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Proteins as fractals: Role of the hydrodynamic interaction
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Exploiting the fractal nature of folded proteins, we study the effect of the hydrodynamic interaction between
amino acids using a Zimm-type model. We compute the time-dependent mean square displacement of an amino
acid and the time-dependent autocorrelation function of the distance between two amino acids, and we show that
these dynamic quantities evolve anomalously, similar to the Rouse-type behavior, yet with modified dynamic
exponents. Good agreement is found with recent neutron spin-echo studies of myoglobin and hemoglobin.
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Recently there has been much theoretical focus on the
fractal nature of natively folded proteins [1–9]. It has been
shown that each protein can be associated with charac-
teristic broken dimensions in analogy with mathematically
constructed fractals. This viewpoint allows description of
protein dynamics on a universal level. A universal anomalous
dynamics has emerged in which the specificity is associated
with the unique dynamic exponents that characterize each
protein [3,5,8]. On the experimental side, evidence came
from electron spin relaxation measurements [10] and neutron
scattering [11]. Single-molecule experiments have reported
anomalous behaviors involving power laws in time [12].
More recently neutron spin-echo studies at large wavenumbers
demonstrated a stretched exponential relaxation that was
interpreted as anomalous subdiffusion of the amino acids [13].
Anomalous dynamics has also been observed in molecular
dynamics simulations [14,15].

Mathematically constructed fractals are either deterministic
fractals, e.g., the Sierpinski gasket and carpets, or disordered,
e.g., the infinite percolation cluster at the percolation threshold
[16]. They can be characterized by a few broken dimensions:
(i) the mass fractal dimension df , which governs the scaling
M(r) ∼ rdf of the mass M(r) enclosed in concentric spheres
of radius r; (ii) the spectral dimension ds , which governs
the scaling g(ω) ∼ ωds−1 of the vibrational density of states
(DOS) g(ω) with frequency ω [17,18]; and (iii) the topological
dimension dl , which governs the scaling M(l) ∼ ldl of the
mass M(l) enclosed in concentric “spheres” of radius l in the
topological (or “manifold”/“chemical”) space. One may also
define, instead of dl , the chemical length (or minimal path)
dimension dmin = df /dl that relates the real space distance r

between two points on the fractal to the minimal path distance l

between these points along the fractal network links, l ∼ rdmin .
The dimensions df and ds have been computed for a

large number of proteins using the native fold structures
obtained from the protein data bank [7]. df is straightforwardly
computed using these structures. The computation of ds

requires a network elasticity model, and the Gaussian network
model (GNM) has been mostly used [19]. The topological
dimension dl has also been computed and found close to the
fractal dimension df [20]. The spectral dimension of the vast
majority of proteins has been found to be smaller than two
[4,6,7]. Importantly, it has been argued that this property leads
to large thermal fluctuations of the amino acid displacements
ui about their equilibrium, native fold, position. These are

predicted to diverge with the protein size via a generalized
Landau-Peierls instability, 〈u2

i 〉 ∼ N
2
ds

−1 (for ds < 2), where
N is the number of amino acids [4,6]. By invoking marginal
stability, which allows proteins to attain maximum fluctuations
(or “flexibility”) but keep their native fold structure, a universal
equation of state has been deduced that relates ds , df , and N of
all natively folded proteins [6]. The equation has been checked
for about 5,000 proteins, and remarkable agreement has been
found, regardless of their source and function [7].

Protein vibrations have been described so far within the
vanishing damping and the high damping limits [3,5]. In
the latter, it was assumed that the hydrodynamic drag is
local, similar to the Rouse model of polymers. Random walk
(RW) on the protein fold has been also studied, and using
its mapping to the Rouse-type vibrational model allowed
to deduce valuable information on vibrations [8]. However,
the role of the hydrodynamic coupling between amino acids,
similar to the Zimm model of polymers [21–24], has not been
studied so far in this context. Yet, like in polymers, forces
acting on an amino acid lead to its motion and induce a velocity
field in the solvent, which in turn generates motion of another
amino acid. The interaction decays very slowly, as ∼1/r , so
its effect can be strong. We study this effect here using the
general analytical framework formulated in Ref. [5].

We repeat briefly the model definitions and assumptions,
following the notations of Ref. [5]. Protein vibrations are
discussed using the GNM [17,19]. The model assigns identical
springs between α-carbon pairs that are distant less than a
cutoff distance Rc, whose typical values range between 6 and
8 A. Each α-carbon, henceforth named a “bead,” is assigned an
averaged amino acid mass. In what follows, we assume that the
network forms a disordered fractal. The index of a bead, or its
coordinate in topological space, is denoted symbolically by the
“vector” �l. The vector �R(�l) denotes its position in real space.
The ground configurational state of the protein is described by
the set of coordinates �Req(�l), and deviations from the ground
state are denoted by the displacements �u(�l) = �R(�l) − �Req(�l).
The GNM Hamiltonian is

H [{�u(�l)}] = 1

2
mω2

o

∑
〈�l�l′〉

[�u(�l) − �u(�l′)]2, (1)

where 〈�l �l′〉 stands for pairs connected by springs, ωo is the
spring natural frequency, and m is the bead mass (mω2

o is the
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spring constant). The eigenstates (normal modes) �α(�l) of the
Hamitonian (1) are solutions of the eigenvalue equation

ω2
o

∑
�l′∈�l

[�α(�l′) − �α(�l)] = −ω2
α�α(�l), (2)

where �l′ ∈ �l denotes beads connected by springs to the bead
�l. {�α(�l)} form an orthonormal set [18], allowing us to
define a normal mode transform �uα = ∑

�l �u(�l)�α(�l), where
�uα is the amplitude of the normal mode �α(�l). In the
normal mode “space”, the Hamiltonian is diagonal, H [{�uα}] =
1
2m

∑
α ω2

α �u2
α . The equipartition theorem then dictates that at

thermal equilibrium 〈�uα · �uβ〉T = 3kBT

mω2
α
δα,β .

On a fractal, the normal modes �α(�l) are strongly localized
in space. A disorder averaged eigenstate may be defined
according to �̄α(l) = N〈�α(0)�α(l)〉dis. It has been shown
that �̄α(l) obeys the following scaling form: �̄α(l) =
f [(ωα/ωo)ds/dl l], where f (y) is the scaling function [16–18].
For y � 1, f (y) is exponentially decaying, and, for y 	 1,
f (y) 
 1 − const. × y2 [18,25,26].

We now turn to discuss the dynamics of the fractal
network, generalizing the treatment of Ref. [5] to include the
hydrodynamic interaction. The dynamics is described by a
set of Langevin equations in the strong damping limit that
follow from Eq. (1), in which friction is modeled by the Oseen
mobility tensor. The Oseen tensor describes how the velocity
�vi of a bead i is influenced by the force �fj acting on another
bead j a distance �rij apart, via �vi = L(�rij ) · �fj , and in the
Stokes approximation it is [21] L(�r) = (r̂ ⊗ r̂ + 1)/(8πηr).
We assume, for simplicity, that each bead is hydrodynamically
coupled to all other beads in the network and that all amino
acid pairs experience the same hydrodynamic interaction.
White-noise forces are added as usual to allow for thermal
fluctuations in the system, and they obey the fluctuation-
dissipation theorem. With these simplifying assumptions, the
Langevin equations of motion become

d �u(�l)
dt

= mω2
o

∑
�l′

L( �R�l�l′ ) ·
∑
�l′′∈�l′

[�u(�l′′) − �u(�l′)] + �ζ (�l,t), (3)

where �R�l�l′ = �R(�l) − �R(�l′) is the vector separation between
beads �l and �l′.

The dynamics described by Eq. (3) is essentially nonlinear.
The nonlinearity emerges from the dependence on distance
of the Oseen tensor, which also implies dependence on
displacements. We thus linearize these equations, introducing
a few simplifications. First, vibrations are assumed small such
that �R�l�l′ 
 �R�l�l′,eq . Second, we angularly preaverage the Oseen
tensor; namely, we replace it by a scalar equal to the angularly
averaged tensor, 〈L(�r)〉 = 
(r)1 [21]. The latter depends
only on the distance r = |�r|, 
(r) = 1/(6πηr). Note that,
unlike for polymers [21,22], we do not require here interbead
distance preaveraging, as the network merely vibrates around
its ground-state structure. Under these approximations, the
Langevin equations (3) become

d �u(�l)
dt

= mω2
o

∑
�l′


(R�l�l′ )
∑
�l′′∈�l′

[�u(�l′′) − �u(�l′)] + �ζ (�l,t). (4)

The vibrational normal modes do not diagonalize Eq. (4)
due to the hydrodynamic interaction, yet we shall still use
them to develop this equation. We first plug in the normal
mode inverse transform �u(�l) = ∑

β �uβ�β(�l) on both sides of
Eq. (4) and make use of the modes defining Eq. (2). Next we
multiply both sides by �α(�l) and sum over �l, making use of
the orthonormality of the modes, to arrive at the following
Langevin equations for the normal mode amplitudes uα:

d �uα

dt
= −m

∑
β

ω2
β
αβ �uβ + �ζα(t), (5)

where


αβ =
∑
�l,�l′


(R�l�l′ )�α(�l)�β(�l′). (6)

Next we perform disorder averaging over Eq. (5), which
amounts to disorder averaging over �α(�l)�β(�l′) in Eq. (6).
Considering frequencies that are not too low, ωα, ωβ � ωmin,
the normal modes are strongly localized in space and centered
in different regions of the protein/fractal, thus making the sum
in Eq. (6) small for α �= β. Hence, for such frequencies, off-
diagonal terms are negligible, and 〈
αβ〉dis becomes effectively
diagonal. Using the disorder averaged eigenstate �̄α(�l) we
have

〈
αβ〉dis = δαβ

N

∑
�l,�l′


(R�l�l′)�̄α(�l − �l′). (7)

Summing over �l′, noting that the sum terms depend only the
difference �l − �l′ and not on �l′ and �l alone, and neglecting
boundary effects (i.e., taking the large system limit and both �l
and �l′ far from the boundaries), we obtain 〈
αβ〉dis = δαβ
α ,
where


α =
∑

�l

(R�l)�̄α(�l) (8)

is the normal mode transform of 
(R�l). The Langevin
equations thus become diagonal in the disorder averaged
eigenstate space

d �uα

dt
= −mω2

α
α �uα + �ζα(t). (9)

As a result of this effective diagonalization, the time autocorre-
lation function of mode amplitude is simply 〈�uα(t) · �uα(0)〉 =
〈�u2

α〉e−�αt , where �α = mω2
α
α is the mode relaxation rate.

This will serve us in calculating desired observables.
In order to evaluate 
α using Eq. (8), we use the scaling

form of the eigenstates, �̄α(l) = f [(ωα/ωo)ds/dl l], and the
scaling behavior Rl ∼ l1/dmin ∼ ldl/df , connecting the chemical
length l to the real space length Rl . Approximating the sum in

Eq. (8) by an integral leads to 
α = (A/6πηb)(ωα/ωo)
ds
df

−ds ,
where A is a numerical constant, A = ∫ ∞

0
ddl x

x
dl /df

f (x), and b is
the mean bond length. The mode relaxation rate becomes

�α 
 Āω

ds
df

+2−ds

α (10)

with Ā = Am/(6πηbω

ds
df

−ds

o ).
We now discuss the implications of the above dynamics

on two dynamical observables. Consider first the vibrational
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mean square displacement (MSD) of a bead, averaged over
all network beads. The MSD can be expanded in terms of the
modes to obtain

〈��u(t)2〉 ≡ 〈(�u(t) − �u(0))2〉 = 2

N

∑
α

〈�u2
α

〉
(1 − e−�αt ). (11)

We approximate the sum by an integral over the frequency ω

using the DOS g(ω) = noω
ds−1, with no = Nds/ω

ds
o chosen

such that
∫ ωo

0 dωg(ω) = N . Focusing on the time regime
�(ωo)−1 	 t 	 �(ωmin)−1 and assuming ds < 2, leads to an
anomalous subdiffusion

〈��u(t)2〉 = Btν, (12)

where the anomalous diffusion exponent ν is

ν = 2 − ds

2 − ds + ds/df

= dw − df

dw − df + 1
. (13)

Here dw = 2df /ds is the RW anomalous diffusion exponent

(〈r2〉 ∼ t2/dw ). The prefactor B is B = 6ds

�( 1
dw−df +1 )

2−ds

kBT

mω
ds
o

Āν ,
where �(x) is the Gamma function.

Next we consider the autocorrelation function of the
fluctuations in distance between two beads on the fractal �x(t),
which can be deduced from single-molecule experiments [12].
Using �x(t) = �u(�l,t) − �u(�l′,t), performing disorder average,
and making use of the normal modes, we obtain the following
scaling form for the time regime �(ωo)−1 	 t 	 �(ωmin)−1:

〈�x(t) · �x(0)〉 = kBT

mω
ds
o

(Āt)νg [l/�(t)] , (14)

where g(v) is a scaling function and �(t) = ω
ds/dl
o (Āt)

df

dl (dw−df +1)

is the length describing the propagation with distance, in
topological space, of the bead-bead correlations or force and
energy perturbations. In real space, this propagation length
scales with time as ξ (t) ∼ t ζ , where ζ = 1/(dw − df + 1).

We now analyze 〈�x(t) · �x(0)〉 at short and long times. If
�(t) 	 l, the two beads’ motion is uncorrelated. Provided that
ds < 2, at short times we find 〈�x(t) · �x(0)〉 ≈ 〈�x2〉 − Btν . The
static variance diverges with distance as 〈�x2〉 ∼ rdw−df , as
recently verified numerically for about 500 proteins [8]. At
long times such that �(t) � l the motion of the two particles
is nearly perfectly correlated, thus leading to a vanishing
autocorrelation of �x(t). Using f (y) 
 1 − const. × y2 for
y 	 1, we find, provided that 2 < 2 ds

dl
+ ds ,

〈�x(t) · �x(0)〉 ≈ const.
kBT

mω
ds
o

l2 (Āt)−μ, (15)

where

μ =
2 ds

dl
+ ds − 2

2 − ds + ds/df

=
2 df

dl
+ df − dw

dw − df + 1
. (16)

To summarize the time dependencies, we find

〈�x(t) · �x(0)〉 ∼
{

1 − const. tν for t 	 t∗,
t−μ for t � t∗,

(17)

where t∗ ∼ rdw−df +1. As for most proteins df and ds are in
the range 2 < df < 3 and 1.3 < ds < 2, we obtain a variety

of values of ν and μ that can be found specifically for each
protein [7,27].

Similar behaviors have been found using the Rouse-type
model, yet the values of the dynamical exponents ν, μ,
and ζ are different [3,5,24]. The Rouse-type model leads to
ν = 1 − ds/2, independent of df , whereas here we find df

dependence [Eq. (13)], manifesting how the hydrodynamic
coupling “senses” the object geometry. The propagation
length exponent ζ , which is simply ζ = 1/dw = ds/(2df )
in the Rouse-type model, manifesting the mapping to the
RW problem, is now modified to ζ = 1/(dw − df + 1) [28].
Note that for purely 1D objects (df = dl = ds = 1) one
recovers the well-known Rouse exponent ν = 1/2 (ignoring
logarithmic corrections). This exemplifies the known weak (in
fact, marginal) hydrodynamic coupling that is present in 1D.

It is interesting to compare our results to the dynamics of
linear polymer chains and branched polymers forming fractal-
like, sol-gel, clusters [21–24]. In these systems, and unlike in
our study, the clusters and chains can fluctuate between all their
possible configurations. The Zimm model in these systems
leads to an anomalous diffusion exponent ν = 2/3, regardless
of the fractal dimension df , demonstrating the strong effect
of the hydrodynamic interaction [21,22,24]. However, for our
vibrating fractal, which models a folded protein, ν is dependent
on df and ds (or, alternatively, df and dw) and can significantly
deviate from 2/3 (it equals 2/3 for a Gaussian linear chain
where dl = ds = 1, df = 2). The hydrodynamic interaction
“renormalizes” the dynamic exponents but, unlike in polymer
systems, does not smear entirely their fractal character.

Importantly, the dynamic structure factor S(q,t) of proteins
is expected to decay mainly due to the evolution in time of
the MSD, S(q,t) 
 S(q)exp[− 1

6q2〈��u(t)2〉], from which the
MSD may be extracted [13,21,22]. At large wavenumbers
q corresponding to qRg � 1, where Rg is the gyration
radius, the result is a stretched exponential relaxation. Recent
neutron spin-echo studies on horse heart myoglobin (Mb) and
bovine hemoglobin (Hb) indeed find a stretched exponential
relaxation in the large q and low concentration regimes with
ν 
 0.4 ± 0.03 for both proteins. Taking the values [29] ds =
1.56, df = 2.38 for Mb, and ds = 1.74, df = 2.52 for Hb,
we obtain, from Eq. (13), ν = 0.40 for Mb, in good agreement
with experiment, and ν = 0.27 for Hb, in less good agreement.
The Rouse exponents, ν = 1 − ds/2, are 0.22 (Mb) and
0.13 (Hb), which do not quite agree with experiment. However,
in view of the computational and experimental errors this
comparison is not conclusive. It should be noted that the exper-
imental exponent is quite far from the polymer Zimm exponent
ν = 2/3, even if one puts aside the inapplicability of this
model to folded proteins. On the more fundamental level, the
observed stretched exponential decay is strong support for the
fractal nature of proteins manifested in their dynamic behavior.

The theory can be tested also for other systems exhibiting
fractal structures. Colloidal gels consist of diffusion-limited
fractal aggregates made of polystyrene particles [30]. In this
system bond-bending elasticity dominates the vibrations rather
than scalar elasticity, so some modifications to the present
calculation are required. Bond bending is known to modify
the spectral dimension that controls the DOS to a different
value, which we shall denote dE , such that g(ω) ∼ ωdE−1.
With this modification, all steps of our derivation may be
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repeated leading to the same expressions for the MSD 〈��u(t)2〉
and distance autocorrelation 〈�x(t) · �x(0)〉, just that dE is now
replacing ds . The value of dE for diffusion-limited aggregates
may be inferred from the work of Webman and Grest [31],
and the following expression is obtained: dE = 2df /(2 +
dB + df ), where dB is the bond dimension [30,32] (denoted
as the backbone dimension D′ in Ref. [31]). Using this
expression we find a modified anomalous diffusion exponent
νE = (2 + dB)/(3 + dB). It is gratifying that Krall and Weitz
arrived at the same expression using a more heuristic approach
[30]. Moreover, since dB 
 1.1 for diffusion-limited clusters
[32], one obtains νE 
 0.76, consistent with the measured
value 0.66–0.70 [30].

We have found that, in thermally vibrating fractals, the
hydrodynamic interaction modifies various dynamic expo-
nents but does not alter their universal, anomalous, form.
Making use of the similarity between proteins and fractals,
we suggest an explanation for the anomalous diffusion
inferred from recent neutron spin-echo measurements on
proteins [13], which may motivate further experiments in this
direction.
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