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Occupancy of rotational population in molecular spectra based on nonextensive statistics
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The procedure to obtain gas temperature in plasmas is to fit the experimental rotational spectrum to a theoretical
one based on the Boltzmann distribution. For many systems a single distribution fails to account for the occupation
of the levels. Researchers have improved the fitting by coupling two distributions and obtaining two distinct
temperatures. They assigned the lowest temperature to the gas. Here, we show that these systems should be
described by Tsallis nonextensive statistics and its unique associated temperature. Experimental and simulated

spectra are tested and excellent agreement is obtained.
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Chemical and physical processes that occur in electrical
discharges are strongly influenced by temperature. Thus, it
is important to have an efficient and noninvasive method to
determine the plasma’s temperature. For this reason optical
emission spectroscopy is the usual method of choice. Physi-
cally, the application of the method rests on the hypothesis that
the rotational levels are in thermal equilibrium with the gas.
Thus, it is mandatory that the occupation of the rovibrational
levels can be accurately described by the Boltzmann distri-
bution [1-4]. The first negative system (FNS) of nitrogen is
often used to determine the temperature of a discharge. The
procedure relies on the assumption that the temperature of the
gas is in equilibrium with the distribution of the rotational
levels. Accordingly, the fitting of a simulated spectrum to the
experimental one is the standard procedure that yields the
desired rotational temperature. Linss [5,6] showed that for this
system the standard method with a single temperature fails
to describe the experimental spectrum. According to Linss,
the explanation for such failure lies on the excitation channels
available to the N2+ (B) state. Linss believes that N, molecules
from different rotational level distributions contribute to the
occupation of the N2+ (B) state. These contributions would
come from the following reactions:

M(X)+e— N (B)+e+e, (1)
N (X,v=0)+ No(X,v > 12)
— N (B,v=0)+ N(X,v — 12). ()

Thus, he has postulated that two different populations for the
molecule of N;r (B) combine to generate the experimental
spectrum. He also claimed that each individual population
behaved according to its own Boltzmann distribution. There-
fore, each population also had its own temperature. This means
that the system cannot be considered in thermal equilibrium.
As described in Eq. (1), it is the distribution of the rotational
levels for neutral molecules that determines the temperature of
the gas. This is the lowest of the two temperatures associated
with the system; from now on it will be called 7;. The other
excitation channel corresponds to collisions with molecules
that are vibrationally excited [Eq. (1)], and it is related to the
higher temperature (73).

The second positive system of nitrogen has also been
used to estimate the temperature of the gas. Indeed, such an
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application in Ar/N, microplasma at atmospheric pressure
was reported [7]. Once again two rotational distributions were
postulated. The first population was generated by an electronic
impact mechanism while the second one was generated by
energy transfer from metastable states. To obtain the gas
temperature, a procedure almost identical [7] to the one
proposed by Linss was used, that is, estimated the temperature
of Ar/N, plasma by using two Boltzmann distributions
and two distinct temperatures. Qiang states that the lower
temperature corresponds to the desired gas temperature and
that the higher one may be regarded as a fitting parameter.
Here, we reexamine the occupation of rotational levels.
Our interpretation does not depend on which mechanisms
lead to the population of the rotational levels, but it requires
that the Boltzmann picture be abandoned. Thermodynamics,
according to Tsallis [8,9], is based on two concepts: energy
and entropy. The first concept is related to the energy levels
available to the system. Energy clearly depends on the physical
system, and it is described by the Hamiltonian function.
Entropy is much more subtle because it is related to the
probability of the occupation of energy levels. Ubiquitously,
it is assumed that the microscopic entropy does not depend on
the physical system. In other words, it is usual to accept that
there is a universal expression for the entropy. This is part of
Boltzmann’s legacy. This reasoning was applied by Linss [6]
and Qiang [7] to account for the population of the rotational
levels of the aforementioned systems. Thus, to achieve good
agreement with the experiment, they needed to postulate that
the system was simultaneously in contact with two thermal
reservoirs. That led to an artificial situation: the existence of
two temperatures and the necessity to disregard the highest
one. In this Brief Report, we propose a different interpretation:
the Boltzmann distribution does not apply to these cases.
Instead another kind of statistics must be used. In 1988, Tsallis
introduced a generalization of the Boltzmann statistics [8,9].
This generalization considers the nonextensivity of the entropy
for a variety of systems. Boltzmann’s entropy relation becomes
a particular case of the generalized entropy and, consequently,
the expression for the population of the rotational levels
changes. Tsallis’s statistics has been applied to a number of
fields [10], for instance, in biology [11], astrophysics [12],
turbulence [13], human sciences [14], nuclear physics [15],
plasma physics [16], and studies of chemical reactions [17].
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It is our goal to show that the Tsallis statistics yields a
consistent interpretation of the population of the rotational
levels, mainly, for the nitrogen systems. Notice that we are
not discussing the validity of the physical processes that were
brought forward by Linss and Qiang. Instead, we believe that
the use of a nonextensive statistics is justified by the very
existence of these processes. In this Brief Report, we show that
the results we get from Tsallis’s statistics are at least as good
as those obtained from two Boltzmann distributions. We will
also show that the temperature of the Tsallis distribution is (for
all cases we have tested) quite close to the lowest temperature
of the two-distribution analysis.

One must know the parameters that define intensities and
widths of the spectral lines to generate a simulated spectrum.
Intensity depends on transition probability, wavelengths, and
the number of molecules in the initial state. As thermal equilib-
rium is the standard hypothesis used to calculate the number of
molecules, the occupation follows the Boltzmann distribution.
The rotational level J is 2J 4 1 degenerate. In our simulations
of the FNS, we have assumed that line broadening comes from
the Doppler effect [6]. Consequently, the expression for the
intensities of the simulated spectrum is [4,6]

Z Z(ZJ +1)

i=P,R ,branch J

(—BJ(J—l—l)) (—41n2[k+AX—AO(J)])
Pl —————— ] ¢exp .
kgT (820)

Iarb()‘-’ T78)L5 A)\') =

3)

The validity of the standard procedure was first questioned
in 1941 [18]. As far as we know, Lavrov [19] was the first
to state that a non-Boltzmann distribution should be used
to accurately describe the intensities of rovibrational spectra.
One alternative approach to circumvent such problems was to
postulate that the population of the levels was described by two
complementary Boltzmann distributions [5-7]. Henceforth,
the intensity of the spectral lines was given by [7]

I()\’) = al‘bl()\‘sTlaa)\wA)") + RIarbZ()"vT218)“7A)‘*)' (4)

Parameter R measures the ratio of the contribution for the
line intensity from 75 as compared to 77. Linss [5,6] showed
that for his experimental conditions, the intensities of the
FNS had a larger contribution from the low-temperature 7;
and a smaller one from the high-temperature 7,. The open
channels that populate the rotational levels have been shown
in Eq. (2). Although we trust that his explanation of the
excitation channels is correct, we disagree with the application
of the Boltzmann functional form. Our argument is based on
the fact that such an expression is only valid for systems
in thermal equilibrium. Clearly, if two temperatures, 7; and
T,, are necessary to describe the population of the rotational
levels, the system is not in equilibrium. We believe that the
ergodic hypothesis is not satisfied and the statistics of the
occupation of these rotational levels should be reevaluated.
We consider that instead of using two Boltzmann distributions,
the population of the rotational levels should be described by
a single Tsallis distribution [20,21]. The Tsallis statistics can
hardly be achieved in most cases from first principles, as shown
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by DeVoe [22]. Thus, we have followed DeVoe’s footsteps in
this work. Consequently, the spectral line intensity is

Z 2(21 +1)

i=P,R,branch J

(1 1 E )l‘q (-4 In2[A + Ax — /\O(J)])
T Vr) TP (62)2 ‘
5)

Therefore, Eq. (5) replaces Eq. (4). Now, a single temperature
describes the statistics of the whole system. The nonextensivity
parameter, ¢, is related to the occupation processes of the
rotational levels [23].

Although our arguments seem consistent, they must be sub-
mitted to testing. Does a single-temperature Tsallis statistics
yield an occupation of the rotational levels that is equivalent
to the one provided by the Boltzmann statistics with two
temperatures? Figure 1 shows a comparison between these
two approaches. The dotted line corresponds to a line intensity
spectrum generated by two Boltzmann distributions. There
T, =500 K and 7, = 2500 K, and the ratio R equals 10%.
The solid line corresponds to a single Tsallis distribution with
T, = 600 K and a factor g = 1.26.

Figure 1 clearly shows an excellent agreement between both
curves, that is, the spectrum created through Tsallis statistics
matches perfectly the one generated by two Boltzmann
distributions. As expected, one can also notice that the Tsallis
temperature (7; = 620 K) is much closer to 73 = 500 K than
to T, = 2500 K. Next, the new interpretation was submitted to
another test in a practical, experimental situation. We have used
the same experimental apparatus described in detail in Ref. [1].
We have measured spectra for FNS in a dc positive column
with pressure conditions ranging from 0.3 up to 5.0 Torr and
currents from 5.0 up to 50 mA.

First, we have followed Linss’s [6] reasoning, that is,
we have applied the method based on two Boltzmann

Lip(A, T, 60, AN) =
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FIG. 1. (Color online) Comparison between two simulated spec-
tra. The dotted line corresponds to a spectrum generated through the
two—Boltzmann distribution method and the solid one corresponds to
a single Tsallis distribution. Temperatures and the parameters R and
q are shown.
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FIG. 2. (Color online) Experimental and simulated spectra for the
FNS for 1.0 Torr of pressure and current of 30 mA. (a) Experimental
vs the two—Boltzmann distribution method. (b) Experimental vs
Tsallis single-temperature distribution. (c) Confrontation of the two
simulated spectra.

distributions/two temperatures to fit these spectra. It does fit
the spectrum better than a single Boltzmann distribution. Next,
we have used the Tsallis distribution to generate the spectra.
Once again, this new approach yielded results that are as good
as those previously mentioned. This comparison is shown in
Fig. 2. One may notice a small deviation between wavelengths
of the experimental and simulated spectra. This shift is
created by a nonlinearity in the experimental apparatus already
described in Ref. [1]. The fact that the exact same procedure
was applied to both two Boltzmann distributions and the one
introduced by Tsallis renders this dislocation irrelevant.

It is worth mentioning that although only one case is shown
in Fig. 2, the test was performed to 16 different experimental
conditions with exactly the same results. In order to estimate
the fitting error, the following expression was used:

N
E = [lops(hi) = Limi), 6)
i=1

where Iops(A;) and Iin(X;) (0 = 1,2,3, ... N) are the exper-
imental and simulated intensities [by Eqgs. (4) and (5)] at
wavelength A;, respectively.

Temperatures for both methods (Boltzmann and Tsallis)
and parameter R had been determined by minimizing the error
function, Eq. (6). We have observed that for all simulations, the
simulation error is not affected by temperature variations of
+30 K. Thus, we have taken this value as a measure of the error
in the calculated temperatures. For parameter R, following the
same criterion, the estimated error is £0.01, and for ¢, it is
40.02. According to Refs. [5] and [6], as we have already men-
tioned, the lowest temperature (77) is the best estimate for the
gas temperature. Figure 3 shows 7 and the temperature (75)
attributed to the gas by Tsallis distribution as a function of the
current when the pressure is kept constant and equal to 1.0 Torr.
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FIG. 3. (Color online) (a) Calculated gas temperature obtained
through two-Boltzmann (circles) and Tsallis (squares) distributions.
Pressure was kept at 1.0 Torr and current varied in the range from 10
to 50 mA. (b) Relationship between the two—Boltzmann distribution
factor R and the entropic Tsallis method factor g.

Figure 3 shows a comparison between the gas temperature
as obtained by using the two-temperature method (red circle)
and our method (black square) based on Tsallis statistics. It
is clear that the estimated temperatures as a function of the
current show a very similar pattern.

In Tsallis’” generalized statistics, the parameter g plays an
important role. This parameter is related to the degree of
nonextensivity of the system [24] and it is closely related
to the dynamics of the microscopical processes [23]. For
instance, ¢ = 1 leads to the standard Boltzmann statistics. Its
interpretation is usually very difficult, and it is sometimes seen
as the “Achilles heel” of this statistics. Luckily, in the present
case, we found that g is directly related to the occupation
processes of the rotational levels. In other words, g is related
to parameter R and this is shown in Fig. 3(b).

We have introduced and tested a procedure to determine the
temperature of a discharge. The standard method assumes that
the distribution of the energy levels is in equilibrium in order to
apply Boltzmann’s statistics. However, the literature presents
many cases where the standard procedure fails. In this case,
a composition of two Boltzmann distributions was used to
describe the occupation of the energy levels. Numerically, this
procedure needs three parameters: two temperatures 77 and
T, and a mixing parameter R. The existence of more than one
excitation channel that was used to justify the two-distribution
method can equally well justify the use of the nonextensive
statistics. Here we have shown that the Boltzmann distribution
is not appropriate to the experimental conditions. There is a
need to apply a nonextensive statistics to describe correctly
the occupancies of the levels. Our interpretation yields results
that are similar to those obtained with two temperatures
and it introduces only two numerical parameters: the gas
temperature 7, and the entropic factor g. We also show that
the ¢ factor is related to the process of occupation of the
energy levels and to the parameter R. We believe that our
interpretation is evidence that the spectroscopy of a discharge
should not be described through equilibrium statistics.
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