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Artem Ryabov* and Petr Chvosta
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University in Prague,

V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
(Received 10 November 2010; published 28 February 2011)

We study one-dimensional diffusion of N hard-core interacting Brownian particles driven by the space- and
time-dependent external force. We give the exact solution of the N -particle Smoluchowski diffusion equation.
In particular, we investigate the nonequilibrium energetics of two interacting particles under the time-periodic
driving. The hard-core interaction induces entropic repulsion which differentiates the energetics of the two
particles. We present exact time-asymptotic results which describe the mean energy, the accepted work and heat,
and the entropy production of interacting particles, and we contrast these quantities against the corresponding
ones for the noninteracting particles.
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I. INTRODUCTION

Stochastic dynamics of interacting particles in a one-
dimensional (1D) environment is of both great practical and
theoretical interest. Due to the one-dimensionality of the
problem, the interparticle interactions play a crucial role, as
they alter qualitative features of the particle dynamics. The
type of interaction we deal with in this Rapid Communication
is a so-called hard-core interaction.

The diffusion of particles in narrow channels, where the
particles cannot pass each other and their relative ordering
is conserved, is known as the single-file diffusion (SFD).
The concept of SFD was first introduced by Hodgkin and
Keynes in relation to the transport of water and ions through
the molecular-sized channels in membranes [1]. Since then,
numerous examples of SFD in biological, chemical, and phys-
ical processes have been studied (e.g., transport of adsorbate
molecules through zeolites with a one-dimensional channel
system [2,3], geometrically constrained nano-sized particles
in nano-sized pores [4], migration of adsorbed molecules on
surfaces [5], diffusion in nanotubes [6,7], carrier migration in
polymers and superionic conductors [8], diffusion of colloids
in one-dimensional channels [9–11], and confined dynamics
of millimetric steel balls [12]).

While the global properties of a SFD system are identical
to those for the system of independent particles, the dynamics
of an individual particle (also called tagged particle or tracer)
is considerably different [13–15]. A theoretical description
of SFD was introduced by Harris in 1965. In his pioneering
study [16], he showed that the mean-square displacement of
the tagged particle increases with time as t1/2 (in contrast
to its linear increase for the single free particle). This result
was subsequently reestablished by many other authors using
different mathematical tools (for a comprehensive review cf.
the Introduction in [17]). The first exact solutions of the
diffusion equation for SFD systems appeared only recently.
The solution for an arbitrary number N of identical parti-
cles diffusing along the infinite line has been obtained by
Rödenbeck et al. in [13] via the reflection principle. Using a
different theoretical procedure, the result has been rederived
in [18]. The exact solution for the diffusion within the finite 1D
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interval has been found in [17] through the Bethe ansatz. The
exact solution for N = 2 particles having different diffusion
constants has been obtained in [19]. Another remarkable exact
result for N = 2 has been derived in [20] where the authors
assume the finite-range interaction between the particles. The
first calculation including the time-independent external force
has been published in [21]. Using a so-called “Jepsen line,” the
probability density for the single tagged particle was obtained
in the limit of an infinite system with the constant particle
density. As far as we know, no exact solution of the SFD of N

particles driven by the external time-dependent force has been
published yet.

The main objective of this Rapid Communication is to
analyze the thermodynamic properties of an exactly solvable,
experimentally verifiable model of an externally driven SFD.
Hence the setting must incorporate the following attributes:
(a) the hard-core interaction among the particles, (b) the
nontrivial equilibrium state if the external driving is switched
off, and (c) the time-periodic external driving inducing a
periodic response. We first give the exact solution (6) of the
diffusion equation with an arbitrary time- and space-dependent
external driving of the N hard-core interacting particles. The
solution emerges in the form of a sum of products of the single-
particle probability densities, which solve the corresponding
one-particle diffusion problem. In other words, in the second
step, we need an exactly solvable one-particle model that
includes the above ingredients (b) and (c). We focus on the
problem which is related to the famous barometric formula. We
consider a particle diffusing in a half-space x ∈ (0, + ∞) and
acted upon by the spatially homogeneous and time-dependent
force with a reflective boundary placed at x = 0. Using the
general N -particle solution and the single-particle probability
density for the barometric problem, we investigate in detail the
diffusion of two interacting particles.

II. GENERAL SOLUTION

Consider N identical, hard-core interacting Brownian
particles1, each with the same diffusion constant D, diffusing

1In order to incorporate the hard-core interaction in 1D, the particles
can be represented by rods of the length l. The hard-core interaction in
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under the influence of the external force F (x,t). Let the vector
�x = x1, . . . ,xN denote positions of the particles at the time
t, and let �y = y1, . . . ,yN stand for their initial positions at
t0 � t . The time evolution of the joint conditional probability
density for the positions of the particles, say p(N)(�x; t | �y; t0),
is controlled by the Smoluchowski diffusion equation [22],

∂

∂t
p(N)(�x; t | �y; t0)

=
N∑

j=1

{
− ∂

∂xj

F (xj ,t)

mγ
+ D

∂2

∂x2
j

}
p(N)(�x; t | �y; t0), (1)

with the initial condition

p(N)(�x; t0 | �y; t0) = δ(x1 − y1) · · · δ(xN − yN ). (2)

In Eq. (1), m and γ are the mass and friction coefficient for
the single particle, respectively. Suppose that the particles
are initially ordered as y1 < y2 < · · · < yN . Owing to their
hard-core interaction, the ordering is conserved at all t � t0,
and the function p(N)(�x; t | �y; t0) vanishes outside the domain
x1 < x2 < · · · < xN . This restraint is guaranteed by the
“noncrossing conditions”(

∂

∂xj+1
− ∂

∂xj

)
p(N)(�x; t | �y; t0)

∣∣∣∣
xj+1=xj

= 0, (3)

where j = 1, . . . ,N − 1. In order to derive the conditions,
one first introduces the N -particle probability current
�J = (J (N)

1 , . . . ,J
(N)
N ) with the j th component,

J
(N)
j (�x; t | �y; t0)

=
{

1

mγ
F (xj ,t) − D

∂

∂xj

}
p(N)(�x; t | �y; t0). (4)

Thereupon, the hard-core interaction can be implemented
through the requirements

J
(N)
j (�x; t | �y; t0) − J

(N)
j+1(�x; t | �y; t0)|xj+1=xj

= 0. (5)

Inserting the components given by (4), we arrive at the
conditions given by (3). Notice that the argument holds true
only for the identical particles. In other words, the parameters
D, m, γ , and the external force F (x,t) must be the same for
any individual particle from the SFD system.

Let us now consider the Smoluchowski diffusion equation
(1) with N = 1. Assume we know the solution p(1)(x; t | y; t0)
to this single-particle diffusion problem. Then we claim the
following: The exact N -particle joint probability density
p(N)(�x; t | �y; t0) which fulfills (1), (2), and (3) reads

p(N)(�x; t | �y; t0)

=
N!∑
k=1

p(1)
(
x1; t | yπk (1); t0

)
p(1)

(
x2; t | yπk (2); t0

) · · ·

× p(1)
(
xN ; t | yπk (N); t0

)
, (6)

such a system means that the space occupied by one rod is inaccessible
to the neighboring rods. Generally the diffusion of hard rods can be
mapped onto the diffusion of “point” particles by the rescaling of
space variables (see, e.g., [17]). Therefore, all our considerations are
done for systems of point particles.

if x1 < x2 < · · · < xN , and it vanishes otherwise.
The summation is taken over all permutations πk . A
given permutation specifies the initial conditions of the
single-particle densities on the right-hand side. The claim can
be proven by a direct check: we simply insert the right-hand
side of Eq. (6) into Eqs. (1) and (3).

The formula (6) expresses the exact solution of the many-
particle problem with the hard-core interaction through a
simpler object, which is the single-particle probability density.
Notice that in the special case of the SFD without the external
driving [F (x,t) = 0], the result (6) correctly reproduces the
solutions that were previously derived using the reflection
principle [13] or the Bethe ansatz [17]. However, these
techniques fail in the presence of the external time-dependent
force F (x,t). This is the reason why the SFD under the
external driving has remained unsolved to date. Our derivation
demonstrates that the structure of the solution, as given by
Eq. (6), remains valid even in the SFD under the external
driving.

III. BAROMETRIC SFD OF TWO PARTICLES

Place two Brownian particles into the long 1D channel, plug
one end of the channel, and let each particle be acted upon
by the space-homogeneous and time-dependent force F (t).
In other words, let the two particles diffuse in the external
potential

φ(xi,t) =
{− xi F (t), for xi > 0,

+∞, for xi < 0, i = 1,2.
(7)

The driving force incorporates two components,

F (t) = F0 + F1 sin(ωt). (8)

The time-independent component F0 alone would push the
particles to the left toward the reflective boundary (if F0 < 0)
or to the right (if F0 > 0). The time-dependent component
F1 sin(ωt) harmonically oscillates with the angular frequency
ω. Having in mind this scenario, we wish to contrast the
dynamics and the energetics of the system of two interacting
particles against the model without the interaction. In the latter
case, the analysis trivially follows from the solution concerning
the single-diffusing particle.

Assuming the driving force (8), the most interesting physics
emerges if the oscillating component F1 sin(ωt) superposes
with a negative static force F0 < 0. In this case, F0 acts against
the general spreading tendency stemming from the thermal
fluctuations of the surroundings. Due to the periodic driving,
the system of particles approaches a definite steady state,
exhibiting cyclic changes of the probability density regardless
of the initial positions y1 and y2. A necessary and sufficient
condition for the existence of such a steady state is F0 < 0 [24].
Let us denote the probability density of the single-diffusing
particle in the steady state as pS(x; t) [i.e., in the steady state,
p(1)(x; t | y,t0) ∼ pS(x; t) and pS(x; t + 2π/ω) = pS(x; t), for
any x and t]. In the steady state, the right-hand side of
the formula (6) collapses into the product of just N terms.
Explicitly, for N = 2, the two-particle joint probability density
in the steady state reads

p̃(2)(x1,x2; t) = 2pS(x1 ; t)pS(x2 ; t), (9)
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if x1 < x2, and it vanishes otherwise. Hence the marginal
probability densities for the position of the left (L) and the
right (R) interacting particle are

pL(x; t) = 2pS(x ; t)
∫ +∞

x

dx2 pS(x2 ; t), (10)

pR(x; t) = 2pS(x ; t)
∫ x

0
dx1 pS(x1 ; t), (11)

respectively. Carrying out the integrations and using the
normalization condition for the function pS(x; t), we have
proven an important identity

pR(x ; t) + pL(x ; t) = 2pS(x; t). (12)

For any t , there exists a unique coordinate ξ (t) such that
pL[ξ (t); t] = pR[ξ (t); t]. For x�ξ (t), pR(x; t)�pL(x; t).

Being a periodic function of time, the probability density
pS(x; t) can be represented as the Fourier series

pS(x; t) =
+∞∑

k=−∞
uk(x) exp(−ikωt). (13)

The coefficients uk(x) were found in [23]. Using the standard
matrix notation, they assume the form

uk(x) = mγ
|F0|
D

〈k |LE(x)R+ | f 〉, (14)

where |f 〉 is the column vector of the complex amplitudes,
fk = 〈k |R−1

− | 0〉, and the matrices E(x),L,andR± possess
the matrix elements [23]

〈m |E(x) | n〉 = δnm

2

[
1 + 1√

1 − imζ

]

× exp

[
− x|F0|

2mγD
(
√

1 − imζ + 1)

]
, (15)

〈m |L | n〉 = I|m−n|(−κ
√

1 − inζ − κ), (16)

〈m |R± | n〉 = I|m−n|(±κ
√

1 − imζ + κ), (17)

where m and n are integers, κ = |F0|F1/[2ωD(mγ )2], ζ =
4ωD(mγ )2/F 2

0 , and Ik(·) stands for the modified Bessel
function of the first kind, of the order k. Finally, introducing
the coefficients

lk(x) = |F0|
mγD

∫ +∞

x

dx ′〈k |LE(x ′)R+ | f 〉, (18)

rk(x) = |F0|
mγD

∫ x

0
dx ′〈k |LE(x ′)R+ | f 〉, (19)

the marginal densities given by (10) and (11) can be written in
the forms

pL(x; t) = 2
+∞∑

k,n=−∞
uk−n(x) ln(x) exp(−ikωt), (20)

pR(x; t) = 2
+∞∑

k,n=−∞
uk−n(x) rn(x) exp(−ikωt). (21)

These formulas, together with Eq. (13), represent an exact
asymptotic result and they form the basis of the further
discussion. In the numerical illustrations (Fig. 1 and movies

in [24]), we had to reduce the infinite matrices (15), (16), and
(17) into their (finite) central blocks.

Mean position represents the center of mass of the proba-
bility density. In the steady state, we define mean positions of
the individual particles as

μα(t) =
∫ +∞

0
dx x pα(x; t), α = S,L,R. (22)

Due to the oscillatory driving (8), the mean positions will
oscillate with the fundamental frequency ω. In an average
sense, the hard-core interaction produces a repulsive force
among the particles. It shifts (on average) the right (left)
particle to the right (left), as compared to the case without
the interaction, i.e., μL(t) < μS(t) < μR(t), which holds at
any instant t .

If we average the external potential φ(x,t) over all possible
positions of the particular particle at a given instant, we obtain
the mean energy of that particle:

Eα(t) = −[F0 + F1 sin(ωt)]μα(t), α = S,L,R. (23)

Generally speaking, the internal energies ES(t), EL(t), and
ER(t) are periodic functions of time with the fundamental
period 2π/ω. Their oscillations express the combined effect
of the periodically modulated heat flow to the surroundings
and the periodic exchange of work done on the particle by an
external agent. From Eq. (12), it follows that the total mean
energy of two interacting particles is equal to the total mean
energy of two noninteracting particles, i.e.,

EL(t) + ER(t) = 2ES(t). (24)

In other words, the hard-core interaction does not contribute
to the total energy. Therefore, the repulsive force among the
particles arises from the purely entropic effect. On the other
hand, the mean energies of individual interacting particles are
changed significantly as compared to the case without the
interaction (see Fig. 1).

The mean work done on the particle by an external agent
during the time interval [0,t] reads [25]

Wα(t) = −F1ω

∫ t

0
dt ′ cos(ωt ′)μα(t ′), α = S,L,R. (25)

The total work done on the system of two interacting particles
again is equal to the total work done on two noninteracting
particles, i.e.,

WL(t) + WR(t) = 2WS(t). (26)

Nevertheless, as was stressed within the discussion of mean
positions, the hard-core interaction on average shifts the right
(left) tagged particle to the right (left), as compared to the
case without the interaction. Hence the absolute value of work
done on the right (left) particle is always bigger (smaller) than
in the case without the interaction. Since in our setting the
diffusion is just a nonequilibrium isothermal process, the total
work done on the particles per one period 2π/ω is always
positive. This work is entirely dissipated into heat. However,
if we allow for a temperature modulation and choose an
appropriate temperature schedule, the system can act as a heat
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FIG. 1. (Color online) The (a) driving force [see Eq. (8)],
(b) mean works [see Eq. (25)], (c) mean energies [see Eq. (23)],
and (d) mean heats [see Eq. (27)], as the functions of time in the
steady state. In (b), (c), and (d), the solid black line, the blue dashed
line, and the red dot-dashed line correspond to the single-diffusing
particle, the right particle, and the left particle, respectively. We have
used F0 = −1.0 N, F1 = 3.0 N, ω = 0.4 π s−1, D = 1.0 m2 s−1, and
mγ = 1.0 kg s−1.

engine which converts a part of the heat accepted from the
environment into the useful work. If this is the case, the right
particle will perform a bigger work as compared both to the
left particle and to the single-diffusing particle.

The mean heat released to the environment and the total
entropy increase per period are intimately related. From the

first law of thermodynamics, it follows that

Qα(t) = −[Eα(t) − Wα(t)], α = S,L,R, (27)

which is the heat dissipated during the time interval [0,t]
by the individual particles. The entropy generated in the
environment due to the dissipative motion of the individual
particle during the time interval [0,t] is then Sα(t) = Qα(t)/T .
Having periodic changes of the internal energy, the heat
dissipated during one period is equal to the work done on the
system during one period, Qα(2π/ω) = Wα(2π/ω). Divided
by the temperature of the surroundings, we get the total
entropy increase per one period, Sα(2π/ω) = Qα(2π/ω)/T ,
and again, SL(2π/ω) + SR(2π/ω) = 2SS(2π/ω). That is, the
entropic repulsion stemming from the hard-core interaction
does not influence the total entropy production.

In summary, the global (aggregative) quantities [e.g., the
total mean energy (24), the total mean work (26), and
the total mean entropy production per period] evaluated
for the system of interacting particles are equal to those for the
system of independent particles. Physically, the conclusion
derives from the zero range of the interaction among the
particles. The observation holds for a general external driving
and for an arbitrary number of particles, N . Contrary to this, the
simple contact interaction strongly influences the one-particle
dynamical characteristics (cf. the video files in [24]).
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