averaged frustration parameters should be O(1) quantities
for any TS , as seen from the expressions Eqs. (29), (30) and
(31). This means that the order of Jij s is appropriately modified
to O(N−1) through the partial annealing, and the extensivity
of thermodynamic quantities such as energy and free energy is
maintained throughout the entire temperature region. This is
a characteristic of partial annealing with the bare distribution
function of J being Gaussian. When the bare distribution is
bimodal and the allowed value of J is restricted to ±J , namely
±J model, the order of Jij cannot be changed and the energy
becomes O(N3/2) in the resultant ferromagnetic phase, which
shows the lack of extensivity. We should be careful in studying
the thermodynamics in such models.

IV. SUMMARY AND DISCUSSION

We have studied equilibrium properties of a coupled
mean-field model in a partial annealing system, in which
system 1 with an embedded ferromagnetic ordering and
system 2 with no embedded pattern are coupled with
spin-glass interactions. In this model, the interactions as
well as spins are regarded as dynamical variables, but their
time scales are completely separated from each other. The
spins S and interactions J touch to their own heat baths
with different temperatures TS and TJ . By using the replica
method, the free energy of the system is derived as functions
of the two temperatures, and the phase diagram is obtained

in the two-temperature plane. The phase boundary between
the ferromagnetic phase and the spin-glass phase interestingly
depends on the model parameters, the size ratio r of system 2
to system 1, and the ratio n between the two temperatures.

We carefully studied T FM−SG
S around the multicritical

point. It is found that there exists a critical value nc in the
ratio n which characterizes whether the reentrant transition
occurs around the multicritical point. For n < nc, the partial
annealing effect on the intercoupling J3 is not significant
enough to enhance the embedded ferromagnetic ordering in
system 1. The effective field from system 2 to system 1
does not support the ferromagnetic ordering in system 1.
Therefore for a fixed n < nc as the ratio r increases, in
other words the number of spins in system 2 increases
relatively, a competition involving the ferromagnetic order is
expected; the random filed destabilizes the ferromagnetic order
and the coupling J0 stabilizes it. As a result of this competition,
the ferromagnetic order is destabilized eventually. This can
be seen as the reentrant transition in the phase diagram.
Meanwhile, for n > nc the effective field supports achieving
a ferromagnetic ordering in system 1 irrespective of the value
of r , and the spin-glass region is narrowed monotonically as r

increases.
We introduced three frustration parameters, �(2), �(3a)

and �(3b), for characterizing partially annealed interactions of
the coupled mean-field model. They are expressed in terms
of the order parameters of the spin system in equilibrium.
Using the parameters, we classify the type of interactions in
this model into three categories, each of which corresponds
to a phase: interactions with a local structure of frustration
in the spin-glass phase, Mattis-like interactions in the
ferromagnetic phase, and randomly constructed interactions
in the paramagnetic phase. The characteristic interactions
found in the spin-glass phase do not cooperatively support
the ferromagnetic ordering of system 1; that is to say, the
frustration is eliminated from system 2 independently of the
ferromagnetic interactions in system 1.

This is quite different from the results obtained in a related
model previously studied [7,8], in which a locally embedded
pattern is supported by the interactions surrounding the pattern
and the frustration in the rest of the interactions still remains
extensive. Although both models have the same structure, in
that an ordering pattern is embedded in a part of the system, the
partial annealing leads to the different property of interactions;
the interactions in the previously studied model support the
embedded pattern, and those in this study disturb it. One reason
of the difference may originate from the different choice of HJ .
In the present work, HJ ( J) contains the spin free energy, while
HJ ( J) in [7,8] has a local order parameter. The results suggest
that an explicit form of HJ ( J) strongly affects the construction
of the interaction J and the ordering of the spin S; in particular,
an entropic effect of J is nontrivial. For a proper understanding
of the constructed interactions in partial annealing, we have
to pursue some variant models with a general type of HJ .
However, analytical studies of partial annealing at this time
heavily relies on the replica method, which is applicable only
to systems with the spin free energy as HJ . The partially
annealed system with HJ that does not contain the spin free
energy has yet to be studied in terms of spin-glass theory.
An extended formalism of the partially annealed system is
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required for further applications to biological or engineering
models.

In this work, we focus our attention on the mean-field
analysis based on fully connected spin models. When we
introduce a diluted model such as the Viana-Bray model [27]
in partial annealing, the geometric structure of the partially
annealed J may play an important role in cooperative
phenomenon. Furthermore, a decoupling transition of two
degrees of freedom might occur in the diluted models, while
the transition of frustration is completely correlated to the
transition of the spin variables in our model. Some work in
this direction is in progress.

We end with an account of a perspective of the partially
annealed system. In most the studies of partial annealing,
the free energy is used for the Hamiltonian HJ ( J) of the
slow variables J . This yields a replicated system with a finite
replica number determined by the ratio of two temperatures
in the partially annealed system. The partial annealing can
be considered to give a physical meaning to the replica
approach before taking the limit of the replica number to

zero [12]. Meanwhile, the large deviations of the free energy of
mean-field spin glasses are studied by the replica method with a
finite replica number [28]. A mechanism of replica symmetry
breaking is studied through a phase transition as the replica
number is taken to zero [29]. Thus, the study of a finitely
replicated system can provide new insights into spin-glass
theory. In this work, we discussed a phase transition as a
cooperative phenomena of the fast and slow variables with the
replica number varying; this might give a different viewpoint
on finitely replicated systems. It would be interesting to
classify possible universality classes of phase transitions of
finitely replicated systems, particularly in finite dimensions.
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[1] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
and Beyond (World Scientific, Singapore, 1987).

[2] H. Nishimori, Statistical Physics of Spin Glasses and Infor-
mation Processing: An Introduction (Oxford University Press,
Oxford, 2001).

[3] N. Go, Annu. Rev. Biophys. Bioeng. 12, 183 (1983).
[4] J. N. Onuchic and P. G. Wolynes, Curr. Opin. Struct. Biol. 14,

70 (2004).
[5] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, Proc. Natl. Acad.

Sci. USA 101, 4781 (2004).
[6] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 (2002).
[7] A. Sakata, K. Hukushima, and K. Kaneko, Phys. Rev. Lett. 102,

148101 (2009).
[8] A. Sakata, K. Hukushima, and K. Kaneko, Phys. Rev. E 80,

051919 (2009).
[9] K. S. J. Nordholm and R. Zwanzig, J. Stat. Phys. 11, 143 (1974).

[10] K. Kaneko, Prog. Theor. Phys. 66, 129 (1981).
[11] V. Dotsenko, S. Frantz, and M. Mézard, J. Phys. A 27, 2351
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