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Existence of subsonic plasma sheaths
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The location of the plasma sheath edge, where quasineutrality is broken, is rigorously derived by using a
kinetic description of the plasma. It is shown that sheaths can exist with arbitrarily small ion velocity at the sheath
edge, thus violating the Bohm criterion, Vi = cs at the sheath edge. Bohm’s criterion is recovered in the case of
large enough ion current through the wall, and it is found to be a reasonable approximation in floating potential
conditions. However, in the case of a predominant electron current through the wall, Bohm’s criterion is not able
to describe the sheath-edge transition. The analytical results are supported by numerical simulations performed
with a fully kinetic particle-in-cell code modeling a source-driven, weakly collisional plasma, bound between
two absorbing walls.
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I. INTRODUCTION

When a plasma interacts with an absorbing wall, a non-
neutral sheath forms. Inside this sheath the electrostatic poten-
tial drops on a scale length of the order of the Debye length
λD , resulting in a large electric field shielding the presheath
plasma, which remains quasineutral. In the presheath, the
potential varies on a scale length L � λD , which depends
on the physical processes present in this region (e.g., plasma
source, ionization, or collisions). Plasma properties at the
sheath edge define the boundary conditions for any model
assuming quasineutrality; hence their knowledge is essential
to describe the dynamics of the main plasma and to predict
the particle and energy fluxes at the solid surface. Sheaths
have been studied since the pioneering work of Langmuir in
1929 [1], followed by an enormous research effort [2–4], which
persists still (see, e.g., Refs. [5–9]). Only recently has their
detailed experimental investigation become possible [10–12].
Sheaths are present in the edge of magnetically confined
fusion plasmas, at the interface between spacecrafts and space
plasmas, in the fabrication of semiconductor devices, and
wherever a plasma interacts with a solid surface.

The commonly accepted theory to describe the sheath-edge
location is the Bohm criterion, stating that ions need to be
accelerated up to the plasma sound speed cs = √

Te/mi in
order for a sheath to exist [13]. One can derive Bohm’s criterion
assuming that electrons have a constant temperature Te and
follow the Boltzmann relation ne = nse exp [e(φ − φse)/Te],
where nse and φse denote the electron density and the
plasma potential at the sheath edge. Ions are assumed to
be monoenergetic (Ti = 0) and collisionless, with a velocity
v∞ = 0 far from the sheath. The conservation of ion flux,
�i = niVi , and energy, miV

2
i /2 = e(φ∞ − φ), where φ∞ is

the main plasma potential, leads to estimating the ion density
as ni = nse

√
�φps/(φ∞ − φ). Here �φps = φ∞ − φse is the

presheath potential drop. Bohm’s criterion is obtained by
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linearizing Poisson’s equation around φ = φse,

∂2φ

∂x2
≈ e2nse

(
1

Te

− 1

2e�φps

)
(φ − φse) (1)

and showing that Vi,se � cs , since a physically acceptable,
nonoscillatory solution for φ exists only if ∂2

xφ � 0 [2].
Therefore ions are at least sonic when entering the sheath.
On the other hand, by treating separately the presheath region,
one can show that Vi � cs before entering the sheath [3], thus
implying that the sheath-edge location is defined by the point
where Vi = cs . The possibility of the existence of sheaths
with subsonic ions at the edge was widely addressed in the
literature, by exploring if the presheath processes (collisions,
ionization) or the geometry could influence the transition to
the non-neutral region [14,15]. It was concluded that the Bohm
criterion, Vi = cs , is a ubiquitous property of ion sheaths in
the limit Ti � Te and λD � L [2,16].

In this article we rigorously derive the location of the sheath
edge where quasineutrality is broken by using an appropriate
kinetic description of the plasma. We show that an ion sheath
can exist with arbitrarily small ion velocity and that this may
be relevant in many situations. Bohm’s criterion is recovered
in the case of a large enough ion current through the wall
(�i � �e), and it is found to be a reasonable approximation in
floating potential conditions (�i = �e). However, in the case
of a predominant electron current through the wall (�e > �i),
Bohm’s criterion is not able to describe the sheath-edge
transition. The general assumptions of our work are a very
small ion to electron temperature ratio, Ti � Te, weakly
collisional electrons with a mean free path larger than the
sheath scale, λmfp � λD , and a totally absorbing wall. Our
results are supported by numerical simulations performed
with a fully kinetic particle-in-cell (PIC) code modeling a
source-driven, weakly collisional plasma, bound between two
absorbing walls.

II. DERIVATION OF THE SHEATH-EDGE LOCATION

We start by writing the first two moments of Vlasov
equation for ions and the first moment for electrons, i.e.,
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continuity and momentum equations, which in steady-state
conditions are

ni

∂Vi

∂x
+ Vi

∂ni

∂x
= Spi,

ne

∂Ve

∂x
+ Ve

∂ne

∂x
= Spe, (2)

miniVi

∂Vi

∂x
= −eni

∂φ

∂x
+ Smi.

The particle and momentum sources, Sp and Sm, result
from integrating the terms in the Vlasov equation related
to the injection of particles, ionization processes, or collisions.
The ion pressure is neglected since Ti � Te. In the following,
the potential is defined so that at the wall φw = 0, implying
that φ(x) represents the potential drop up to the wall. We now
express Ve by using our knowledge of the electron distribution
function. In fact, in the case of a monotonic ion sheath, the
electron velocity distribution function approaching a wall can
be described by a truncated Maxwellian [4,17], as confirmed
experimentally [18,19] and by our simulations. The cutoff
velocity is due to the fact that all the electrons having an energy
above the potential barrier flow out from the system, and no
electrons can be reflected with vx >

√
2eφ(x)/me = vcut. By

defining the quantity η(x) = eφ(x)/Tb, where Tb is the bulk
temperature in the main plasma, we have

fe(vx,η) =
⎧⎨
⎩

1

I (η)
√

2πv2
thb

e
− v2

x

2v2
thb if vx < vcut(η)

0 otherwise,
(3)

where vthb = √
Tb/me, vcut(η) = √

2ηvthb is the cutoff veloc-
ity, and I (η) = [

1 + erf(
√

η)
]
/2 is the normalization factor.

We can now compute the electron fluid velocity Ve = 〈vx〉,
having defined 〈a〉 = ∫

fe(vx)a(vx) dvx . Ve increases as the
Maxwellian is progressively truncated when approaching the
wall,

Ve = csb

I (η)
e	−η, (4)

where csb = √
Tb/mi , 	 = log

√
μ/2π and μ = mi/me.

Equation (4) is the common expression used as a sheath bound-
ary condition except for the correction given by I (η). We also
note that the term ∂xVe in system (2) can be evaluated as ∂xVe =
∂φVe∂xφ, where ∂φVe = −(eVe/Tb)[1 + e−η/2

√
πηI (η)].

Thus far the system (2) together with Eq. (4) is very general
and should be satisfied within both the sheath and the presheath
regions, as long as the collisionality is small enough for
the closure to be valid. In the presheath, quasineutrality is
preserved, and the condition ne = ni = n has to be fulfilled
up to the sheath entrance. By imposing it, we are left with
three unknowns (n,Vi,φ) and their respective gradients, and
our system of equations can be reduced to a matrix system
M −→

X = −→
S , where

−→
X =

⎛
⎜⎝

∂xn

∂xVi

∂xφ

⎞
⎟⎠ ,

−→
S =

⎛
⎝

Spi

Spe

Smi

⎞
⎠ , (5)

and the matrix M depends only on local quantities,

M =

⎛
⎜⎝

Vi n 0

Ve 0 n∂φVe

0 minVi en

⎞
⎟⎠ . (6)

This reduced system is valid in the presheath up to the sheath
edge. In the presheath region, gradients are typically small
and are due to the presence of the plasma source. At the sheath
edge, gradients become much steeper, i.e., |MαβXβ | � |Sα|
for all α,β such that Mαβ 
= 0. In other words, at the sheath
edge the source terms are much smaller than any other term
in the fluid equations, and the fluid system (2) reduces to
M −→

X � 0. Now, the presence of nonzero gradients imposes
det(M) = 0, which defines the position of the sheath edge. We
note that det(M) = 0 is also a valid definition of the sheath
edge in the particular case of a source-free system. In fact, in
this case M −→

X = 0 is satisfied everywhere in the presheath, and
the macroscopic quantities display flat profiles [20]; therefore−→
X = 0. At the sheath edge, gradients become nonzero, still
requiring det(M) = 0. Hence in all cases det(M) = 0 at the
sheath entrance, which gives

Vi,se = csb

√
1

1 + κ
, (7)

where

κ = e−ηse

2
√

πηseI (ηse)
. (8)

Figure 1 shows the dependence of Vi,se and Ve,se on the
sheath-edge potential ηse. The condition of ambipolar flow
�i = �e can be found by solving Vi,se = Ve,se, expressed by
Eqs. (4) and (7). This defines the floating potential, which is
found to be at ηse ≈ 	 for the hydrogen mass ratio (μ = 1836,
	 � 2.8) or higher. In correspondence to the floating potential,
we have Vi,se ≈ csb. In the limit of ηse → ∞, or equivalently
�i � �e, one has that κ → 0, thus reducing Eq. (7) to Bohm’s
criterion. However, for ηse → 0, or equivalently �e � �i , the
function κ → ∞ and the ion velocity Vi,se → 0. From this we
conclude that Bohm’s criterion is not valid in general, since it
is violated when ηse < 	 (or �e > �i).

III. SIMULATION RESULTS

In order to confirm the validity of the presented results, we
perform numerical simulations with a fully kinetic PIC code,
akin to previous simulations [20,21]. The system size is much
larger than the sheath scale (L � 103λD). A source of ions
and electrons uniformly distributed between two absorbing
walls maintains the plasma in steady state. Ions have a
temperature much smaller than the electrons (Ti/Te � 10−2),
electrons undergo elastic collisions with each other according
to a Fokker-Plank collision operator [22], with a mean free
path much larger than the sheath scale (λmfp � 300λD), and
Poisson’s equation is solved by imposing a fixed potential
at the two boundaries, φw = 0. The mass ratio is μ = 400
(essentially the same results are obtained in tests performed
with μ = 800). Sheath currents can be driven by injecting
an unbalanced amount of ions and electrons throughout the
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FIG. 1. (Color online) Sheath-edge quantities as a function of the
normalized sheath-edge potential ηse. (a–c) Analytical expressions
(solid blue lines) for Vi , Ve, and qe [Eqs. (4), (7), and (9)] are
compared with the simulations results (red crosses). The sheath-edge
position is found according to Eq. (7). The expressions deduced
from textbook formulas are also shown (dashed magenta lines),
i.e., Vi = cs , Ve = cs exp (	 − η), and qe = Qe − δ, where Qe =
γ�eTb is the macroscopic heat flux [3], γ = ηse + �φps/Tb, and
δ = (mense/2)(〈v〉3 + 3〈v〉〈(v − 〈v〉)2〉) is evaluated according to
Eq. (3). (d) The sheath length Lsh is obtained from the simulations
and normalized to the local Debye length λD = √

Tb/(e2nse). The
only expression that depends on the mass ratio is Ve/csb, plotted here
for μ = 400.

domain, in such a way that the sheath potential is varied and
sheath-edge quantities are studied as a function of ηse.

Simulations confirm that the sheath-edge position is well
described by Eq. (7). Figure 2 shows, in fact, that the position
of the sheath entrance defined by (7) is always coherent with
the breaking of quasineutrality, while Bohm’s criterion fails
to describe the transition for small values of ηse. In particular,
for ηse � 0.25, we observe that Vi < cs everywhere, even at
the wall, and yet a significant charge imbalance with a smooth
potential drop is observed, pointing out the existence of a
sheath. The numerical results for Vi , Ve, and the microscopic
heat flux, qe = neme〈(vx − Ve)3〉/2, at the sheath edge are
shown in Fig. 1 for different values of ηse and compared with
the analytical predictions provided by Eqs. (4), (7), and

qe = nemev
3
thb√

2πI (η)

[
e−η

(
η − 1

2

)
+ 3

2

√
η

π

e−2η

I (η)
+ e−3η

2πI 2(η)

]
.

(9)
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FIG. 2. (Color online) Steady-state charge imbalance in the
vicinity of the wall (inset: potential profiles). Results from the
simulations are shown for four different cases, with increasing
electron current: (a) ηse ≈ 2.1 (floating potential for μ = 400),
(b) ηse ≈ 0.63, (c) ηse ≈ 0.22, (d) ηse ≈ 0.05. The locations of the
sheath edge according to Bohm’s criterion (magenta stars) and
according to Eq. (7) (red crosses) are displayed. In (d) the ion velocity
never reaches cs so according to Bohm’s criterion there is no sheath.

The results for Ve and qe are in addition compared with the
corresponding analytical expressions deduced from textbook
formulas [3], showing disagreement for ηse < 	. The sheath
length, Lsh, is also shown in Fig. 1 as a function of ηse. The
sheath is expanded in the region where �i > �e, consistent
with the Child-Langmuir model [4], whereas it is compressed
when �e > �i , with Lsh → 0 when ηse → 0.

IV. DISCUSSION AND CONCLUSION

How can a smooth sheath exist with subsonic ion velocity
at the sheath edge and yet ∂2

xφ < 0, which is impossible
according to Eq. (1)? The fact is that Eq. (1) assumes that ne

decreases according to the Boltzmann factor, which accounts
for the fraction of the electron population that is reflected
before reaching the wall. However, the absorbing boundary
reduces even more the electron density since it gives rise
to a truncated distribution function [4,23]. The more general
formula is

ne = nse exp

[
e(φ − φse)

Tb

]
I (η)

I (ηse)
, (10)

which reduces to the Boltzmann relation in the limit of large
ηse. For small values of ηse, this correction is important, and the
linearized Poisson equation with the expression for ne given
by Eq. (10) is

∂2φ

∂x2
≈ e2nse

[
1

Tb

(1 + κ) − 1

2e�φps

]
(φ − φse) . (11)

If we impose ∂2
xφ � 0 we find Vi,se � csb

√
1/(1 + κ), an

inequality that is compatible with Eq. (7), showing that it
is therefore possible to find smooth sheath solutions with
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subsonic ions at the sheath entrance. Since the function
κ → ∞ as ηse → 0, the scaling analysis of Eq. (11) shows
that Lsh → 0 in this limit, as confirmed by Fig. 1.

An experimental verification of these predictions could be
carried out by measuring the ion velocity in the vicinity of an
ion sheath that has been biased so that the plasma potential
is only slightly above the wall potential. Such sheaths have
been recently produced and characterized, showing monotonic
potential profiles [24].

The results presented herein are relevant in a number of
physical situations. As an example, we cite here the Edge
Localized Modes in tokamak fusion devices, where large
plasma currents to the divertor plates can be observed [25,26].
In the case of a transient event where �e � �i , corresponding
to small values of ηse, according to Eq. (7) the ion flow is
strongly reduced with respect to Bohm’s prediction. This is
important because ions determine the plasma momentum flux,
even in the case of predominant electron current. We also
mention the plasma thrusters used for spacecraft propulsion,
where large electron currents are locally observed in the
conducting walls [27]. As a last example, we allude to
the subsonic origin of the solar wind plasma, which has
been recently explained through a gravito-electrostatic sheath
created at the surface boundary of the sun. This boundary
acts as a negatively biased wall and thus also draws electron
current [28]. In general, our results are important for setting the
boundary conditions at the sheath edge in plasma fluid models.

We conclude that in floating conditions where ηse ≈ 	, or
in the case of predominant ion current (�i > �e), the usual
Bohm criterion together with the commonly used expression
for the electron velocity is a reasonable approximation.

However, when the plasma sheath potential is small (�e > �i),
Bohm’s theory is not consistent anymore with the breaking
of quasineutrality. The electron kinetic effects have a strong
impact on the ion velocity, and the sheath-edge definition needs
to be refined according to Eq. (7). This new definition of the
sheath edge is coherent with the breaking of neutrality and
other sheath-edge quantities and is valid for all ηse > 0. It
also applies if there is a magnetic field perpendicular to the
wall. Its validity breaks down if the electron mean free path
becomes very small, λmfp ∼ λD , if the source terms become
large enough to strongly affect the properties of the sheath,
and for ηse < 0, since in this case Eq. (3) is not valid anymore.
Finally, Eq. (7) can also be derived by considering the general
dispersion relation of ion-acoustic waves in the limit ω/k = 0
[29] with the distribution function given by Eq. (3). In this
respect, however, we notice that the method described in the
present article provides a new rigorous way of deriving the
sheath-edge location, leading to the sheath criterion directly
in its equality form, thus avoiding the problem of matching
the presheath and sheath regions. Moreover such a technique
makes it possible to determine how gradients are related to
each other at the sheath edge. In summary, this work points
out a correction to the Bohm criterion that shows how sheaths
can become subsonic in many relevant physical situations.
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