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Experimental measurement of efficiency and transport coherence of a cold-atom Brownian
motor in optical lattices
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The rectification of noise into directed movement or useful energy is utilized by many different systems.
The peculiar nature of the energy source and conceptual differences between such Brownian motor systems
makes a characterization of the performance far from straightforward. In this work, where the Brownian motor
consists of atoms interacting with dissipative optical lattices, we adopt existing theory and present experimental
measurements for both the efficiency and the transport coherence. We achieve up to 0.3% for the efficiency and
0.01 for the Péclet number.
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Brownian motors (BM’s) are devices that can rectify noise
into work or directed motion in the absence of external forces.
They are of interest for the understanding of fundamental
principles in statistical physics and thermodynamics, and
several studies have shown that they play a crucial part in
transport phenomena in nature; see, for example, [1–3]. Since
BM’s utilize noise, they can work in regions where the inherent
noise is large compared to other interactions. Applications
of BM’s, therefore, reach into the nanoscales, where they
make ideal tools for powering up nanomachines [4–6]. Recent
reviews of the subject can be found in [7–10].

Of particular interest for any motor is the quantification of
its efficiency, usually defined as the ratio of produced work to
input energy. Due to the peculiar nature of the energy source of
BM’s, determination of efficiency is not straightforward. There
have been several theoretical discussions on the efficiency
of BM’s [11–15], and different performance characteristics
have been discussed in [16]. We present here experimental
measurements of two performance characteristics of a BM
realized with ultracold atoms in double optical lattices [17]:
the efficiency, that is, the fraction of input power driving the
directed motion, and the transport coherence, or the Péclet
number, that is, the comparison between the drift and the
diffusion. Usually, the efficiency is defined in terms of the
amount of work obtained from the motor against a load. As no
load is present in our case, we instead follow the convention
[11,12] of defining “useful energy” as the energy needed to
drive the directed motion of the atoms against friction. It has
also been argued that including the dissipation due to friction
against the directed motion provides a better definition of
efficiency even when a load is present [11].

For a BM to be able to function, it has to (i) present an
asymmetry [18] and (ii) be out of thermal equilibrium [19].
In most cases, the symmetry breaking arises either from a
time-asymmetric periodic driving force with zero average
(rocked ratchet), or by flashing an asymmetric potential
(flashed ratchet). However, as shown in our system [17],
rectification can be achieved by switching between two
symmetric potentials.
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The model for the BM used in our experiment was intro-
duced in [20]. Briefly, particles with mass m move in two sym-
metric potentials, U1 = A1 cos(kx) and U2 = A2 cos(kx + φ),
phase shifted by φ, and are randomly transferred between the
two with unequal transfer rates �1→2 �= �2→1. In addition,
the particles experience a friction force −αiẋ and a diffusive
force ξi(t) in either lattice i = 1,2. This gives the equations of
motion

mẍ = −∇xUi(x) − αiẋ + ξi(t). (1)

Here, ξi(t) satisfies the relations 〈ξi(t)〉 = 0 and 〈ξi(t)ξi(t ′)〉 =
2Diδ(t − t ′). Thus the atom is both subject to work from the
potential Ui and to fluctuations and dissipation given by the
diffusion coefficient Di and the friction coefficient αi .

For an atom moving in a single periodic potential, the
long-time average of the work goes to zero, and the atoms
reach a steady state with kinetic temperature Di/αi . This
changes when it is transferred between the potentials, changing
instantaneously its potential energy. The total work on an atom
is therefore equal to the changes in potential energy summed
over all jumps between the potentials. For identical potentials
(A1 = A2, φ = 0), no energy is gained by an atom transferred
between the potentials; see Fig. 1(a). In this situation, both
potentials satisfy the symmetry condition Ui(−x) = Ui(x),
which entails that 〈ẋ〉 = −〈ẋ〉, and hence no BM effect is
possible [21]. Introducing a nonzero φ between the lattices,
the system still possesses glide reflection [22], but because
of the unequal transfer rates between the potentials, there is
no symmetry condition requiring 〈ẋ〉 = 0, and therefore there
will in general be a rectification [18]. An exception is the
point φ = π , where again Ui(−x) = Ui(x), leading to zero
current, with the input energy gained from the transfer between
potentials only appearing as a heating of the atoms.

Following the discussion in [12], we can derive a detailed
balance relation for the input power Pin acting on a particle
governed by the equation of motion (1),

Pin = α p2

m2
+ αδp2

m2
− ND

m
. (2)

Here α, etc., signifies the time average (over the two lattice
states), and δp(t) is the variation of the momentum p(t)
around its long-time average p. The first and second terms
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FIG. 1. (Color online) Schematic drawing of the process driving
our BM. In each potential, an inherent friction and diffusion is present.
Vertical arrows indicate the transfer between the potentials, horizontal
ones the total diffusion. (a) φ = 0: atoms are transferred between the
lattices without any gain in potential energy. No symmetry is broken
and no drift is induced. (b) φ = 3/2π : the symmetry is broken and
the transfer adds energy to the system, as a leftward drift.

on the right-hand side of Eq. (2) are the energy loss due
to dissipation associated with the directed and the random
motion, respectively. The third term represents the energy
gained through diffusive processes internal to either of the
two lattices, as represented by the constants of momentum
diffusion Di . The factor N is the dimensionality of the system,
in our case N = 3, and δp2 = δp2

x + δp2
y + δp2

z � 3δp2
z . In

our system, the temperature might be slightly different in the
different directions [23]. However, this approximation will
only have a minor effect on the results.

In [11,12], the efficiency of a BM without a load is defined
as the energy dissipated by friction acting against the directed
motion over the total energy input, that is,

η = α p2/m

Pin
= α p2/m

α p2/m + αδp2/m − ND
. (3)

Assuming that α is uncorrelated to the lattice state, so that
αδp2 = αδp2, this expression is simplified to

η = p2/m

p2/m + δp2/m − ND/α
. (4)

Simulations indicate that, even for a relatively large difference
in the friction coefficients between the two lattices (α2 =
α1/2), this assumption introduces an error in Pin of only
about 2%.

The experiment has been described in detail in [17,24,25].
In short, we use laser cooling to trap and cool cesium atoms and
transfer them into a double optical lattice [24,25]. These are
potentials realized from the interference pattern of laser beams
due to a second-order interaction between the induced atomic
dipole moment and the periodic light fields [26]. The two
potentials correspond to two different hyperfine levels, F = 3
and 4, of the electronic ground state of cesium. Each atom
will be transferred between the two potentials at random times
through optical pumping, with rates for transfer, scattering,
and cooling set by the parameters of the laser fields (intensity
and detuning). To collect data, we use absorption imaging to
measure the mean momentum p as well as the size of the
atomic cloud. The imaging is done in the horizontal plane
to avoid any effects of gravity [27]. To access the mean
momentum spread (the kinetic temperature) δp2 in Eq. (4), we
use a time-of-flight technique that enables fast and accurate
measurements of the distribution of the momentum, δp2

z [28].

FIG. 2. Absorption images of atoms in the double optical lattice
for five different relative spatial phases where the potential depth is
200 μK. The atoms are kept in the lattices for 150 ms. For φ = 0 and
2π , the drift is zero and the diffusion is small. For φ = π , the drift
is also zero but the diffusion is much larger. Images 2 and 4 show
maximum drifts in the two different directions.

In the experiment we, adjust the potential depths by
controlling the intensities in the lattice beams such that
A1 = A2. To assess the quantity D/α, we study the system
at φ = 0, where the potentials are identical and there is no
BM effect since the transfer between the potentials does not
change the energy of the system (Pin = 0). From the energy
balance (2), we then obtain, in agreement with the equipartition
theorem,

Ekin|φ=0 = δp2

2m

∣∣∣∣
φ=0

= N

2

D

α
. (5)

The association of D/α with the kinetic temperature at
φ = 0 assumes that the diffusion and friction constants are
independent of the relative phase of the lattices. Following
the standard model of Sisyphus cooling [29], our model (1)
assumes that diffusion and friction are spatially homogeneous.
It should be noted, though, that in a more accurate model these
coefficients are dependent on the position x of the atom in
the lattice. The spatial distribution of atoms in either lattice
will have some dependence on φ, which will translate into
a dependence on the spatially averaged friction and diffusion
coefficients. This is ignored in our model, introducing a degree
of approximation in Eq. (4) for efficiency.

Absorption images were taken for five different potential
depths. In Fig. 2, we show typical raw data for atoms kept
150 ms in the lattices. A clear drift is seen in images 2 and 4,
while images 1, 3, and 5 show no drift, as expected. Images
such as Fig. 2 have been taken for 0 � φ � 2π for potential
depths between 40 and 200 μK, and the analyzed data can be

FIG. 3. (Color online) The drift velocity vs the phase shift for a
lattice holding time of 150 ms. Inset: the kinetic temperature for the
same data.
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FIG. 4. (Color online) The efficiency, according to Eq. (4), of the
Brownian motor as a function of the relative spatial phase for five
different potential depths. The greatest efficiency is achieved for φ

equal to 2π/3 and 4π/3 and drops to zero for φ = π .

seen in Fig. 3 in terms of the drift velocity. The induced drifts
are expected to be symmetric around φ = π . However, slightly
larger drifts are observed for φ = 2π/3 than for φ = 4π/3,
most likely due to experimental limitations in the alignment
and the intensity balance of the lattice beams. Also shown in
Fig. 3 is the kinetic temperature for the same parameters. We
find that the baseline of the kinetic temperature increases with
the potential depth, while the amplitude of its variation with φ

is roughly unchanged. As discussed earlier, the φ-dependent
kinetic temperature is represented by the second term on
the right-hand side of Eq. (2), while the baseline (or kinetic
temperature at φ = 0) is represented by the third term. Hence
their difference is the variation of the kinetic temperature with
φ. Our data show that this variation is approximately the same
for different potential depths. Hence, the greater efficiency for
larger potential depths is mainly due to the increase in the
drift momentum. Using the data from Fig. 3 in Eq. (4), we
obtain the efficiency as a function of φ, where the maximum
efficiency is close to 0.3%; see Fig. 4.

An alternative way to characterize the rectified motion is
by the coherence of the transport, where the linear transport
is compared to the diffusion. This can be quantified using the
Péclet number [16],

Pe ≡ |〈v〉|l
D̃eff

, (6)

where l is a characteristic length of the system, in our case
the lattice constant, and D̃eff is the effective spatial diffusion
given by

D̃eff ≡ lim
t→+∞

〈x2(t)〉 − 〈x(t)〉2

2t
. (7)

0 ms 75 ms 150 ms 225 ms 300 ms
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m

FIG. 5. Time evolution of the atomic sample for a potential depth
of 200 μK. Both the drift and the diffusion are seen.

FIG. 6. (Color online) (a) Position of the center of mass of the
atomic sample. (b) Root-mean-square radius of the atomic sample
as a function of holding time for four different potential depths. The
center of mass moves linearly as expected [17], and indicates faster
drifts for higher potential depths. The size of the cloud grows with
time due to diffusion according to Eq. (8).

For atoms in dissipative optical lattices, where thermal fluctua-
tions play an important role, D̃eff becomes the spatial diffusion
constant D̃ = 〈[δx(t) − δx(0)]2〉/(2t), where δx(t) = x(t) −
〈x(t)〉 [30]. This quantity can be calculated from the expansion
of the atomic cloud in the optical lattices, where the size of the
cloud is given by

σt =
√

σ0
2 + 2D̃t, (8)

with σt the root-mean-square radius at time t .
In order to quantify the performance in terms of the Péclet

number, series of absorption images of the time evolution of
the atomic cloud, such as shown in Fig. 5, have been taken.
The phase is set to achieve maximum drift (φ = 2π/3).

In Fig. 6(a), a series of such images have been analyzed
and the drift is plotted against the holding time in the lattice.
In Fig. 6(b), the width of the sample is shown against the
holding time, from which the diffusion constant D̃eff can be
extracted by fitting to Eq. (8). Combining the result with the
measured average velocity of the sample, according to Eq. (6),
gives the Péclet number for different potential depths; see
Fig. 7.

In conclusion, we have adopted existing theory and pre-
sented experimental results for two measures of the perfor-
mance of a Brownian motor, namely the efficiency and the
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FIG. 7. (Color online) The measured Péclet number, Eq. (6), as a
function of potential depth. The data indicate a greater coherence in
the transport for higher potential depths.
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Péclet number, in a system of ultracold atoms in a double
optical lattice. The results indicate trends that give higher
efficiency and transport coherence for deeper potentials, and
are in agreement with the values of the Péclet number that were
predicted for similar systems [31]. Although our BM prototype
differs from other BM’s, the fundamental principles are the
same, and hence these kinds of characteristic measurements

allow for interesting comparisons between BM systems from
different fields.
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