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Shear-induced criticality near a liquid-solid transition of colloidal suspensions
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We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the
time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition
point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value
of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ̇ ex) plane, where ρ is the
density of the colloidal particles and γ̇ ex is the shear rate of the solvent. The transition line in the phase diagram
terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously
as γ̇ ex → 0.
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I. INTRODUCTION

A crystal phase is distinguished from a liquid phase by a
translational and rotational symmetry breaking in space. Since
there exists an order parameter associated with the symmetry
breaking, the nature of the transition to a crystal phase is rather
different from that of gas-liquid transitions, although both are
first-order transitions from the viewpoint of thermodynamics.
In short, the transition to a crystal phase is classified as a
symmetry-breaking first-order transition.

The correlation time of fluctuations does not diverge near
symmetry-breaking first-order transitions. This is in sharp
contrast to the case of a symmetry-breaking second-order
transition, which exhibits a divergent time scale when ap-
proaching a liquid gas critical point. On the basis of standard
understanding, in this paper, we argue that a divergent time
scale of steady-state fluctuations may appear near an equilib-
rium crystallization (symmetry-breaking first-order transition)
point when a nonequilibrium condition is imposed.

Concretely, we study colloidal suspensions under shear
flow through numerical experiments. Since the pioneering
work by Ackerson and Clark [1], there have been extensive
studies related to the crystallization of colloidal suspensions
under shear flow [2–6]. In particular, a phase diagram was
obtained by numerical experiments [2] and laboratory exper-
iments [3], together with numerical realizations of crystal-
liquid coexistence under shear flow [4]. In order to clarify
the microscopic mechanism for the transition to a crystal, the
kinetics of homogeneous nucleation under shear flow was also
investigated [5]. However, to our knowledge, shear-induced
criticality near an equilibrium crystallization point has never
been reported, except for our preliminary observation [6].

In this study, we focus on time scales associated with
the relaxation from a bond-orientational ordered state in a
disordered regime. We first note that the relaxation time, even
in equilibrium cases, diverges near the melting point [7,8].
We characterize the parameter dependence of the relaxation
time quantitatively by measurement of the time series of a
bond-orientational order parameter. The result is well fitted
by the Vogel-Fulcher law, which suggests the existence of
a nucleation process of disordered fluid regions in a crystal
state. However, since crystals do not appear spontaneously
in the disordered phase, the divergent time scale has never
been observed in steady-state fluctuations. In contrast, in

nonequilibrium systems under shear flow, the relaxation time
exhibits a power-law divergence near a transition point to an
ordered fluid, which suggests the existence of critical slowing
down. The power-law divergent time scale is also observed
in steady-state fluctuations. We refer to this phenomenon as
shear-induced criticality near a liquid-solid transition.

II. MODEL

We investigate N colloidal particles that are suspended in a
solvent fluid confined to an L × L × L cubic box. We impose
planar Couette flow on the solvent and choose the x and
z axes to be the directions of the shear velocity and the velocity
gradient, respectively. Concretely, the velocity profile of the
solvent is assumed to be given as (γ̇ exz,0,0). We impose
periodic boundary conditions along the x and y axes and
introduce two parallel walls so as to confine particles in the
z direction. Let r i , i = 1, . . . ,N , be the position of particle
i. The potential energy of particles U ({rj }Nj=1) consists of
two parts:

∑
i<j ULJ(|r i − rj |) and

∑
i U

wall(r i). The former
describes the interaction potential among particles, where
ULJ(r) = 4ε[(σ/r)12 − (σ/r)6] − Ucutoff for r < rc with cut-
off length rc and Ucutoff = 4ε[(σ/rc)12 − (σ/rc)6], while
ULJ(r) = 0 otherwise. Uwall(r i) represents the wall potential
and is given by Uwall(ri) = uWCA(r∗ − L/2 ± zi) for L/2 ±
zi < r∗ with the Weeks-Chandler-Andersen potential uWCA

[9], while Uwall(r i) = 0 otherwise. We define momentum of
the ith particle relative to the shear flow as pi(t) ≡ mṙ i(t) −
mγ̇ exzi(t)ex , where m is the mass of a single particle. We then
assume the equation of motion for the particles as

d pi

dt
= −∂U

({rj }Nj=1

)
∂ r i

− ζ
pi

m
+ ξ i(t), (1)

where ξ i = (ξx
i ,ξ

y

i ,ξ z
i ) represents thermal noise satisfying

〈ξα
i (t)ξβ

j (t ′)〉 = 2ζkBT δij δ
αβδ(t − t ′), kB is the Boltzmann

constant, T is the temperature of the solvent, and ζ is the
friction coefficient. The superscripts α and β represent Carte-
sian components. (See Ref. [10].) In numerical simulations, all
the quantities are converted to dimensionless forms by setting
m = σ = ε = 1. We fix T = 1.5, ζ/kBT = 1, N = 1024,
rc = 2.5σ , and r∗ = 0.5σ , and treat ρ and γ̇ ex as control
parameters. We discretize (1) according to the reversible
system propagator algorithm [11] with time step �t = 1/256.
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In this paper, 〈. . .〉 represents the statistical average in steady
states.

III. ORDER PARAMETERS

We define an order parameter that characterizes a rotational
symmetry breaking [12,13]. Using the Delaunay triangular
decomposition [14] on a particle configuration, we determine
neighboring particles for a given particle i. The collection of
edges that extend from r i in the Delaunay triangular is denoted
by (r ij )nB(i)

j=1 , where nB(i) represents the number of neighbors
of particle i. From this collection, we define a 13-dimensional
vector q6(i) = [q6,−6(i), . . . ,q6,m(i), . . . q6,6(i)] as

q6,m(i) = 1

nB(i)

nB(i)∑
j=1

Y6,m

(
r ij

|r ij |
)

, (2)

where Y6,m is the spherical harmonics function of degree
six. Then, the bond-orientational order is qualified by q̄6,m =
1/N

∑N
i=1 q6,m(i), where 〈q̄6,m〉 = 0 if the rotational symme-

try is not broken, while 〈q̄6,m〉 �= 0 in the thermodynamic
limit N → ∞ when the bond-orientational order emerges. In
order to detect symmetry breaking, it is convenient to measure
the magnitude of the vector q̄6,m. Following the standard
convention, we define

Q6 ≡
〈(

4π

13

6∑
m=−6

q̄6,mq̄∗
6,m

)1/2〉
. (3)

Note that Q6 
 O(1/
√

N ) in the disordered phase, while
Q6 
 O(1) in the ordered phase, when N → ∞.

On the left-hand side of Fig. 1, we show Q6 as a function of
ρ for several values of γ̇ ex. The figure indicates the existence
of an ordered state with Q6 
 O(1) in a high-density regime
for each γ̇ ex. In particular, the transition to the ordered phase is
quite sharp when γ̇ ex = 0, while the transition width becomes
wider as γ̇ ex is increased. For a tentative value of the transition
point, we define ρq as the density such that Q6 = 0.2. We
display ρq as a function of γ̇ ex in the right-hand side of Fig. 1.
More precise determination of the functional forms of Q6

will be obtained by investigating larger systems. Note that,
in the thermodynamic limit without shear flow, nonzero Q6

emerges continuously for a density at which a crystal can
coexist with a liquid. When we ignore the coexistence phase,
Q6 exhibits a discontinuous transition, which is observed for
the system under constant pressure. In this paper, putting aside
phenomena associated with the coexistence phase, we focus
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FIG. 1. (Color online) Left: Q6 as a function of ρ for several
values of γ̇ ex. Right: ρq as a function of γ̇ ex.
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FIG. 2. (Color online) Shear rate of particle flow as a function of
γ̇ ex for several values of ρ. Each point is obtained from the velocity
profiles v̄(z). Examples of velocity profiles for different γ̇ ex with
ρ = 1.1 fixed are shown in the inset.

on the question of how the nature of the symmetry-breaking
discontinuous-transition is modified by the influence of shear
flow.

In the equilibrium case, the ordered phase corresponds to a
crystal. However, in the nonequilibrium cases, since the shear
flow drives particles, particles may flow even in the ordered
phase with Q6 �= 0. We then measure the x component of the
velocity averaged over a region with an interval [z + 0.5,z −
0.5] in the z direction, which is denoted by v̄(z). Examples of
v̄(z) for several values of γ̇ ex with ρ = 1.1 fixed are shown
in the inset of Fig. 2. We then determine the shear rate γ̇ of
particles by fitting the slope of the velocity profile v̄(z) in the
region −1.5 < z < 1.5. The obtained shear rates γ̇ are plotted
for γ̇ ex in Fig. 2. Although the flow might cease at some value
of γ̇ ex, the determination as to whether the crossover is actually
singular is a delicate problem. (See Ref. [15] for a related
discussion.) For any case, the crossover points are located at a
higher density than ρq when γ̇ ex > 0 (see Fig. 3). Therefore,
as we are concerned with behaviors near the transition point
at which the order parameter Q6 
 O(1) appears, we may
assume that an ordered fluid is observed in the ordered phase
in the nonequilibrium cases.
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FIG. 3. (Color online) Phase diagram in the (ρ,γ̇ ex) plane. The
cross symbols represent the transition line ρ = ρq(γ̇ ex) between the
disordered and the ordered fluid phases. The parameter values for
realizing γ̇ = 0.001, below which flow appears to cease, are also
plotted as plus symbols.
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FIG. 4. (Color online) Relaxation time τrel as a function of density
ρ for several values of γ̇ ex.

IV. TRANSITION TO THE ORDERED FLUID

Next, we characterize the nature of the transition to the
ordered phase. First, in order to observe a clear difference be-
tween the equilibrium and nonequilibrium cases, we measure
the relaxation time τrel at which Q6 reaches a value of 0.05,
starting from a crystal state, at which Q6 ≈ 0.35. Note that τrel

can be measured only in the disordered phase. In Fig. 4, we
show τrel as a function of ρ for several values of γ̇ ex, where
we set the maximum waiting time to τ = 10 000. The results
indicate the existence of a characteristic density ρd at which
the relaxation time diverges for each value of γ̇ ex.

Let us determine the functional form of τrel with the
value of ρd. First, as shown in the inset of Fig. 5, τrel for
the equilibrium case is well fitted by the Vogel-Fulcher law

τrel 
 τ0 exp

(
A

ρd − ρ

)
. (4)

A phenomenological argument may be developed for the
nucleation of a disordered domain, by which (4) may be
understood. (See, for example, Ref. [8] for a demonstration
of a q-states Potts model.) In contrast, Fig. 5 indicates that τrel

for the systems under shear flow follows a power-law form

τrel 
 B(γ̇ ex)[ρd(γ̇ ex) − ρ]−ζ , (5)
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FIG. 5. (Color online) Fitting of functional forms of
τrel. τrel versus ρd − ρ with a log-log plot for γ̇ ex = 0.1, 0.316, and
1.0. ρd is a fitting parameter, the value of which is estimated as 1.006,
1.037, and 1.121, respectively. The guide line represents (5) with
ζ = 1.6. Inset: log τrel versus ρd − ρ with a log-log plot for γ̇ ex = 0.
The guide line represents (4) with A = 0.1 and ρd = 1.003.
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FIG. 6. (Color online) Schematic phase diagram with the critical
region in the (ρ-γ̇ ex) plane. Inset: B(γ̇ ex) as a function of γ̇ ex. The
guide line represents a power-law function with exponent 0.3.

where ζ 
 1.6. This suggests that the divergent behavior does
not originate from the nucleation of disordered regions but may
be related to critical slowing down. Note that the prefactor B

in (5) depends slightly on γ̇ ex in the form B 
 (γ̇ ex)0.3, as
shown in the inset of Fig. 6. Let ρw(γ̇ ex) be a typical width
of the power-law region for γ̇ ex. Then, on the basis of the
dimensional analysis, it is expected that

γ̇ exτrel 

(

ρd(γ̇ ex) − ρ

ρw

)−ζ

. (6)

By assuming ρw 
 (γ̇ ex)χ in (6), we obtain B 
 (γ̇ ex)χζ−1,
which leads to χ 
 1.3/1.6 > 0. This means that a critical
region for the system with finite γ̇ ex becomes narrower for
smaller γ̇ ex and vanishes in the equilibrium system. See the
schematic phase diagram in Fig. 6.

We now note that such a divergent time scale is never
observed in the stationary state of the equilibrium system. In
order to confirm this explicitly, we measure the time correlation
function defined by

C(t) =
6∑

m=−6

[〈q̄6,m(t0)q̄∗
6,m(t0 + t)〉 − 〈q̄6,m〉2]. (7)

We determine the correlation time τc from the fitting of the
exponential decay rate of C(t). On the left-hand side of Fig. 7,
τc is shown as a function of ρ in the disordered regime.
Indeed, the correlation time does not diverge. For reference, we
superimpose the data of the relaxation time τrel. In contrast to
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FIG. 7. (Color online) Correlation time τcorr in steady states as
a function of ρ. The melting time τrel is also superimposed for
comparison. Left: γ̇ ex = 0. Right: γ̇ ex = 1.
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the equilibrium case, as shown in the right-hand side of Fig. 7,
the correlation time in the system under shear flow diverges
in a manner similar to τrel. These results indicate that the
symmetry-breaking transition to the ordered fluid accompanies
a critical phenomenon. This is the main claim of this paper.

V. CONCLUDING REMARKS

Before ending this paper, we address five considerations.
First, we conjecture that the fluctuation of q6 possesses
a divergent length scale. By investigating the manner of
divergences of several quantities for systems of different sizes,
the universality class for this phenomenon may be determined.

Second, with regard to the universality problem, we are
also interested in a simple mathematical model in the same
universality class. For example, it might be possible to
propose a model describing a stochastic time evolution of the
coarse-grained order-parameter field. The first problem in this
direction is to derive the value of ζ using a phenomenological
argument.

Third, in all of the arguments presented above, the coex-
istence phase is ignored. To extract more precise results, it
might be better to investigate systems under constant pressure.
A study of such systems of larger sizes will be performed in
future.

Fourth, the mechanism of the criticality remains to be
clarified. Among several possibilities for the mechanism,
which includes gelation of locally crystalline structure and
change in order of the transition induced by an external
force as discussed in Ref. [16], we wish to determine the
true scenario. To do it, we will investigate the cooperative
dynamics of locally crystalline clusters near the transition
point.

Last, but not least, it is stimulating to observe the shear-
induced criticality in laboratory experiments. Related to this
subject, we note that, quite recently, Q6 has been measured
by direct observation of particles’ configuration with using
confocal microscopy under shear flow [17]. We hope that the
shear-induced criticality will be investigated theoretically and
experimentally.
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