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Correction-to-scaling exponent for two-dimensional percolation
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We show that the correction-to-scaling exponents in two-dimensional percolation are bounded by � � 72/91,
ω = D� � 3/2, and �1 = νω � 2, based upon Cardy’s result for the crossing probability on an annulus. The
upper bounds are consistent with many previous measurements of site percolation on square and triangular lattices
and new measurements for bond percolation, suggesting that they are exact. They also agree with exponents for
hulls proposed recently by Aharony and Asikainen, based upon results of den Nijs. A corrections scaling form
evidently applicable to site percolation is also found.
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In percolation, a quantity of central interest is the size
distribution ns(p), which gives the number of clusters (per site)
containing s sites, as a function of the site or bond probability
p. In the scaling limit, in which s is large and p − pc is small
such that (p − pc)sσ is constant, ns(p) behaves as [1]

ns(p) ∼ As−τ f [B(p − pc)sσ ] , (1)

where τ , σ , and f (z) are universal, while the metric factors
A and B and the threshold pc are system dependent. For two-
dimensional systems, τ = 187/91 and σ = 36/91.

For finite systems, there are corrections to (1). Here we
are concerned with the corrections precisely at pc, where
asymptotically ns(pc) ∼ As−τ . Many studies are carried out at
the critical point, so knowing the behavior there is useful. Also
knowing the nature of the corrections helps one to determine
the thresholds precisely for systems where they are not known
exactly [2,3].

It is generally hypothesized that the corrections to this
behavior are of the form

ns(pc) ∼ As−τ (1 + Cs−� + . . .), (2)

where � is the correction-to-scaling exponent. In terms of a
length scale L ∼ s1/D , the correction term is of the form (1 +
cL−ω + . . .), where ω = D� and D = 91/48 is the fractal
dimension.

Studies of � go back to the mid-1970s and are summarized
in Table I; this is an updated version of a table given
in [11], which surveyed the work up to 1983. The values
were found by Monte Carlo simulation, analyses of series
expansions, and theoretical arguments. Theoretical analyses
of corrections to scaling were also given in [24]. Derrida and
Stauffer [25] studied ω on strips, and their values for two
different orientations extrapolate to a value of ω in the range
of 1 to 2. Studying backbones, Bhatti et al. find �1 in the
range ≈ 1–3 [26]. Also, ω = 1.2(2) was found by Normand,
Herrmann, and Hajjar [27] for percolation conductivity on a
cylindrical geometry, which may share the same finite-size
corrections. In more recent work, Ziff and Babalievski [18]
found � = 0.77(2), and independently Kammerer et al. [23]
found the identical value � = 0.77(4). The value 0.73(2) has
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been given recently by Tiggemann [22]. Corrections have also
been studied recently for percolation on the XY model [28].

In this paper, we derive a value for � by relating Cardy’s
result [29] for crossing in an annulus to the cluster-size
distribution. For the probability �(τ ) that a crossing occurs
in an annulus or a cylinder, Cardy found

�(τ )= η(−1/3τ )η(−4/3τ )

η(−1/τ )η(−2/3τ )
= (3/2)1/2 η(3τ )η(3τ/4)

η(τ )η(3τ/2)
, (3)

where η(τ ) = q1/24 ∏∞
n=1(1 − qn) = ∑∞

n=−∞(−1)nq(6n+1)2/24

is the Dedekind η function, with q = e2πiτ . For an annu-
lus of outer and inner radii R and R1, respectively, τ =
(i/π ) ln(R/R1). For a cylinder of circumference � and length
L, τ = 2iL/�, since by conformal transformation R/R1

corresponds to e2πL/�. Note that η(τ ) can be directly evaluated
in MATHEMATICA using DedekindEta[τ ].

Evidently, Cardy’s result (3) has not been discussed much
in the literature since it appeared five years ago. Here we
show that it is consistent with several previous measurements
of crossing. For a cylinder of aspect ratio L/� = 1/2, which
corresponds to an annulus with R/R1 = eπ , τ = i, and (3)
gives �(i) ≈ 0.876 631 451, in agreement with the precise
value 0.876 657(45) found by de Oliveira, Nóbrega, and
Stauffer [30]. For L/� = 1 or R/R1 = e2π , τ = 2i, and (3)
gives �(2i) ≈ 0.636 454 001, which agrees closely with the
measured values 0.636 65(8) of Hovi and Aharony [31], 0.63
of Gropengiesser and Stauffer [32], 0.638 of Acharyya and
Stauffer [33], 0.64(1) of Ford, Hunter, and Jan [34], 0.6365(1)
of Shchur [35], and 0.6363(3) (average) by Pruessner and
Moloney [36].

Equation (3) also implies � = 1/2 for L/� ≈ 1.368 800,
and the maximum in −�′(L/�) occurs at L/� ≈ 0.540 652,
where −�′ ≈ 0.522 282. In comparison, for a system with
open boundaries, the maximum in −�′(L/�) occurs at L/� ≈
0.523 522 with value 0.737 322 [37], as follows from Cardy’s
original crossing formula [38].

Now, expanding the η functions in (3) for large L/�, we
find

�(q̃)=
√

3

2
q̃5/48(1 − q̃3/2 + q̃2 − q̃7/2 + 2q̃4 − q̃9/2 − . . .),

(4)
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TABLE I. History of determinations of �, ω = D� = (91/48)�, and �1 = �/σ = (91/36)�. Numbers in parentheses represent errors in
last digit(s), and are shown on original values only.

Year Author Method � ω �1

1976 Gaunt and Sykes [4] Series 0.75(5) 1.42 1.90
1978 Houghton, Reeve, and Wallace [5] Field theory 0.54–0.68 0.989–1.28 1.32–1.71
1979 Hoshen et al. [6] MC 0.67(10) 1.27 1.69
1980 Pearson [7] Conjecture 64/91 ≈ 0.703 1.333 1.778
1980 Nakanishi and Stanley [8] MC 0.6–1
1982 Nienhuis [9] Field theory 96/91 ≈ 1.055 2 2.667
1982,1983 Adler, Moshe, and Privman [10,11] Series p < pc 0.5 0.95 1.26

Adler, Moshe, and Privman [10,11] Series 0.66(7) 1.25 1.67
1983 Aharony and Fisher [12,13] RG theory 55/91 ≈ 0.604 55/48 ≈ 1.15 55/36 ≈ 1.53
1983,1984 Margolina et al. [13,14] MC 0.64(8) 1.21 1.62

Margolina et al. [13,14] Series 0.8(1) 1.52 2.02
1985 Adler [15] Series 0.63(5) 1.19 1.59
1986 Rapaport [16] MC 0.71–0.74
1998 MacLeod and Jan [17] MC 0.65(5) 1.23 1.64
1999 Ziff and Babalievski [18] MC 0.77(2) 1.46 1.95
2001 Tiggemann [19] MC 0.70(2) 1.33 1.77
2003 Aharony and Asikainen [20,21] Theory (hulls) 72/91 1.5 2
2007 Tiggemann [22] MC 0.73(2) 1.38 1.85
2008 Kammerer, Höfling, and Franosch [23] MC 0.77(4) 1.46 1.95
2010 This work Theory 72/91 ≈ 0.791 1.5 2

where q̃ = R1/R = e−2πL/� as in [29]. Thus, for the annulus,
we have

�(R/R1) =
√

3

2

(
R

R1

)−5/48
{

1 −
(

R

R1

)−3/2

+
(

R

R1

)−2

−
(

R

R1

)−7/2

+ 2

(
R

R1

)−4

− . . .

}
, (5)

and for the cylinder, we have

�(L/�) =
√

3

2
e−(5/24)πL/�{1 − e−3πL/� + e−4πL/�

− e−7πL/� + 2e−8πL/� − . . .}. (6)

Shchur [35] has verified the leading term above numerically,
finding 0.654 48(5) for the exponent 5π/24 ≈ 0.654 498,
and the intercept of the asymptotic line in his Fig. 6 is
consistent with the predicted coefficient

√
3/2 ≈ 1.224 745.

Preussner and Moloney [36] also measure this coefficient and
find 1.2217(4) for bond percolation and 1.2222(4) for site
percolation on a square lattice, where the error bars represent
statistical errors of a single set of system sizes.

For the annular result, we can imagine that the system is
actually infinite with an inner boundary of radius R1; then,
�(R/R1) is the probability that a cluster connected to the
inner boundary has a maximum radius greater than or equal to
R. That is, if, in the infinite system, the cluster connected to the
center extends beyond a circle of radius R, then in the annulus
there will be a crossing cluster between the two circles of
radii R1 and R, and these two events will occur with the same
probability. Thus, � gives a measure of the size distribution
of the clusters connected to the inner circle, where the size is
characterized by the maximum cluster radius. We relate this to

the cluster-size distribution by associating the inner radius to
the discreteness of the lattice.

Given a size distribution ns , the probability that an occupied
site is connected to a cluster of size greater than or equal to s

is given by

P�s(p) =
∞∑

s ′=s

s ′ns ′ ≈
∫ ∞

s

s ′ns ′ds ′. (7)

Using (2) for ns(pc), we thus find that, at pc,

P�s(pc) ∼ A′s2−τ (1 + B ′s−� + . . .), (8)

where 2 − τ = −βσ = −5/91 in two dimensions. Be-
cause critical percolation clusters are fractal, s are R are
related by

s ∼ s0(R/ε)D, (9)

where D is the fractal dimension, s0 is a constant, and ε is
of the order of the lattice spacing and represents the lower
size cutoff of the system, similar to a boundary extrapolation
length [39]. Setting (9) into (8), assuming ε = R1, we find
that the probability a cluster has a radius greater than R is
given by

P�R(pc) ∼ aRD(2−τ )(1 + bR−�D + . . .), (10)

where a and b are constants. By hyperscaling D(2 − τ ) =
D − d = −β/ν = −5/48. Comparing this with (5), we see
that �D = ω = 3/2 or

� = 3/(2D) = 72/91 (11)

implying also �1 = νω = 2.
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Alternately, if we set (R/R1) = (s/s0)1/D into (5), we find

P�s(pc) =
√

3

2

(
s

s0

)− 5
91

{
1 −

(
s

s0

)− 72
91

+
(

s

s0

)− 96
91

−
(

s

s0

)− 168
91

+ 2

(
s

s0

)− 192
91

− . . .

}
, (12)

which gives the higher-order corrections also. However, in
deriving (12), we have ignored finite-size corrections to (9).
Say we have to next order

s ∼ s0(R/ε)D(1 + cR−x + . . .), (13)

then this will lead to a term of order (s/s0)−x/D in the expansion
of P�s(pc), and where x/D lies within the exponents 72/91,
96/91, . . . will determine its importance. It is of course
possible that x/D < 72/91, in which case that would be the
dominant correction. There have been studies in the past on
the finite-size corrections to the radius of gyration [40], but
not to our knowledge to the maximum radius with respect to
an arbitrary point within a cluster, which is needed here.

Our result for � is consistent with the very first determina-
tion 0.75(5) [4] as well as many of the recent measurements.
Some previous results gave lower values, such as the series
results of [10,11] that were based upon studying the scaling of
quantities such as the mean cluster size away from pc. Perhaps
these lower values were due to other corrections, which are
relevant away from pc.

In (12), we see that the next-order correction term is s−�2

with �2 = 96/91. This interestingly is exactly the value of
� proposed by Nienhuis [9]. The closeness of this exponent
to 72/91 would make its determination numerically difficult
and, in any case, higher-order corrections in the relation (13)
between s and R might mask it.

It turns out also that, a few years ago, Aharony and
Asikainen [20,21] proposed the same two leading exponents
ω = 3/2 and 2 for the correction to scaling for fractal
properties of the complete hulls of percolation clusters, relating
them to earlier results of den Nijs [41]. Evidently, these same
corrections apply to the cluster statistics. Note that the results
of [20] have not been verified numerically.

Assuming the other correction terms are small, (12) implies
that P�s should be a universal function of s/s0, where s0 varies
from system to system. This may explain an observation made
in [18] that the quantity �est defined by

�est = − log2

(
Cs − Cs/2

Cs/2 − Cs/4

)
, (14)

where Cs = sτ−2P�s , when plotted versus ln s, appears to be a
universal curve for site percolation on the square and triangular
lattices, except for a horizontal shift. �est equals � if the
correction to scaling has only one term as in (8), and otherwise
can be used to estimate � by taking s relatively large. The
shift that was needed in [18] to line up the data just reflects
the difference in s0 between the two lattices, because of the
logarithmic scale in the plot. In Fig. 1, we have replotted the
data of Ref. [18] along with the results of using the �estthat
follow from (12) (using the first three terms), and adjusted s0

to match the theoretical prediction. The behavior can be seen
to match the theory very well, with only the single adjustable

FIG. 1. (Color online) Plot of −�est as a function of ln(s/s0) for
s = 2, 4, . . . ,1024. The two upper curves are a replotting of the
data given in Fig. 6 of Ref. [18], using s0 = 0.25 (square lattice) and
s0 = 0.13 (triangular lattice) to line the data up with the theoretical
prediction from (12). No vertical rescaling was done. (Note: There
was a minus sign missing in the label of the vertical axis in Ref. [18].)
The two lower curves are new plots for bond percolation on the square
and triangular lattices, using s0 = 0.25 and 0.5, respectively.

parameter s0. In Ref. [18], we generated 6 × 109 clusters up
to size s = 1024 for each system, to obtain these data.

Here we have generated additional data for bond percolation
on square and triangular lattices, in which we characterize s

by the number of sites wetted by the clusters. We generated
5 × 1010 clusters for the square, and 2.5 × 1011 clusters for
the triangular lattice, both with s � 1024 using the R(9689)
random-number generator of [42]. The corresponding �est are
also plotted in Fig. 1. For both lattices, �est approaches ≈
0.8 from above for larger s, implying that (11) is again the
leading correction exponent, but for smaller s the data do not
follow the behavior implied by (12), meaning here other finite-
size corrections must be significant. While (12) implies that
asymptotic deviations from the leading behavior are negative,
for bond percolation, in fact, the deviations for small s are
positive. Similar positive finite-size effects are seen in the
closely related susceptible-infected-recovered (SIR) epidemic
model [43].

We can find the behavior of ns from (12) as follows:

ns(pc) = pc

s
(P�s − P�(s+1)) = 5pc

91s2
0

√
3

2

(
s

s0

)− 187
91

×
{

1− 77

5

(
s

s0

)− 72
91

− 48

91

(
s

s0

)−1

+ 101

5

(
s

s0

)− 96
91

. . .

}
,

(15)

where the factor of pc is included for site percolation only
[1]. Thus, for (1), we have A = (5pc/91)

√
3/2 s

5/91
0 and B =

(77/5)s72/91
0 , and we have picked up the analytic term s−1.

Likewise,

n�s(pc)= 5pc

96s0

√
3

2

(
s

s0

)− 96
91

{
1− 44

5

(
s

s0

)− 72
91

+ . . .

}
. (16)

For example, for site percolation on the triangular lattice
(pc = 0.5), we found s0 = 0.13 (from Fig. 1), which implies
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a coefficient of 0.0285 to n�s(pc). This value agrees closely
with ≈0.028 given in Fig. 2 of [13].

Equation (16) also gives that the number of clusters,
the covering area πR2 of which is greater than or equal
to A is given by the Zipf’s-law form [44,45] n�A(pc) ∼
(5pc/96)

√
3/2(πR2

1/s0)/A, and the correction to scaling is
predicted to be proportional to A−3/4.

In conclusion, we found that the behavior of crossing on
an annulus implies � = 72/91 or ω = 3/2, which appears to

represent the dominant exponent for the systems we studied
by simulations. For future work, it would be interesting to
study these corrections on additional lattices as well as higher
dimensional systems.
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