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Lattice Boltzmann study of pattern formation in reaction-diffusion systems
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Pattern formation in reaction-diffusion systems is of great importance in surface micropatterning [Grzybowski
et al., Soft Matter 1, 114 (2005)], self-organization of cellular micro-organisms [Schulz et al., Annu. Rev.
Microbiol. 55, 105 (2001)], and in developmental biology [Barkai et al., FEBS Journal 276, 1196 (2009)]. In this
work, we apply the lattice Boltzmann method to study pattern formation in reaction-diffusion systems. As a first
methodological step, we consider the case of a single species undergoing transformation reaction and diffusion.
In this case, we perform a third-order Chapman-Enskog multiscale expansion and study the dependence of the
lattice Boltzmann truncation error on the diffusion coefficient and the reaction rate. These findings are in good
agreement with numerical simulations. Furthermore, taking the Gray-Scott model as a prominent example, we
provide evidence for the maturity of the lattice Boltzmann method in studying pattern formation in nonlinear
reaction-diffusion systems. For this purpose, we perform linear stability analysis of the Gray-Scott model and
determine the relevant parameter range for pattern formation. Lattice Boltzmann simulations allow us not only
to test the validity of the linear stability phase diagram including Turing and Hopf instabilities, but also permit
going beyond the linear stability regime, where large perturbations give rise to interesting dynamical behavior
such as the so-called self-replicating spots. We also show that the length scale of the patterns may be tuned
by rescaling all relevant diffusion coefficients in the system with the same factor while leaving all the reaction
constants unchanged.
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I. INTRODUCTION

Spatially and/or temporally varying patterns have been
observed in a variety of physical [1,2], chemical [3–5], and
biological [6–11] systems operating far from equilibrium. The
interest in understanding the physics of pattern formation
in these systems has been increasing steadily over the last
few years, especially after the experimental verification of
Turing’s idea [12]. In chemical and biological systems, for
instance, macroscopic reaction-diffusion equations have been
proposed as models for morphogenesis [13], pattern formation
[6,7], and self-organization [14,15]. This class of equations
usually includes the following two features: (i) a nonlinear
reaction between chemical species describing local production
or consumption of the species, and (ii) the diffusive transport
of these species due to density gradients. The simple form of
the reaction-diffusion equation for a system of N species is
described by the following set of equations:

∂ρs(x,t)

∂t
= Ds�ρs(x,t) + Rs, 1 � s � N, (1)

where ρs(x,t) is the mass density or concentration of species
s at time t and location x, � is the Laplacian operator
with respect to spatial coordinate x, and Ds is the diffusion
coefficient of individual species s. In this work, we assume
that Ds is isotropic and independent of x. The last term on the
right hand side, Rs , is the reaction term. This term depends
on the local density or concentration of the individual reacting
species and the reaction mechanism governing the system. In
most pattern forming systems, Rs usually contains nonlinear
or autocatalytic reaction terms with the product of the densities
of the reacting species.

Due to their great importance both in biology, environmen-
tal science, and industry, there has been growing interest in a

study of these systems both experimentally, by numerical inte-
gration of the governing equations, and via well-tuned analytic
theories (see, e.g., [16–22] and references therein). However,
solving problems with complex geometry (as is sometimes
the case in biological systems) often requires a more efficient
and robust method. The lattice Boltzmann method has met
significant success in simulating a wide range of phenomena in
complex geometries over the last decades [23–27]. In contrast
with other traditional numerical techniques which only focus
on the solution of the governing macroscopic equation, the
lattice Boltzmann (LB) method is based on kinetic theory. In
cell-scale modeling of micro-organisms [28–30], for instance,
the kinetic nature of the lattice Boltzmann method makes
the approach computationally less demanding and allows for
a relatively simple implementation of microbial interactions
between cells. Furthermore, for problems involving large
domain sizes, the local nature of LB operations allows easier
implementation on parallel computational platforms thus
enabling fast and large scale computations. In addition to the
above features, the inherent capability of the LB approach in
dealing with irregular boundaries makes it suitable for studying
reaction-diffusion phenomena in porous media [31] at the pore
scale. However, the accuracy and efficiency of a numerical
method are often evaluated in terms of the smallest truncation
error within the method. In previous lattice Boltzmann studies
of reaction-diffusion equation [32,33], it is rather unclear
as to how the truncation error varies with the system parameters
such as reaction rate and diffusion constant. These parameters
become important in pattern forming systems where nonlinear
reaction terms are present and reaction rate as well as diffusion
constant may vary over a wide range. Thus for a better
performance and accuracy, it is important to find out whether
there is a range of optimal parameters that leads to the smallest
truncation error and a better convergence of the method. Such
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a study is performed in this work for the case of a single
species reaction-diffusion systems. Performing a third-order
Chapman-Enskog multiscale expansion, we investigate the
dependence of the truncation error on the system parameters.
Indeed, for this simple case, while the truncation error linearly
varies with the reaction rate, it exhibits a pronounced minimum
as a function of the diffusion coefficient.

In order to extend the investigation to a pattern-forming
multispecies reaction-diffusion model, we have selected the
Gray-Scott model [34], which serves as a standard paradigm
for studying reaction-diffusion systems. The Gray-Scott
model, though simple, exhibits a wide range of interesting
dynamical features including spots [35], spiral waves [36],
stationary waves [37], and spatiotemporal chaos [38]. A
particular feature of this model which makes it different
from the other models is the existence of the so-called self-
replicating spots [39]. Spatially localized cell-like structures
grow, deform, and make replicas of themselves. This act
of “cell division” resembling DNA and RNA replication in
cells or the replication growth of biological cells as seen in
developmental biology makes it an ideal model for studying
these biological systems with regard to pattern formation. In
this reaction-diffusion system, generation of patterns comes
usually from the instability of an initially uniform state to
spatially inhomogeneous perturbations over a certain range
of wavelengths. The possible range of wavelengths, as de-
termined by a fixed set of system parameters, is usually
invariant against a change of the system size. A change in
system size often leads to a corresponding change in the
number of spots, stripes, or segments observed in the system.
Hence the number of segments or stripes is not invariant,
but proportional to the system size. In contrast, for some
biological systems, the pattern-forming wavelength is often
proportional to the system size, while the number of stripes or
segments is invariant against the change of system size. For
instance, some mammalian coat markings have been shown to
enlarge in proportion to system size [40], patterns in some
micro-organisms like Hydra and Dictyostelium discoideum
have also been observed to show proportionality with size [41].
Modeling this type of biological systems with Turing-type
reaction-diffusion therefore requires rendering the governing
equations dimensionless and adjusting the system parameters
in a proper way [42,43]. One such approach involves using
diffusion constants which depend on the concentration of a
system-size-dependent auxiliary chemical factor [44–47] or
using the possibility that the concentration of some chemical
species changes with some power of the system size [48].
Interestingly, it is possible to change the length scale of the
patterns in the Gray-Scott model via a simple rescaling of all
the involved diffusion coefficients by the same factor, while
keeping all the reaction constants unchanged. We provide a test
of the validity of this simple approach with lattice Boltzmann
simulations.

The paper is organized as follows. In the following section,
we briefly introduce the lattice Boltzmann simulation scheme
for the reaction-diffusion equation. We then provide some
benchmark tests for our LB simulation by comparing our
results with analytical solutions for the transformation reaction
and diffusion of a point source in a domain with periodic
boundary conditions. Excellent agreement with the analytical

solutions is found. We also carry out a truncation error
analysis of the model via a third-order multiscale expansion.
Results obtained from this analysis are in agreement with our
numerical simulations. In Sec. III, we present the Gray-Scott
model and, using linear stability analysis, determine the
parameter range for the existence of unstable solutions which
we identify as a necessary condition for pattern formation.
Our numerical simulations show good agreement with the
predictions obtained from linear stability analysis. In Sec. IV
we present a detailed study of the patterns which may be
obtained via large amplitude perturbations of a linearly stable
state. This case comprises the self-replicating spots.

II. NUMERICAL MODEL AND ITS VALIDATION

A. Lattice Boltzmann method

The lattice Boltzmann method [49–52] can be regarded as
a mesoscopic particle based numerical approach allowing us
to solve fluid-dynamical equations in a certain approximation,
which (within, e.g., the so-called diffusive scaling, i.e., by
choosing �t = �x2) becomes exact as the grid resolution is
progressively increased. The density of the fluid at each lattice
site is accounted for by a one particle probability distribution
fi(x,t), where x is the lattice site, t is the time, and the subscript
i represents one of the finite velocity vectors ei at each lattice
node. The number and direction of the velocities are chosen
such that the resulting lattice is symmetric so as to easily
reproduce the isotropy of the fluid [53]. During each time step,
particles stream along velocity vectors ei to the corresponding
neighboring lattice site and collide locally, conserving mass
and momentum in the process. The LB equation describing
propagation and collision of the particles is given by

fi(x + ei ,t + 1) − fi(x,t) = �ifi(x,t), (2)

where �i is the collision operator.
The most widely used variant of LB is the lattice Bhatnagar-

Gross-Krook (BGK) model [51], which approximates the
collision step by a single time relaxation toward a local equi-
librium distribution f

eq
i . The lattice BGK model is written as

fi(x + ei ,t + 1) − fi(x,t) = f
eq
i (x,t) − fi(x,t)

τ
, (3)

where τ is the relaxation time and the equilibrium distribution
f

eq
i is closely related to the low Mach number expansion of

the Maxwell velocity distribution given as [54]

f
eq
i (x,t) = wiρ

[
1 + 1

c2
s

(ei · u) + 1

2c4
s

(ei · u)2 − 1

2c2
s

u2

]
.

(4)

In Eq. (4), cs is the sound speed on the lattice and wi is a set
of weights normalized to unity. The weights wi and speed cs

depend in general on the dimension and the type of the lattice
used. In this work, we use the two dimensional nine velocity
(D2Q9) model with the sound speed cs given as c2

s = c2/3,
where c = �x/�t is the lattice speed. The lattice weights wi

for the D2Q9 model are given as

wi =
⎧⎨
⎩

4/9 ei = (0,0), i = 0;
1/9 ei = (±1,0),(0, ± 1), i = 1 . . . 4;
1/36 ei = (±1, ± 1), i = 5 . . . 8.

(5)
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In order to model the reaction-diffusion equations in the
framework of a lattice Boltzmann BGK model, we introduce
a multispecies distribution function fi,s where the subscript s

runs over the number of species s = 1...N . Here we assume
that the diffusion of a given species does not depend on the
concentration of other species. In other words, the species in
our model do not interact among each other, except through
the chemical reaction term. This assumption is physically
justified since many pattern-forming systems are studied in the
form of dilute solutions. At higher concentrations, however,
the mutual interactions of different species shall be taken into
account [55,56]. In addition, we focus on chemical reactions
with diffusion as the only transport mechanism, i.e., with no
effect of the solvent velocity field. Experimentally, this is
a good approximation to pattern formation in a gel [57,58],
where the effect of advection is largely suppressed. Thus the
flow velocity u in Eq. (4) can be set to zero. This leads to

f
eq
i,s (x,t) = wiρs. (6)

Equation (6) satisfies the requirement
∑N

i=0 f
eq
i,s = ρs . The

chemical reaction is modeled by including a source term, Rs ,
in the collision step. This leads to

fi,s(x + ei ,t + 1)−fi,s(x,t) = f
eq
i,s (x,t)−fi,s(x,t)

τs

+ wiRs,

(7)

where τs is the relaxation time for species s. The source term
Rs represents the rate of change of density of the species s

with regard to reaction kinetics. The exact form of the relation
between the reaction rate Rs and the density (concentration) of
each species depends on the type of reaction being modeled.
The density of the species s, ρs is then computed from the
distribution function using ρs = ∑N

i=0 fi,s .
Near equilibrium and in the limit of small Knudsen

number (=mean free path/characteristic length of problem)
the macroscopic reaction-diffusion equation can be recovered
using Chapman-Enskog multiscale analysis. The detailed
analysis leading to the macroscopic equation is outlined in the
Appendix. The relaxation time τs is then found to be related
to the diffusion coefficient as Ds = c2

s �t(τs − 0.5).

B. A transformation reaction

We provide here a simple test of our lattice Boltzmann
approach for reaction-diffusion systems and characterize the
truncation error obtained with regard to system parameters. We
compute the problem of diffusion of a species A undergoing
an irreversible transformation or decay reaction to a species B,

A
κB−→ B. (8)

The reaction-diffusion equation describing the dynamics of
species A can be written as

∂ρA(x,y,t)

∂t
= DA�ρA(x,y,t) − κBρA(x,y,t), (9)

where ρA(x,y,t) is the density of species A at point (x,y) and
time t , DA is the diffusion coefficient of A, κB is the rate of the
transformation reaction, and � is the Laplacian operator with
respect to spatial coordinates x,y. Taking ρA0 as a reference

concentration, Eq. (9) can be made dimensionless by
introducing the characteristic time td = L2/DA, which is the
time for the diffusion over the dimension of the simulation box
L. This choice is reasonable since L is the only characteristic
length in this problem (Lx = Ly = L). This yields

∂ρ̃A(x̃,ỹ,t̃)

∂t̃
= �ρ̃A(x̃,ỹ,t̃) − φ2ρ̃A(x̃,ỹ,t̃), (10)

where ρ̃A = ρA/ρA0, (x̃,ỹ) = (x,y)/L, t̃ = t/td , and
φ2 = tdκB = L2κB/DA. The Thiele modulus φ2 compares
the rate of reaction to the rate of diffusion. Transport by
diffusion dominates the reaction kinetics when φ2 � 1,
while reaction dominates when φ2 � 1. We proceed now to
solve Eq. (10) by Fourier transformation. Using the initial
condition ρ̃A(x̃,ỹ,t̃ = 0) = δ(x̃ − x̃0)δ(ỹ − ỹ0), the Fourier
transformation of Eq. (10) yields

dρ̂A(q̃,t̃)

dt̃
= q̃2ρ̂A(q̃,t̃) − φ2ρ̂A(q̃,t̃), ρ̂A(q,0) = 1, (11)

where ρ̂A(q̃,t̃) is the Fourier transform of ρ̃A(x̃,ỹ,t̃).
Integrating Eq. (11), taking the inverse Fourier transform, and
slightly re-arranging the terms, one obtains

ρ̃A(x̃,ỹ,t̃)= 1

(4πt̃)
exp

(−(x̃ − x̃0)2 − (ỹ − ỹ0)2

4t̃

)
exp(−φ2 t̃).

(12)

Equation (12) is the analytical solution of the problem posed
by Eq. (10) on a region infinitely extended in space. In
particular, it does not contain effects of periodic images
of the simulation box [59]. It thus provides a satisfactory
approximation to the simulated problem as long as the width of
the Gaussian is small compared to the linear dimension of the
simulation box, i.e., DAt � L2 or, equivalently, t̃ � 1. Using
Eq. (12), we perform a test of the present lattice Boltzmann
(LB) model. For this purpose, we set up a two dimensional
domain with L = 200 lattice units and ρA(t = 0) = 1 at the
center of the simulation box (x = x0 = L/2,y = y0 = L/2),
while ρA(t = 0) = 0 on all other points in the system. For
the whole region of the domain, we initialize the density
of the species B to zero. Periodic boundary condition is
imposed along both the x and y directions. The lattice
Boltzmann relaxation parameter of the species A and B is set
to τA = τB = 0.56, corresponding to DA = DB = 0.02 (in
LB units). The reaction rate, on the other hand, is κB = 0.01.
These values correspond to a Thiele modulus of φ2 = 2 × 104.

Results thus obtained are collected in Fig. 1(a). The plot
compares, for two different times, the density profiles of
species A along the x direction (y = y0 = L/2) obtained from
simulations to the analytical solution, Eq. (12).

In order to quantify the numerical error, we introduce the
relative error Eρ via the definition

Eρ =
√∑

x,y |ρA,an(x,y) − ρs,sim(x,y)|2∑
x,y |ρA,an(x,y)|2 . (13)

Here, ρA,an(x,y) is the density field obtained from the
analytical solution in Eq. (12) and ρs,sim(x,y) is the density
field obtained from the simulation. The summation is taken
over all lattice points in the domain.
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FIG. 1. (Color online) Comparison of the lattice Boltzmann
simulations (symbols) with the analytical solution (solid lines) given
in Eq. (12). (a) Density profiles of species A along the x direction
at two different dimensionless times as indicated for κB = 0.01 and
τA = τB = 0.56 (corresponding to DA = DB = 0.02) along the line
y = y0. (b) The same data as in (a) but for κB = 0.033. (c) Behavior
of the relative error in the density of A, Eρ [see Eq. (13)], with the
relaxation parameter τA at κB = 0.01. (d) The same data as in (c)
but for κB = 0.033. The Thiele modulus is kept constant for all the
data shown here, φ2 = 2 × 104. Note that a larger τA corresponds to
a higher grid resolution, via Eq. (14).

As seen from Fig. 1(a), we obtain a good agreement between
the LB simulation data and the analytical solution in Eq. (12).
Using Eq. (13), this corresponds to a relative error of less than
1%. We note, however, that increasing the value of the reaction
rate κB leads to an increase in the relative error as evident by
comparing Figs. 1(a) and 1(b). We will return to this point
further below.

To proceed further, we express the Thiele modulus in terms
of dimensionless lattice Boltzmann parameters. For this pur-
pose, we recall the relation between relevant physical and LB
quantities, D

phys
A = c2

s �t(τA − 0.5) = (τA − 0.5)�x2/(3�t),
κ

phys
B = κB/�t , and Lphys = L�x. Note that, since all our sim-

ulation results are expressed in LB units, we have dropped—
for the sake of the simplicity of notation—the superscript “LB”
in all the lattice Boltzmann variables. Inserting these relations
into the definition of the Thiele number, it is easy to see that

φ2 = Lphys2κ
phys
B

D
phys
A

= 3L2κB

(τA − 0.5)
. (14)

A nice property of Eq. (14) is that it provides a prescription
for how to change the grid resolution without changing
the physical problem under investigation (φ = const). In
particular, in the case of the present transformation reaction
and for a fixed lattice reaction rate κB , an increase of the
grid resolution (i.e., an increase of L) must be accom-
panied by a corresponding increase of the LB relaxation
parameter τA.

The reader may have noticed that the sound speed enters
the Thiele modulus via a factor of 3 only. This is related to
the fact that the scale of the sound speed, �x/�t , drops out

when constructing this dimensionless quantity. Indeed, effects
of the sound speed on numerical accuracy are not expected to
show up at this level of description, where the flow velocity
is assumed to be identically zero. In the presence of flow
(generated, e.g., via buoyancy forces), on the other hand, this
issue may become important. A more detailed discussion of
the effects of sound speed on the LB truncation error can be
found in [60].

Next we systematically investigate how the relative error
in the density, Eρ , varies with the relaxation time τA and
the reaction rate κB for a given physical situation. For this
purpose, we first fix the Thiele modulus to φ2 = 2 × 104 as
in the case of Figs. 1(a) and 1(b). We then vary, for each
value of the reaction rate κB , the relaxation parameter τA and
determine the corresponding relative error. Note that, by doing
so, the lattice resolution is automatically adapted according
to Eq. (14). Results of these studies are shown in Figs. 1(c)
and 1(d) for κB = 0.01 and κB = 0.033, respectively. The first
observation from both curves in Figs. 1(c) and 1(d) is the
existence of a minimum in the magnitude of the relative error.
It is interesting that a similar minimum in the LB truncation
error is also observed in the computation of shear stress [61].
Another observation is the shift in the position of the minimum
of these curves with increasing reaction rate. Figure 1(c) shows
that the minimum occurs at τA,min ≈ 0.536, for κB = 0.01,
while increasing κB to 0.033 leads to τA,min ≈ 0.59 [Fig. 1(d)].

In order to better understand this minimum in this model
and characterize the shift observed for an increasing reaction
rate, we perform a third-order Chapman-Enskog expansion of
the lattice Boltzmann BGK model for the reaction-diffusion
equation (see the Appendix) and obtain an expression for the
truncation error up to the third order in the expansion parameter
ε. Using RA = −κBρA in Eq. (A23) and rearranging the terms
in powers of τA leads to

E = 3�x2∂t∂
2
xα

ρA

[
τ 2
A −

(
κB∂tρA

3c2
s ∂t ∂2

xα
ρA

+ 1

)
τA + 1

6

]
.

(15)

The third-order LB truncation error E is thus the product
of time and spatial derivative of density with a quadratic
polynomial in τA. This polynomial has a minimum at

τA,min =
(

κB∂tρA

6c2
s ∂t ∂2

xα
ρA

+ 0.5

)
. (16)

Strictly speaking, the value of τA,min not only depends on the
reaction rate κB but also on space and time variables (through
ρA). The fact that a minimum does indeed occur in Eρ as a
function of τA is therefore not at all a trivial consequence of
Eq. (15). Indeed, the shape of Eρ(τA) significantly deviates
from a parabola suggesting that the nontrivial effects related
to time and spatial derivatives of ρA are present.

Nevertheless, it is worth testing to which extent useful
information on the behavior of LB truncation error can be
gained via the above analysis. For this purpose, we note two
important features, which can be extracted from Eqs. (15)
and (16). The first one is that Eρ could be a linear function
of the reaction rate κB [see Eq. (15)]. The second observation
is that also the position of the minimum in Eρ(τA), i.e. the
value of τA,min could be a linearly increasing function of κB .

016702-4



LATTICE BOLTZMANN STUDY OF PATTERN FORMATION . . . PHYSICAL REVIEW E 83, 016702 (2011)

-3 -2.5 -2 -1.5 -1
log

10 
κΒ

-3

-2.5

-2

-1.5

-1

lo
g 10

 E
ρ

τΑ = 0.56
τΑ = 0.59
τΑ = 0.62

0 0.004 0.008
κΒ[ LB units]

0.5

0.51

0.52

0.53

0.54

0.55

0.56

τ A
,m

in

Slope =
 1

(a) (b)

FIG. 2. (Color online) (a) Log-log plot of Eρ vs κB for different
values of τA. The curves are parallel to the solid black line with a
slope of 1. (b) Plot of τA,min vs κB . The curve is in line with Eq. (16).

As illustrated in Fig. 2, both these predictions are confirmed
by our lattice Boltzmann simulations. Moreover—even though
not exactly—the position of the minimum error tends toward
the predicted limit of τA,min = 0.5 as κB → 0 [Fig. 2(b)]. In
summary, given a physical system (i.e., for constant physical
parameters such as reaction rate and diffusion coefficient)
the above discussion may provide guidance in choosing an
optimum grid resolution, when seeking a compromise between
computational cost and numerical accuracy.

III. GRAY-SCOTT MODEL

We consider next the Gray-Scott model as a typical example
of a two species reaction-diffusion system where the nonlinear
reaction terms between the species coupled with the transport
by diffusion give rise to spatiotemporal patterns. The Gray-
Scott model describes the kinetics of a simple autocatalytic
reaction in an unstirred homogeneous flow reactor [34]. The
reactor is confined in a narrow space between two porous walls
in contact with a reservoir. Substance A whose density is kept
fixed at Ao in the reservoir outside of the reactor is supplied
through the walls into the reactor with the volumetric flow
rate per unit volume kf . Inside the reactor, A undergoes an
autocatalytic reaction with an intermediate species B at a rate
k1. The species B then undergoes a decay reaction to an inert
product C at a rate k2. The product C and excess reactants A

and B are then removed from the reactor at the same flow rate
per unit volume kf . The basic reaction steps are summarized
as follows:

A + 2B
k1−→ 3B, (17)

B
k2−→ C. (18)

The reaction in Eq. (17) is the cubic autocatalytic reaction in
which two molecules of species B produce three molecules
of B through interaction with the species A. The presence of
B stimulates further production of itself, while the presence
of A controls the production of B. Substance A is sometimes
called the inhibitor and B the activator. By constantly feeding
the reactor with a uniform flow of species A while at the
same time removing the product and excess reactants, far from
equilibrium conditions can be maintained. Note that inside the
reactor the two species A and B are assumed to interact only
through the nonlinear autocatalytic reaction in Eq. (17). In
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FIG. 3. (Color online) Test of the continuity equation within
a stripe defined by two vertical lines at x1 = 40 and x2 = 50.
(a) The mass fluxes across x1 and x2 are not identical: MA(x = 40) �=
MA(x = 50), where MA(x) = ∑Ly

y=0 JA(x,y) and JA = ∑
i fi,Aci,x .

This implies that the mass within the domain must change with
time (�QA/�t �= 0). However, as expected from the continuity
equation, this rate of change is identical to the net mass flux
across the boundaries of the domain, Mnet,A(t) = MA(x1) − MA(x2).
Note that, here, we define Mnet,A as “inflow (at x1) minus outflow
(at x2).” Similarly, the sum of the masses of the species A and
B within the stripe also changes with time without violating the
continuity equation. (b) The total mass within the entire simulation
box vs time for the species A and B. The initial configuration is
identical to that of Figs. 10 (a square box of high concentration
of B within an A-rich domain). All the reaction rates are set
to zero.

particular, interaction terms due to cross diffusion between
the species are neglected. As stated before, this assumption
is physically justified as pattern-forming systems often occur
in the form of dilute solutions. Following this assumption,
the equations of chemical kinetics which describe the above
situations and include the spatiotemporal variations of the
concentrations of A and B in the reactor take the following
form:

∂A

∂t
= kf (A0 − A) − k1B

2A + DA∇2A, (19)

∂B

∂t
= −(kf + k2)B + k1B

2A + DB∇2B, (20)

where A and B are the density of species A and B, respectively,
A0 is the density of A in the reservoir, while DA and DB are
the diffusion coefficients of species A and B, respectively.
Note that the full Gray-Scott model in Eqs. (19) and (20)
describe chemical reaction and mass transfer in an open
system and therefore it is generally not a mass-conserving
system. However, by setting all the reaction terms in Eqs. (19)
and (20) to zero, one recovers a purely diffusive system.
In this case, it is easy to see that the system is mass
conserving. This, however, does not imply that the sum of
the densities of all the species at a given point in space is
constant. Rather, the rate of mass change in a given area in
space is identical to the net flux across the boundary of that
domain. Our numerical simulations do indeed confirm this
fact (Fig. 3).

In order to understand and control the relevant time scale
and length scale of patterns observed in these systems, we
introduce variables in the form of time and length scales that
represent the physical processes acting in the system. For A, the
characteristic time scale is the time for the removal of A given
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as 1/kf whereas for B it is 1/(kf + k2). The characteristic
time and length scales for these quantities are then

τA = 1/kf , τB = 1/(kf + k2), lA = (DAτA)1/2,
(21)

lB = (DBτB)1/2.

Please note that in contrast to Sec. II B where τA and τB are
used to denote the LB relaxation parameters for the species
A and B, here they denote the times associated with the
reaction rates kf and kf + k2. Furthermore, note also that
the diffusion coefficients DA and DB in Eqs. (19) and (20)
are independent of τA and τB . Rather, in an implementation
within the present D2Q9-LB model, these quantities are related
to the LB relaxation parameters via DA = (τLB

A − 0.5)/3 and
DB = (τLB

B − 0.5)/3. Next we introduce the dimensionless
quantities

Ã = A/A0, B̃ = B/B0, B0 =
(

kf

k1

)1/2

. (22)

Inserting the quantities in Eqs. (21) and (22) into Eqs. (19)
and (20) leads to

τA

∂Ã

∂t
= −B̃2Ã + 1 − Ã + l2

A∇2Ã, (23)

and

τB

∂B̃

∂t
= +ηB̃2Ã − B̃ + l2

B∇2B̃, (24)

where the parameter η = A0(k1kf )1/2/(kf + k2) is the strength
of the activation process. It adjusts the strength of the nonlinear
term in Eq. (24).

The number of parameters can be further reduced by
rescaling the time and length scale in units of τA and lA,
respectively. This yields

∂Ã

∂t̃
= −B̃2Ã + 1 − Ã + ∇̃2Ã, (25)

1

τ

∂B̃

∂t̃
= +ηB̃2Ã − B̃ + 1

ε2
∇̃2B̃, (26)

where τ = τA/τB and ε = lA/ lB=
√

τADA/τBDB . The param-
eter τ describes the relative strength of the reaction terms.

In general, Eqs. (25) and (26) are difficult to investigate
by analytic means. However, simple cases exist for which
analytical solutions can be found. We start with probably the
most simple situation of a spatially homogeneous distribution
of Ã and B̃ (∇2Ã = 0, ∇2B̃ = 0). In this case, the steady state
solutions of Eqs. (25) and (26), denoted as Ãe and B̃e, obey

−B̃2
e Ãe + 1 − Ãe = 0,

(27)
ηB̃2

e Ãe − B̃e = 0.

Equation (27) has three solutions. The first solution is the trivial
homogeneous solution B̃e = 0, Ãe = 1. This state exists for all
system parameters. The other two solutions exist provided that
η > 2. These are given by

Ã±
e = η ±

√
η2 − 4

2η
and B̃±

e = η ∓
√

η2 − 4

2
. (28)
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FIG. 4. (Color online) (a) A plot of −P (t) = ηÃ(t) + B̃(t) − η

vs time for τ = τA/τB = 1 but different values of the parameters τA

and η as indicated. The solid black curve in each case corresponds to
theoretical prediction for the parameter values used in the simulation.
In all studied cases, the simulation results exponentially decay to zero
and show a perfect agreement with the analytical prediction, Eq. (30).
(b) Plot of loge[P (t)/P (0)] vs t/τA for the same data as shown in (a).

A. Test of simulations in the case of spatially
homogeneous dynamics

As a check of our simulation approach, we study the
homogenized form of situations where Eqs. (25) and (26)
are accessible to an analytical solution. For this purpose, we
consider the case of spatially homogeneous dynamics with
τ = 1, implying τA = τB . In this case, multiplying Eq. (25) by
η and adding the result to Eq. (26) leads to

d(ηÃ + B̃)

dt̃
= η − (ηÃ + B̃) ⇒ dP

dt̃
= −P, (29)

where P = ηÃ + B̃ − η and we used the fact that dη/dt̃ = 0.
Equation (29) has the simple solution P (t) = P (0) exp(−t̃) =
P (0) exp(−t/τA). In other words,

ηÃ(t) + B̃(t) − η = [ηÃ(0) − B̃(0) − η] exp(−t/τA). (30)

A test of Eq. (30) is provided in Fig. 4 for τ = 1 but different
values of the parameters τA and η. In the case where η < 2, the
simulation starts from a spatially homogeneous state Ã(0) = 1,
B̃(0) = 0 with an additional density fluctuation δA = 0.5 and
δB = 0.25 added homogeneously to A and B, respectively.
This is done to break the symmetry which would keep the
system at the initial state (due to the autocatalytic nature of the
Gray-Scott model, without B, no reaction will take place). For
all other cases where η � 2 we start from the nontrivial states
(A±

e ,B±
e ) given by Eq. (28) with an additional small fluctuation

of the form δA = 0.1 and δB = 0.1. For all values of τA and
η investigated, we found that the error between theory and
simulation is well below 0.2%.

B. Stability analysis of spatially homogeneous states

We proceed in this section to determine the stability
of the stationary and homogeneous solutions obtained in
Eq. (28) with regard to a spatially homogeneous perturbation.
Our analysis starts by looking at the growth rate α of an
infinitesimal perturbation about the steady state,

Ã = Ãe + φAeαt , B̃ = B̃e + φBeαt , (31)
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where φA and φB are the amplitude of the perturbation to
the species A and B, respectively. Substituting Eq. (31) into
Eqs. (25) and (26), after linearizing and re-arrangement of the
terms one arrives at the eigenvalue equation

( J − α I) φ = 0, (32)

where I is the identity matrix, φ = (φA,φB)T , and the matrix
J is given as

J =
[
τ (2ηÃ±

e B̃±
e − 1) τηB̃±2

e

−2Ã±
e B̃±

e −(
B̃±2

e + 1
)
]

. (33)

The eigenvalue equation in Eq. (32) has the characteristic
polynomial

α2 − αtr J + |J | = 0, (34)

where tr J and |J | are the trace and determinant of matrix J.
The pair of solutions or eigenvalues of matrix J is written

α1,2 = 1
2 (tr J ±

√
(tr J)2 − 4|J |). (35)

The eigenvalues α1,2 in Eq. (35), can either be real or
complex conjugate depending on the relative magnitude and
sign of the determinant |J | and trace tr J . If the real part of
at least one eigenvalue is positive, the considered solution is
unstable.

For the trivial state (Ae = 1,Be = 0), tr J = (τ + 1) and
|J | = τ . Using Eq. (35) and the fact that τ > 1 one obtains that
both eigenvalues are negative. Hence this state is linearly stable
with respect to spatially homogeneous perturbations. Next
we consider the nontrivial stationary homogeneous solutions.
In this case, inserting the solutions of A±

e and B±
e given in

Eq. (28) in Eq. (33), one obtains that tr J = (τ − ηB̃±
e ) and

|J | = τ (ηB̃±
e − 2). Furthermore, since in this case η > 2,

and using Eq. (28), one can easily verify that |J |(B̃+
e ) =

(ηB̃+
e − 2) < 0 and |J |(B̃−

e ) = (ηB̃−
e − 2) > 0. Now from

Eq. (35) it follows that, independent of the sign of tr J , one of
the solutions α1,2 is always positive, provided that |J | < 0.
Hence the state B̃+

e is always unstable. For the state B̃−
e ,

on the other hand, both solutions α1,2 will have the same
sign as tr J and thus the state B̃−

e may be stable provided
tr J < 0 (i.e., τ < ηB̃−

e ).
Figure 5 shows a typical bifurcation diagram for the

system. We plot the homogeneous steady state solutions
obtained in Eq. (28) as a function of the control parameter
η. For η < 2 there exists only the trivial state (1,0), while
when η > 2 two additional states, (Ã−

e ,B̃−
e ) and (Ã+

e ,B̃+
e ),

emerge. The state (Ã+
e ,B̃+

e ) is always unstable (indicated by a
dashed line) while the state (Ã−

e ,B̃−
e ) is stable if τ < ηB̃−

e .
In the same figure we have also plotted the steady state
solutions obtained from the lattice Boltzmann simulation of
the spatially homogeneous solutions with small homogeneous
perturbations at time t = 0. As seen in Fig. 5, the LB
simulation well reproduces the analytically predicted stability
diagram.

C. Inhomogeneous state and Turing instability

The Gray-Scott model develops a Turing instability for a
range of parameters. In this region of the parameter space
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FIG. 5. Plot of the stationary homogeneous state solutions of
species A and B given by Eq. (28). Above the bifurcation point
(η = 2.0), two solutions exist: one is unstable to homogeneous
perturbations (indicated as a dashed line) and the other may be stable
(plotted as a solid line). At η = 2.0, the stable solution switches to
the trivial homogeneous state (1,0) and for η < 2.0 only the trivial
state exists. The lattice Boltzmann simulation (indicated by symbols)
shows good agreement with the theory.

the homogeneous steady state solution becomes unstable and
a new stationary but inhomogeneous state characterized by
the formation of patterns becomes stable. We examine the
condition for Turing instability in this system by looking at
the growth rate α of an infinitesimal spatially inhomogeneous
perturbation to the steady state solutions,

Ã = Ãe + φAeαteiq̃x, B̃ = B̃e + φBeαteiq̃x . (36)

As in the case of Eq. (31), φA and φB are the amplitude of
the perturbations to the species A and B respectively, and
q is the wave number. Again, inserting Eq. (36) into the
kinetic Eqs. (25) and (26) and after linearizing and slight
re-arrangement one arrives at the eigenvalue equation

(M − α I)φ = 0, (37)

where the matrix M is written as

M =
[
τ
(
2ηÃ±

e B̃±
e − 1 − q̃2

ε2

)
τηB̃±2

e

−2Ã±
e B̃±

e −(
q̃2 + B̃±2

e + 1
)
]

. (38)
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For the trivial solution (Ae = 1,Be = 0) the matrix M

reduces to

M =
[
−τ

(
1 + q̃2

ε2

)
0

0 −(q̃2 + 1)

]
, (39)

and solving the eigenvalue equation in Eq. (37), we obtain
the eigenvalues of the trivial state as α1 = −τ (1 + q̃2/ε2) and
α2 = −(q̃2 + 1). Since both eigenvalues are negative, the triv-
ial homogeneous state (Ae = 1,Be = 0) is linearly stable for
all system parameters, and independent of the wavelength of
the applied perturbation. However, it is important to emphasize
that this stability is restricted to infinitesimal perturbations.
Indeed, the trivial state is found to be unstable with respect
to large amplitude spatially inhomogeneous perturbations. In
fact, it is in this regime that the so-called self-replicating
spots are observed. The original parametrization of the Gray-
Scott model by Pearson [34] is also based on the numerical
simulation of spatially inhomogeneous perturbations of the
trivial state.

For the remaining nontrivial solutions, we insert the
homogeneous steady state solutions Ã±

e = 1/(ηB̃±
e ) into the

matrix M in Eq. (38) and solve for the eigenvalues of
M with the characteristic Eq. (34) by replacing J with
M(q). The corresponding eigenvalues are then obtained from
Eq. (35) by replacing tr J and |J | with trM(q2) = τ − ηB̃±

e −
q̃2(τ/ε2 + 1) and |M(q2)| = q̃4τ/ε2 + q̃2(τηB̃±

e /ε2 − τ ) +
τ (ηB̃±

e − 2), respectively.
Turing structures or patterns emerge when the system

becomes unstable with respect to inhomogeneous perturba-
tions. Again, at least one of the eigenvalues becomes positive
(unstable), when |M(q2)| < 0. |M(q2)| is a parabola in q2

which attains its minimum value for

q2
min = (ε2 − ηB±

e )

2
. (40)

Since q2 > 0, a minimum in |M(q2)| exists only if ε2 > ηB±
e .

This is one of the conditions for Turing instability in this
system. The boundary of the instability band or range of wave
number q for which |M(q2)| < 0 is given by the roots of the
equation |M(q2)| = 0:

q2
1,2 = −(ηB̃±

e − ε2) ±
√

(ηB̃±
e − ε2)2 − 4ε2(ηB̃±

e − 2)

2
.

(41)

In Eq. (41), there is an important observation concerning the
state B+

e . Using η > 2 and Eq. (28) one can show that for
the state B+

e , the condition ηB̃+
e < 2 holds for all η > 2. The

consequence is that Eq. (28) has always one negative root
and one positive root independent of the value of ε2. Since
|M(q2)| < 0 for q = 0 [see Fig. 6(a)], this opens already an
instability band for pattern formation as regards the state B+

e .
On the other hand, for the state B−

e , two distinct positive real
roots are necessary for an instability band of patterns. Thus
the following condition has to be satisfied:

ηB̃−
e < ε2 < −8 + 11.65ηB̃−

e (Turing space). (42)

The first condition, ε2 > ηB̃−
e as discussed above, is neces-

sary for the formation of Turing patterns while the second
one reflects the requirement of a positive discriminant in
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FIG. 7. (Color online) The phase diagram of the model at
DA/DB = 2 showing the Turing curve and the Hopf curve for
parameter space spanned by τ and η. For η < 2 only the trivial state
exists and the self-replicating spots (SRP) are observed in this regime
only. For η > 2 two additional states (A±

e ,B±
e ) emerge. In this figure

we have only shown the states (A−
e ,B−

e ). The majority of the patterns
formed from the B− state in our lattice Boltzmann simulations are
observed in the shaded region of the Turing space.

Eq. (41). Using the definition of ε2the first condition can be
re-written as

l2
A

l2
B

> ηB̃−
e . (43)

This means that the diffusive length scale for the species A

(lA = √
DAτA) must be at least ηB̃−

e times larger than that
of B (lB = √

DBτB). In other words, for a given value of
parameter τ , the diffusion coefficient of species A has to be
(ηB̃−

e /τ ) times larger than that of B. In η and τ parameter
space, the curves τ = (DB/DA)ηB̃−

e and τ = (DB/DA)(−8 +
11.65ηB̃−

e ) define the limits of stability with respect to Turing
patterns. The first curve τ = (DB/DA)ηB̃−

e is plotted as the
Turing curve in Fig. 7 for DA/DB = 2. The second curve
τ = (DB/DA)(−8 + 11.65ηB̃−

e ) lies above the first curve and
falls outside the plotted range. It is therefore not shown in
the figure. At zero mode (q = 0), another important instability
known as the Hopf instability occurs when the real part of a pair
of complex eigenvalues passes through zero. In other words,
a Hopf instability characterizes the transition from a decaying
oscillating mode [trM(0) < 0] to an oscillation with growing
amplitude [trM(0) > 0]. Thus the limit of Hopf instability is
given by the condition trM(0) = 0. The dashed black line in
Fig. 7 indicates the limit of the Hopf instability. The small
dashed area in the Turing space is the region where most
patterns are expected to be observed.

D. Lattice Boltzmann simulation of the spatially
inhomogeneous dynamics

In this section we perform lattice Boltzmann simulations
of the Gray-Scott model for different values of parameters τ

and η. Here our simulation and parametrization is based on
the nontrivial states (A±

e ,B±
e ). Starting from the homogeneous

steady state (A−
e ,B−

e ), we apply a small amplitude density
fluctuation of the form δρ = φ cos(qxx) cos(qyy) where φ

is the amplitude given and q is the wave number of the
perturbations. We have chosen φ = 0.01 and qx = qy = 1 in
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FIG. 8. (Color online) (a) Spatial distribution of the density B̃

at time t = 400 000, η = 2.0139, and τ = 2.7330. The formation
of stripes can be observed at these parameters. (b) Amplitude of
the Fourier components of density fluctuation (B̃ − B̃e) at time
t = 400 000, as a function of the wave vector q = 2π [(nx/Lx)2 +
(ny/Ly)2]1/2. The dimensionless density B̃e corresponds to the
unstable homogeneous state for the selected set of parameters η and
ε. The white region in the Fourier spectrum corresponds to the excited
wave numbers (nx,ny).

the simulations. Figure 8(a) shows a developed stable structure
from the small amplitude initial perturbation to the B− state
with parameters η = 2.014 and τ = 2.733. For the purpose of
comparison with the prediction of linear stability analysis, we
perform the Fourier transform of the pattern in Fig. 8(a) and
calculate the excited wave numbers in the Fourier spectrum
using the relation

q = 2π [(nx/Lx)2 + (ny/Ly)2]1/2, (44)

where nx and ny satisfy −Lx/2 < nx < Lx/2 and −Ly/2 <

ny < Ly/2, respectively.
The Fourier spectrum is shown in gray scale in Fig. 8(b)

and the excited wave numbers are (nx,ny) ∈ {(±1, ± 5);
(±3, ± 4); (±4, ± 3); (±5, ± 1)}. Using these values of nx

and ny in Eq. (44) to calculate q and the parameters η = 2.0139
and ε2 = 5.466 in Eq. (41), we found that all the excited wave
numbers from the simulation fall within the instability band
predicted by linear stability analysis in Eq. (41). This provides
a further validation of our lattice Boltzmann simulation with
regard to this model.

By performing a number of similar simulations with
different values of τ and η, we have found that Turing patterns
develop over some part of the region where the B− state is Hopf
or Turing unstable (indicated as the Turing space in Fig. 7).
The panels in Fig. 9 show developed stationary structures for
typical values of the parameters η and τ . These parameter
values fall between the saddle node bifurcation curve (η = 2)
and the Turing curve (see Fig. 7). One observation from Fig. 9
is that increasing the value of η within the Turing regime leads
to the development of a lacelike structure in the patterns.

IV. BEYOND LINEAR STABILITY: SELF-
REPLICATING SPOTS

In this section, a further example is provided for the maturity
of the lattice Boltzmann method in studying pattern formation
within the Gray-Scott model. The patterns discussed so far

FIG. 9. Stable time independent Turing structures developed
from infinitesimal perturbations to state (A−

e ,B−
e ) at parameters

(a) η = 2.007 281 9, τ = 2.742 424, (b) η = 2.013 958, τ =
2.733 33, (c) η = 2.017 971, τ = 2.707 462, and (d) η =
2.018 433 6, τ = 2.7272. The system size in all cases considered
above is 200 × 200 lattice units.

are in the part of the phase diagram (Fig. 7), where linear
stability analysis predicts that homogeneous solutions are
unstable with respect to small perturbations. There are also
other types of structures, which occur in a regime, where the
trivial homogeneous state is linearly stable. These patterns
emerge only if the homogeneous state is perturbed strongly
enough. A prominent example of this type of structure are the
so-called self-replicating spots.

Figure 10 illustrates the patterns emerging from a finite
amplitude perturbation of the trivial state. The starting con-
figuration corresponds to a rectangular box of species A and
B with densities Ã = 0.5, B̃ = 0.25 placed at the center of
a domain filled with species A and B at densities Ã = 1.0,
B̃ = 0, respectively. Obviously, such an initial state represents
a strong perturbation of the trivial state (Ã = 1, B̃ = 0,
i.e., A = A0, B = 0). The sequence of images in Fig. 10
demonstrates how spots form, elongate, and then replicate
as time proceeds. This self-replication process continues until
the whole simulation cell is filled with the spots. Interestingly,
the number of spots increases with time, while the size of an
individual spot seems to remain roughly constant. We have
repeated this simulation for a larger box size but otherwise
exactly the same parameters. The result of this study is also
shown in Fig. 10. As seen from the last image in Fig. 10, the
size of a spot does not change, but only the number of spots
increases to fill the entire simulation cell.

In the light of the above presented results, one may raise
the question of whether it is possible to keep the number of
spots constant but tune their size. An answer to this question
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FIG. 10. (Color online) Snapshots of the density distribution of
species B showing different stages in the self-replication process
at times (a) t = 0, (b) t = 10 000, (c) t = 20 000, (d) t = 50 000,
(e) t = 100 000, (f) t = 300 000 with size 200 × 200 lattice units,
and (g) t = 300 000 with size 400 × 400 lattice units.

is obtained by noting that the dynamics of Eqs. (25) and (26)
depends only on the dimensionless quantities ε, τ , and η. In
other words, we must check whether it is possible to tune
the length scale of the problem without altering the values of
these dimensionless parameters. This would ensure that the
thus-obtained new solution will have exactly the same shape
(and thus the same number of spots) but a different length scale
(different size spots). Indeed, a look at parameter ε reveals that
it is equal to the ratio of two characteristic lengths lA and lB ,
ε = lA/ lB=

√
τADA/τBDB . Thus if we multiply both lA and

lB by a constant factor λ, the parameter ε remains unchanged.
Furthermore, in order to keep also the other two parameters τ

and η constant, the simplest choice to achieve such a change of
length scale is via diffusion coefficient, i.e., via DA → λ2DA

and DB → λ2DB .
In order to test the above idea, we design two systems

such that system 1 has a linear dimension of L1 = 200 lattice
units with diffusion coefficients DA,1 = 0.016�x2/�t and
DB,1 = 0.008�x2/�t . For system 2, we choose L2 = 400
lattice units, which means that λ = 2. Following the above

FIG. 11. (Color online) Snapshot of the spatial distribution of the
density B̃ showing self-replicating spots at time 300 000, η = 1.86,
τ = 3.40, and ε = 2.61 for the two systems with lattice size (a)
200 × 200 lattice units, (c) 400 × 400 lattice units. (b) and (d) show
space-time plots of the density profile of the self-replicating spots
along a line in the y direction for the two system sizes in (a) and (c),
respectively.

arguments, we set the diffusion coefficients of species A

and B in system 2 to DA,2 = λ2DA,1 = 0.064�x2/�t , and
DB,2 = λ2DB,1 = 0.032�x2/�t , respectively. As the initial
state, we perturb the trivial state exactly in the same way
as described in the context of Fig. 10 and impose periodic
boundary conditions in both the x and y directions. Note that
the size of the square perturbation must also be multiplied by λ

in conformity with the change of length scale. Results of these
simulations are shown in Figs. 11(a) and 11(c). The structure
of the patterns is identical for the two systems within numerical
discretization errors. The inner core diameter of the spots is
found to scale as the diffusion length of species A, lA. A more
quantitative comparison of the data is provided in Figs. 11(b)
and 11(d), where time evolution of the density profiles is shown
for both studied system sizes in a space-time plot along the
x direction.

The above arguments on how to tune the length scale while
keeping the shape of the patterns unchanged is quite general
and applies to any other solution of the Gray-Scott model as
well. Here, we provide an example from the Turing regime.
This is an interesting test, as linear stability analysis predicts
that when the system size is increased, the number of stripes
or segments is increased accordingly. However, this applies
only if all other parameters are kept constant. Interestingly, by
proper regulation of the diffusion coefficient, our numerical
simulations in the Turing regime confirm that it is possible to
make the wavelength proportional to the system size and keep
the number of stripes or segments invariant. Results of these
simulations are shown in Fig. 12. For parameters η and τ in
the Turing regime, we choose η = 2.014 and τ = 2.733 and
consider two systems with a scaling factor λ = 2. The spatial
density distribution obtained from the simulations is shown
in Figs. 12(a) and 12(b) for the two systems, respectively.
Not unexpectedly, the patterns exhibit the same structure with
equal number of stripes and segments. To further support
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FIG. 12. Turing pattern showing spatial distribution of the density
B̃− at time t = 400 000, η = 2.016 933, and τ = 2.730 30 for two
systems of size (a) 200 × 200 lattice units, (b) 400 × 400 lattice
units. The patterns are clearly identical in the two cases.

this observation, we carried out numerical simulations over
a range of system sizes from 50 to 500 lattice units. The
thus-obtained density profiles along the line y/L = 0.85 are
plotted in Fig. 13(a) for all studied system sizes. For the sake
of visibility, each individual curve is shifted by a multiple of
2 along the vertical axis. It is clear from the figure that the
number of stripes does not change with the system size. To
further emphasize the similarity of the patterns, we directly
compare in the same figure all the data using the same shift for
all the curves. Clearly, the data collapse into a single curve.

As an additional demonstration of wavelength regulation
and proportion preservation of the patterns, we perform Fourier
transform of the patterns obtained from each system size in the
range of 50 to 500 lattice units. We calculate the maximum
excited wave number qmax in the Fourier spectra of the density
field using Eq. (44). Figure 13(b) shows the plot of the wave
number excited with the system size for different diffusion
coefficients. It is clear from the plot that the maximum excited
wave number qmax decreases in proportion to L and thus the
generated pattern is expected to preserve the proportion as
observed in our numerical simulation.
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FIG. 13. (Color online) (a) Density profile of B̃− along the line
y/L = 0.85, obtained from the Turing pattern in Fig. 12 at time
t = 400 000, with parameters η = 2.014 and τ = 2.733. The number
of stripes are invariant over an appreciable range of system size.
(b) Characteristic wave number of the Turing pattern in Fig. 12
plotted against the system size for different values of ε2 (realized via a
variation of DA/DB ). The curve shows preservation of proportionality
between the wave number and the system size.

V. SUMMARY

In this work, we study reaction-diffusion systems via
lattice Boltzmann computer simulations. Starting from the
analytical solution of a simple prototypical model (a single
species undergoing transformation reaction and diffusion), we
perform a systematic study of the lattice Boltzmann truncation
error of the model. We uncover interesting behavior of the
truncation error with the system parameters. The error is
found to have a minimum at a given value of diffusion
coefficient. The position of minimum is shifted for increasing
values of the reaction rate constant. These observations are
in agreement with the analytical findings from a third-order
Chapman-Enskog multiscale expansion.

A study of the Gray-Scott reaction-diffusion model is also
provided. Here, we perform a linear stability analysis of the
model and determine the relevant parameter range for pattern
formation. Lattice Boltzmann simulations of this interesting
reaction-diffusion system are found to be in good agreement
with the predictions of the linear stability analysis. In addition
to a test of the linear stability phase diagram, lattice Boltzmann
simulations provide valuable information on the details of the
patterns formed in different regions of the parameter space. An
example is the formation of striped patterns in most parts of
the Turing regime above the Hopf bifurcation curve. Another
very interesting example is provided by the so-called self-
replicating spots, which lie beyond the linear stability regime.
Self-replicating spots occur via large amplitude perturbations
of the trivial homogeneous solution.

Furthermore, a survey of the parameters entering the scale
invariant form of the Gray-Scott model suggests that the
simplest choice to tune the length scale of the obtained patterns
(while keeping its shape unchanged) is to multiply all the
relevant diffusion coefficients with the same constant factor
without any modification of the reaction rates. Interestingly,
this leaves the time scale of the process unaffected. In other
words, in systems with different diffusion coefficients but
the same reaction rates, patterns exhibit the same shape
(but different sizes) exactly for the same physical time.
Results obtained via lattice Boltzmann simulations confirm
this behavior. It is noteworthy that this act of regulating
diffusion coefficient of species or morphogens, as the case
may be, is also observed in some biological systems. This
observation is by no means limited to this model—the
analysis can also be extended to other reaction-diffusion
models.
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APPENDIX: CHAPMAN-ENSKOG PROCEDURE FOR
REACTION-DIFFUSION EQUATION

In this appendix, we derive the macroscopic reaction-
diffusion equation from the lattice Boltzmann model. The LB
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equation for the reaction-diffusion equation is written as

fi,s(x + ei�t,�t + t) − fi,s(x,t)

= f
eq
i,s (x,t) − fi,s(x,t)

τs

+ �twiRs. (A1)

To obtain a corresponding macroscopic partial differential
equation from the finite difference Eq. (A1), we perform a
Taylor series expansion of the left hand side of Eq. (A1) and
obtain

∞∑
n=1

�tn

n!

(
∂t + eiα∂xα

)n
fi(x,t)

= f
eq
i,s (x,t) − fi,s(x,t)

τs

+ �twiRs. (A2)

The Chapman Enskog procedure introduces two time scales, a
fast time scale t1, associated with convective transport, and
a slow time scale t2, associated with diffusion. The time
derivative is then expanded as

∂t = ε∂
(1)
t + ε2∂

(2)
t . (A3)

The spatial derivative is written as

∂xα
= ε∂ (1)

xα
. (A4)

The equilibrium distribution as a reaction term is expanded as

fi,s = f
(0)
i,s + εf

(1)
i,s + ε2f

(2)
i,s + ε3f

(3)
i,s + O(ε4), (A5)

Rs = R(0)
s + εR(1)

s + ε2R(2)
s + ε3R(3)

s + O(ε4). (A6)

Inserting Eqs. (A6), (A5), (A4), and (A3) in Eq. (A2), one
obtains

[
�t

(
ε∂

(1)
t +ε2∂

(2)
t +εeiα∂ (1)

xα

)+�t2

2

(
ε2∂

(1)
t ∂

(1)
t +2ε2eiα∂

(1)
t ∂ (1)

xα
+ ε2eiαeiβ∂ (1)

xα
∂ (1)
xβ

+ 2ε3eiα∂
(2)
t ∂ (1)

xα
+ 2ε3∂

(2)
t ∂

(1)
t + 2ε4∂

(2)
t ∂

(2)
t

)]

× [
f

(0)
i,s + εf

(1)
i,s + ε2f

(2)
i,s + O(ε3)

] = 1

τs

(
f

eq
i,s (x,t) − [

f
(0)
i,s + εf

(1)
i,s + ε2f

(2)
i,s + ε3f

(3)
i,s + O(ε4)

])
+�twi

[
εR(1)

s + ε2R(2)
s + ε3R(3)

s + O(ε4)
]
. (A7)

Grouping terms of the same order in ε yields the following
successive approximations:

O(ε(0)) : f
(0)
i = f

eq
i,s , implying that R(0)

s = 0. (A8)

Note that this condition follows directly from the conservation
of mass.

O(ε1) : �t
(
∂

(1)
t + eiα∂ (1)

xα

)
f

(0)
i,s = − 1

τs

f
(1)
i,s + �twiR

(1)
s .

(A9)

On the level of ε, there is no mass diffusion; the diffusion
process takes place on the scale of ε2. Furthermore, for
diffusion driven reactions, the diffusive flux must bring the
species together before the reaction and the reaction becomes
a second-order effect. Since on the scale of ε, there is no mass
diffusion, that implies R(1)

s = 0. We would consider this case
in this derivation and Eq. (A9) becomes

O(ε1) : �t
(
∂

(1)
t + eiα∂ (1)

xα

)
f

(0)
i,s = − 1

τs

f
(1)
i,s . (A10)

O(ε2) : �t
[
∂

(2)
t f

(0)
i,s + (

∂
(1)
t + eiα∂ (1)

xα

)
f

(1)
i,s

]
+ �t2

2

(
∂

(1)2

t + 2eiα∂
(1)
t ∂ (1)

xα
+ eiαeiβ∂ (1)

xα
∂ (1)
xβ

)
× f

(0)
i,s = − 1

τs

f
(2)
i + �twiR

(2)
s . (A11)

O(ε3) : �t
[
∂

(3)
t f

(0)
i,s + ∂

(2)
t f

(1)
i,s + (

∂
(1)
t + eiα∂ (1)

xα

)
f

(2)
i,s

]
+ �t2

2

(
∂

(1)1

t + 2eiα∂
(1)
t ∂ (1)

xα
+ eiαeiβ∂ (1)

xα
∂ (1)
xβ

)
f

(1)
i,s

+ �t2∂
(2)
t

(
∂

(1)
t +eiα∂ (1)

xα

)
f

(0)
i,s +�t3

6

(
∂

(1)
t +eiα∂ (1)

xα

)3

× f
(0)
i,s = − 1

τs

f
(3)
i,s + �twiR

(3)
s . (A12)

Putting the expression for f
(1)
i,s from Eq. (A10) into Eq. (A11)

yields

1

τs

f
(2)
i = −�t∂

(2)
t f

(0)
i,s + �t2

(
τs − 1

2

) (
∂

(1)
t + eiα∂ (1)

xα

)2

× f
(0)
i,s + �twiR

(2)
s . (A13)

In Eq. (A12), we insert the expression for f
(1)
i,s and f

(2)
i,s from

Eqs. (A10) and (A11) and obtain

1

τs

f
(3)
i,s = −�t∂

(3)
t f

(0)
i,s +�t2(2τs − 1)

(
∂

(1)
t +eiα∂ (1)

xα

)
∂

(2)
t f

(0)
i,s

−�t3

(
τ 2
s − τs + 1

6

) (
∂

(1)
t + eiα∂ (1)

xα

)3

× f
(0)
i,s − τs�t2

(
∂

(1)
t + eiα∂ (1)

xα

)
wiR

(2)
s + �twiR

(3)
s .

(A14)

Next we take the moments of the distribution functions in
Eqs. (A9), (A13), and (A14). Note that in order to preserve the
isotropy of the lattice tensors, the chosen lattice speeds and
weights in the equilibrium distribution function must obey the
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following moments or symmetry conditions:

(a)
∑

i

wi = 1, (b)
∑

i

wieiα = 0,

(c)
∑

i

wieiαeiβ = c2
s δαβ, (d)

∑
i

wieiαeiβeiγ = 0, (A15)

(e)
∑

i

wieiαeiβeiγ eiδ = c4
s (δαβδγ δ + δαγ δβδ + δαδδβγ ).

Using Eq. (A15) and given that the local equilibrium takes the
form f

eq
i = f

(0)
i = wiρs , we impose the following conditions

of conservation of mass on the equilibrium distribution
function,∑

i

f
(0)
i,s = ρs,

∑
i

eiαf
(0)
i,s = 0,

∑
i

eiαeiβf
(0)
i,s = ρsc

2
s δαβ.

(A16)

We further assume that higher order corrections of the
equilibrium distribution do not contribute to the local values
of the mass, whereby obtaining∑

i

f
(n)
i = 0 for n � 1. (A17)

Taking
∑

i of Eq. (A9) and using Eqs. (A15), (A16), and (A17)
yields

∂
(1)
t ρs = 0. (A18)

Taking
∑

i Eq. (A13) and using Eqs. (A15), (A16), (A17),
and (A18) leads to

∂
(2)
t ρs = �tc2

s

(
τs − 1

2

)
∂ (1)
xα

∂ (1)
xβ

ρsδαβ + R(2)
s . (A19)

Taking
∑

i of Eq. (A14) and using Eqs. (A15), (A16), (A17),
and (A18) leads to

∂
(3)
t ρs = −3c2

s �t2(τ 2
s − τs + 1

6

)
∂

(1)
t ∂ (1)

xα
∂ (1)
xβ

ρsδαβ

− τs�t2∂
(1)
t R(2)

s + R(3)
s . (A20)

We multiply Eq. (A18) by ε, Eq. (A19) by ε2, and Eq. (A20)
by ε3 and add all this together, thus arriving at

∂tρs = c2
s �t

(
τs − 1

2

)
∂2
xα

ρs + Rs − 3�t2c2
s

×(
τ 2
s − τs + 1

6

)
∂t∂

2
xα

ρs − τs�t2∂tRs. (A21)

We can further re-write Eq. (A21) as the macroscopic
reaction-diffusion equation and a third-order truncation error
term E,

∂tρs = Ds∂
2
xα

ρs + Rs − E, (A22)

where the diffusion coefficient is given by Ds = c2
s �t(τs −

0.5) and the error term takes the form

E = 3�t2c2
s

(
τ 2
s − τs + 1

6

)
∂t∂

2
xα

ρs + τs�t2∂tRs + O(ε4).

(A23)
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