
PHYSICAL REVIEW E 83, 016405 (2011)

Self-consistent chemical model of partially ionized plasmas
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A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic
properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-
Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third
one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct
a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of
charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium
and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard
chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an
equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown
that the plasma and neutral components are strongly interrelated, which results in the short-range order formation
in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly
establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of
the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction
potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions
but for transport coefficients as well.
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I. INTRODUCTION

Investigations of various properties of partially ionized
plasmas have been under way for almost a century and are still
of great interest. The reason is that partially ionized plasmas are
encountered in astrophysical objects, such as giant planets and
star atmospheres, and they also appear in the context of various
technological problems of industrial plasma engineering.
This strongly necessitates our exact knowledge of various
properties of partially ionized plasmas in a wide range of their
parameters.

The most consistent approach to studying equilibrium
properties of partially ionized plasmas consists in utilizing the
physical picture, which essentially relies on the application of
quantum statistical mechanics to a Coulombic system of many
particles [1–6]. In this framework, bound states of electrons
and nuclei, i.e., atoms and molecules, arise quite naturally and
are not considered as independent species. Such an approach,
however, faces very well- known mathematical difficulties,
thereby making the so-called chemical picture of wider use
[7–12]. Strictly speaking, a chemical model calculation of
thermodynamic quantities is only justified for an ideal partially
ionized plasma in which interparticle interactions are totally
neglected. In this particular case a partially ionized plasma
is treated as a mixture of ideal gases of electrons, ions, and
neutrals. Therefore, the Helmholtz free energy of the whole
system is represented by an additive sum of the corresponding
free energies of separate plasma components which is then
called the linear mixing rule. This all means that at high
temperatures and low pressures the system obeys ordinary
classical laws. For instance, the specific thermal capacity at
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constant volume does not depend on temperature at all and, in
the case of electrons, i.e., fermions with the half-integer spin,
the spin susceptibility remains inversely proportional to the
temperature according to the Curie law.

With pressure increase and/or temperature decrease the
plasma undergoes a transition to a weakly nonideal state in
which the role of interparticle interactions becomes more
pronounced. Nevertheless, the linear mixing rule is again
applied within standard chemical models, i.e., the free energy
of the system is still considered additive, thus treating the
charged and neutral constituents of the plasma as statistically
independent subsystems. This unfortunately implies that a
standard expression for the free energy of partially ionized
plasmas is not thoroughly deduced but actually postulated by
introducing corresponding contributions.

Therefore, it follows that chemical models, developed
earlier, have at least two serious disadvantages. First, an
expression for the free energy is not precisely derived but is
constructed by means of the linear mixing rule. It was shown
that this might result in some thermodynamic inconsistencies
[13–15] and success strongly depends on an adequate choice
of the corresponding contributions. Second, only thermody-
namical properties stay in focus, since postulation of the
free energy expression hinders any further investigations of
other plasma characteristics such as, for instance, transport
coefficients.

Developed herein is the so-called self-consistent chemical
model of partially ionized plasmas which is radically deprived
of the above-mentioned drawbacks. An expression for the
system free energy is obtained by virtually solving the
Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy in the pair correlation approximation. The gist of the
proposed chemical model is an effective potential taking into
account collective events in the medium, which enables us
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to calculate both thermodynamic and transport properties of
partially ionized plasmas. Some preliminary results of this
work were published elsewhere [12,16–18].

II. PLASMA PARAMETERS

Of interest in the sequel is a partially ionized hydrogen
plasma consisting of three particle species: free electrons
with the number density ne, free protons with the number
density np, and hydrogen atoms (neutrals) with the number
density nn. A typical partially ionized plasma may also contain
hydrogen molecules and other charged clusters [19,20], but in
the following, their presence is omitted, thus restricting the
present consideration to the high-temperature domain where
the molecule formation is tackled by the thermal dissociation
process as proved by extensive numerical simulations of [21].

To characterize the state of the plasma medium the Wigner-
Seitz radius is defined as

a =
(

3

4πn

)1/3

(1)

and then the density parameter is introduced as

rs =
(

3

4πn

)1/3
mee

2

h̄2 = a

aB

, (2)

where n = np + nn is the total number density of protons in
the system, aB = h̄2/mee

2 designates the first Bohr radius, h̄

signifies the Planck constant, and me and −e stand for the
electron mass and electric charge, respectively.

To describe the strength of interparticle interactions the
Coulomb coupling parameter is evaluated as

� = e2

akBT
, (3)

where kB denotes the Boltzmann constant and T is the plasma
temperature.

It is noteworthy that the real coupling between particles
in the system is always less in magnitude than that defined in
Eq. (3) since the definition of the Coulomb coupling parameter
contains the Wigner-Seitz radius which is, without fail, less
than the mean interparticle spacing.

It is obvious from the pure physical point of view that
to characterize the state of partially ionized plasmas it is
sufficient to know three parameters, i.e., the total number
density, the system temperature, and the ionization degree.
It should be noted, though, that knowledge of the dimen-
sionless density and coupling parameters is enough since the
ionization equilibrium is determined by physical conditions in
the medium. Generally speaking, the plasma composition is
governed by two competing processes: thermal ionization and
recombination. However, at the thermal equilibrium the ion-
ization degree is independent of the details of those processes
and can principally be evaluated from the thermodynamical
point of view by minimization of the system free energy. In
the following, such an approach is consistently implemented
beyond the linear mixing rule.

FIG. 1. Interaction diagram of two chosen particles in the pres-
ence of a third one. Solid line: the microscopic interaction; dashed
line: the probability of finding of two particles at a certain distance
from each other. Integration over the position of the kth particle is
implied.

III. GENERALIZED POISSON-BOLTZMANN EQUATION
FOR EFFECTIVE INTERACTIONS

In this section a generalized Poisson-Boltzmann equation
for effective interactions, accounting for the collective events
in the medium, is obtained. The derivation is made in two
different ways. First, starting from the elementary arguments,
based on the Boltzmann ideas, a renormalization procedure is
introduced. The physical idea behind the proposed approach is
that the interaction of two chosen particles is naturally affected
by the presence of a third one. Then, the same generalized
Poisson-Boltzmann equation is strictly deduced from the
BBGKY hierarchy in the pair correlation approximation.

A. Renormalization theory of particle interactions

For the purpose of taking into account the collective events
in pairwise interaction potentials, we consider the interaction
of the two chosen particles in the presence of a third (see
Fig. 1). The total force, called the macroforce Fmac

ij , exerted on
the ith particle from the whole system, is written as

Fmac
ij = Fmic

ij +
∑

k

∫
Fmic

ik P (rik,rjk) drk. (4)

Here Fmic
ij is the microscopic force between the ith and j th

particles, rij = rj − ri denotes the position vector drawn from
the ith particle position vector ri to the j th particle position
vector rj , and P (rik,rjk) stands for the probability density of
finding the kth particle at a certain distance from the ith and
j th particles. The summation in Eq. (4) is implied over all the
particles but the ith and j th. The average over the position of
the kth particle is taken by means of the integration over rk in
Eq. (4).

According to Eq. (4) the total macroscopic force acting
on the ith particle from the j th particle emerges from the
true microscopic interaction between these two particles and
the positionally averaged interaction with the kth particle. By
definition the microscopic interaction force is directly related
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to the microscopic interaction potential ϕij through the nabla
operator ∇i acting on the coordinate of the ith particle ri via

Fmic
ij = −∇iϕij . (5)

It is then assumed that the macroscopic force Fmac
ij is

similarly associated with the effective potential �ij as

Fmac
ij = −∇i�ij . (6)

To unchain the set of Eqs. (4)–(6) it is required that a certain
assumption be made about the nature of the probability density
P (rik,rjk). Its exact form remains, strictly speaking, unknown
and should be found on the basis of a more consistent theory,
which is actually done in the following section. Nevertheless,
the simplest decision is to use the Boltzmann distribution

P (rik,rjk) = 1

V
exp

(
−�ik + �jk

kBT

)
, (7)

where V stands for the system volume. The factor 1/V in
Eq. (7) is added from the normalization condition since the
integration in Eq. (4) is taken over all possible positions of
the kth particle inside the volume of the system. As shown
in the following section, Eq. (7) disregards the three-body
correlations.

The substitution of Eqs. (5)–(7) into Eq. (4) instantly yields

∇i�ij = ∇iϕij + 1

V

∑
k

∫
∇iϕik exp

(
−�ik + �jk

kBT

)
drk,

(8)

and linearizing the exponent in Eq. (8), one finally obtains

∇i�ij = ∇iϕij + 1

V

∑
k

∫
∇iϕik

(
1 − �ik

kBT
− �jk

kBT

)
drk.

(9)

It should be noted that the interaction potentials depend on
the modulus of the vector rij = ri − rj only. Due to spherical
symmetry, the first two terms in the integrand give merely zero
contributions, and, thus, the following relation holds:

∇i�ij = ∇iϕij − 1

V kBT

∑
k

∫
∇iϕik�jk drk. (10)

Assuming the particle indistinguishability, the summation
in Eq. (10) is changed from the particle numbers to the particle
species. Writing out explicitly the coordinates of all particles
in the form ra

i with a being the particle species, one ultimately
obtains

∇i�ij

(
ra
i ,r

b
j

) = ∇iϕij

(
ra
i ,r

b
j

) −
∑

c

Nc

V kBT

×
∫

∇iϕik

(
ra
i ,r

c
k

)
�jk

(
rb
j ,r

c
k

)
drc

k, (11)

where Nc is the total number of particles of species c in the
system.

By introducing the number density nc = Nc/V and acting
with the nabla ∇i on both sides of Eq. (11), the generalized
Poisson-Boltzmann equation is derived as

�i�ij

(
ra
i ,r

b
j

) = �iϕij

(
ra
i ,r

b
j

) −
∑

c

nc

kBT

×
∫

�iϕik

(
ra
i ,r

c
k

)
�jk

(
rb
j ,r

c
k

)
drc

k, (12)

which determines the effective macroscopic potential
�ij (ra

i ,r
b
j ) through the true microscopic interaction potential

ϕij (ra
i ,r

b
j ).

B. Pair correlation approximation in the BBGKY hierarchy

It is common knowledge that the chain of the BBGKY
hierarchy for the equilibrium distribution functions is written
as [22]

θ∇i ln P s
(
ra
i , . . . ,r

c
k

)
= −

s∑
j=1

′
(∇iϕij ) −

∑
c

(Nc − νc)

×
∫

(∇iϕik)
P s+1

(
ra
i , . . . ,r

b
j ,r

c
k

)
P s

(
ra
i , . . . ,r

b
j

) drc
k, (13)

where θ = kBT and P s denotes the so-called s-particle
distribution function, determining the probability density of
finding s distinguishable particles at certain distances from
each other, and νc and Nc designate the number of particles of
species c in a given s configuration and in the whole system,
respectively.

The following is the needed physical interpretation of the
BBGKY hierarchy Eq. (13), whose right-hand side consists of
two parts. The first term is the force acting on the ith particle
from the particles of the given s configuration, whereas the
second term stands for the average force exerted by all the
other particles in the system. Thus, the right-hand side of
Eq. (13) is simply the force acting on the ith particle from the
whole system.

In accordance with this we introduce the average energy of
the ith particle in the given s configuration as

〈
ϕs

i

〉 =
s∑

j=1

′
ϕij +

∑
c

(Nc − νc)
∫

ϕik

P s+1
(
ra
i , . . . ,r

b
j ,r

c
k

)
P s

(
ra
i , . . . ,r

b
j

) drc
k.

(14)

Acting with the nabla operator ∇i on both sides of Eq. (14)
and obtaining the summation with Eq. (13) yields

θ∇i ln P s
(
ra
i , . . . ,r

b
j

) + ∇i

〈
ϕs

i

〉
=

∑
c

(Nc − νc)
∫

ϕik∇i

P s+1
(
ra
i , . . . ,r

b
j ,r

c
k

)
P s

(
ra
i , . . . ,r

b
j

) drc
k. (15)

Further derivation is entirely based on the pair correlation
approximation. An expression for the distribution function P s

of the order s is written in the most general form as [22]

P s
(
ra
i , . . . ,r

b
j

) =
s∏

i=1

P1(ri)
∏
k(2)

[
1 + shij

(
ra
i ,r

b
j

)]
×

∏
k(3)

[
1 + shijk

(
ra
i ,r

b
j ,r

c
k

)]∏
k(4)

· · ·. (16)

The values shij ···k represent the correlation functions of the
system of s particles whose order is determined by the number
of indices that coincide with the indices of correlating particles.
The symbol k(q) means that the production should be taken
over all possible combinations of q indices inside the given
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s configuration. It is known that for homogeneous systems
of interest, the functions P1(ra

i ) = 1/V are simply constants
neither independent of the sort of the particle nor its coordinate.

In the pair correlation approximation, all the correlation
functions of higher than second order, as well as their products
are neglected, and then the ratio of the distribution function of
the order of s + 1 to the distribution function of the order s is
found from the ansatz Eq. (16) as

P s+1
(
ra
i , . . . ,r

b
j ,r

c
k

)
P s

(
ra
i , . . . ,r

b
j

) = P1
(
rc
k

) s∏
i=1

[
1 + shik

(
ra
i ,rc

k

)]

≈ P1
(
rc
k

) (
1 +

s∑
i=1

shik

(
ra
i ,r

c
k

))
. (17)

The substitution of Eq. (17) into Eq. (15) yields

θ∇i ln P s
(
ra
i , . . . ,r

b
j

) + ∇i

〈
ϕs

i

〉
=

∑
c

(Nc − νc)

V

∫
ϕik

(
ra
i ,r

c
k

)∇i
shik

(
ra
i ,r

c
k

)
drc

k. (18)

It is widely recognized that in the thermodynamic limit
the correlation functions of the homogeneous system only
depend on the relative distances between particles, i.e.,
shik(ra

i ,r
c
k) = shik(|ra

i − rc
k|). Therefore, the integral on the

right-hand side of Eq. (18) is again zero due to the same
spherical symmetry and, thus,

θ∇i ln P s
(
ra
i , . . . ,r

b
j

) + ∇i

〈
ϕs

i

〉 = 0. (19)

We consider the effective interaction of two particles in the
configuration with s = 2, assuming that〈

ϕ2
i

〉 = �ab

(
ra
i ,r

b
j

)
. (20)

Then, Eqs. (19), (20), and (16) in the pair correlation
approximation inevitably produce

P 2
(
ra
i ,r

b
j

) = P1
(
ra
i

)
P1

(
rb
j

)[
1 + 2hij

(
ra
i ,r

b
j

)]
= A exp

(
−�ab

(
ra
i ,r

b
j

)
kBT

)
, (21)

where A = 1/V 2 is an integration constant defined by the
normalization condition∫ ∫

P 2
(
ra
i ,r

b
j

)
dra

i drb
j = 1. (22)

It follows from Eq. (21) that

2hij

(
ra
i ,r

b
j

) = exp

(
−�ab

(
ra
i ,r

b
j

)
θ

)
− 1. (23)

Substituting Eqs. (17) and (19) in the chain of the BBGKY
hierarchy equation (13) with s = 2 and making use of Eqs. (20)
and (23), we obtain

∇i�ab

(
ra
i ,r

b
j

) = ∇iϕab

(
ra
i ,r

b
j

) +
∑

c

(Nc − νc)

V

∫
∇iϕac

× (
ra
i ,r

c
k

)
exp

(
−�cb

(
rc
k,r

b
j

)
θ

)
drc

k. (24)

Taking the thermodynamic limit Nc → ∞, V → ∞ with
nc = Nc/V = const being the particle number density of
species c and linearizing the exponential term in Eq. (24),
we finally obtain

∇i�ab

(
ra
i ,r

b
j

) = ∇iϕab

(
ra
i ,r

b
j

) −
∑

c

nc

kBT

×
∫

∇iϕac

(
ra
i ,r

c
k

)
�cb

(
rc
k,r

b
j

)
drc

k. (25)

A similar linearization of the exponential term has, of
course, to be carried out in Eq. (23),

2hij

(
ra
i ,r

b
j

) = −�ab

(
ra
i ,r

b
j

)
kBT

. (26)

After applying the operator ∇i to Eq. (25), we obtain
the same generalized Poisson-Boltzmann equation [Eq. (12)]
for the effective interaction potential, thus, proving its va-
lidity in the pair correlation approximation for the BBGKY
hierarchy. From a mathematical point of view, Eq. (12)
is a set of integral-differential equations for determin-
ing the effective pairwise interaction potentials �ab(ra

i ,r
b
j )

(macropotentials) in the medium via the true micropotentials
ϕab(ra

i ,r
b
j ).

We call Eq. (12) the generalized Poisson-Boltzmann equa-
tion since the ordinary Poisson-Boltzmann equation [23],
which specifically includes the Debye-Hückel theory, is its
consequence when substituting the Coulomb potential as
the micropotentials ϕab(ra

i ,r
b
j ). In this sense, the proposed

approach is a fundamental extension of the mean field theory
and the mean force potential originally proposed by Kirkwood
[24,25]. In the recent past, the presented generalization
allowed us to successfully apply Eq. (12) to describe various
properties of semiclassical [26–28] and, more recently, dusty
plasmas [29].

A few comments have to be made on the previously used
pair correlation approximation. First, according to Eq. (26)
the pair correlation functions have been found in the first
order of the interaction potential and, therefore, neglect
of their product corresponds to the second order of the
accuracy in the interaction potential or the so-called coupling
parameter introduced above. It is well established that three-
particle correlations appear only in that second order of the
interaction potential which fully justifies the pair correlation
approximation. Second, while dealing with various chains of
equations, a natural question arises of how their truncation is
made up in a particular case. For the pair correlation approx-
imation the rejection of the higher order correlation functions
in Eq. (16) leads to the fact that the partial distribution
function of an arbitrary order is expressed through the same
pair correlation function and this immediately decomposes the
BBGKY hierarchy for the equilibrium distribution functions.

C. Effective interactions in partially ionized hydrogen plasmas

To construct a pseudopotential model of partially ionized
plasmas, Eq. (12), obtained from the BBGKY hierarchy in
the pair correlation approximation, is utilized. In the Fourier
space it turns into a set of linear algebraic equations whose
solution in the case of the three-component plasma is of the

016405-4



SELF-CONSISTENT CHEMICAL MODEL OF PARTIALLY . . . PHYSICAL REVIEW E 83, 016405 (2011)

form [12]

�̃ab(k) = 1

�

(
ϕ̃ab(k) +

∑
c=e,i,n

Ac[ϕ̃cc(k)ϕ̃ab(k) − ϕ̃ac(k)ϕ̃bc(k)] + δab

∑
c,d=e,i,n

AcAd

×
[
ϕ̃ac(k)ϕ̃ad (k)ϕ̃cd (k) + ϕ̃aa(k)ϕ̃cc(k)ϕ̃dd (k)

2
− ϕ̃aa(k)ϕ̃cd (k)2 + ϕ̃cc(k)ϕ̃ad (k)2 + ϕ̃dd (k)ϕ̃ac(k)2

2

])
, (27)

with

� = 1 +
∑

a=e,i,n

Aaϕ̃aa(k) +
∑

a,b=e,i,n

AaAb[ϕ̃aa(k)ϕ̃bb(k) − ϕ̃ab(k)2] + AaAbAc

×
[
ϕ̃ab(k)ϕ̃bc(k)ϕ̃ac(k)

3
+ ϕ̃aa(k)ϕ̃bb(k)ϕ̃cc(k)

6
− ϕ̃aa(k)ϕ̃bc(k)2 + ϕ̃bb(k)ϕ̃ac(k)2 + ϕ̃cc(k)ϕ̃ab(k)2

6

]
. (28)

Here Ac = nc/kBT and δab denotes the Kronecker delta.
Final expressions for the macropotentials in the configura-

tion space are obtained from Eq. (27) by the inverse Fourier
transform

�ab(r) =
∫

�̃ab(k) exp (ik · r) dk. (29)

The micropotentials for the neutral component are chosen
for the hydrogen plasmas in the form [30]

ϕpn(r) = −ϕen(r) = e2

(
1

r
+ 1

aB

)
exp

(
− 2r

aB

)
,

(30)

ϕnn(r) = e2

r
exp

(
−

√
2r

aB

)
,

whereas the charged component is assumed to interact via the
Coulomb potential

ϕee(r) = ϕpp(r) = −ϕep(r) = e2

r
. (31)

It is rather timely to make a few remarks concerning
the choice of the micropotentials. First, it was thought upon
derivation of expressions (30) that all the atoms are in their
ground states and, thus, all excited states are completely
omitted. Furthermore, polarization phenomena associated with
the deformation of electronic clouds in atoms, such as those in
the Lennard-Jones potential, are omitted as well. This is due
to the fact that formulas (30) represent the so-called average
atomic fields treating the atomic electron as an electron cloud
with the probability density determined by the unperturbed
ground state wave function and further integration over the
atomic electron position. While a more realistic atom-atom
micropotential displays as well, the same micropotential in
Eq. (30) is monotonic but still capable of handling repulsion
between atoms at short distances which may validate its usage
for relatively high densities of interest herein.

For successful accomplishment of the previously described
method, it is essential for micropotentials to have Fourier
transforms. Unfortunately, this is not the case for the van der
Waals interactions induced by quantum fluctuations of atom
dipoles due to divergence at small interatomic distances. It
has to be advocated that a physically meaningful result for a
micropotential definitely implies the existence of its Fourier

transform. Thus, a stricter derivation of the micropotentials is
necessary to correctly describe interatomic interactions at all
separations, which is one of the obvious provisions for future
improvements.

The Fourier transforms of micropotential Eqs. (30) and (31)
are found to be

ϕ̃pn(k) = −ϕ̃en(k) = 4πe2
(
k2 + 8/a2

B

)
(
k2 + 4/a2

B

)2 ,

(32)

ϕ̃nn(k) = 4πe2(
k2 + 2/a2

B

) ,

ϕ̃ee(k) = ϕ̃pp(k) = −ϕ̃ep(k) = 4πe2

k2
. (33)

The above expressions are insufficient to obtain numerical
results for the macropotentials since what remains unknown
is the exact proportion between the number densities of free
electrons and protons, on the one hand, and the number density
of atoms, on the other. For the sake of simplicity we use the
ionization equilibrium provided by the so-called Saha equation
[1,31]

nenp

nn

= 2

(
mekBT

2π (1 + me/mp) h̄2

)3/2

exp

(
I

kBT

)
, (34)

where I = −mempe4/2(me + mp) h̄2 stands for the ground
state energy of the hydrogen atom.

Figures 2–4 show the dependence of the macropotentials
on the dimensionless distance R = r/a and the coupling
parameter � at the fixed value of the density parameter
rs = 5. Figures 5–7 display the macropotentials at � = 1 and
rs = 5 compared with the micropotentials together with the
well-known Debye-Hückel potential [22]. Accurate analysis
drives us to conclude the following. (i) The macropotential
interaction of charged particles remains monotonic in a wide
range of plasma parameters and systematically lies between the
Coulomb and the Debye-Hückel potentials. (ii) The atom-atom
interaction is practically not affected by the presence of
the charged component. (iii) The macropotential interaction
between the charged particle and the atom reveals a nonmono-
tonic behavior which turns especially evident while increasing
the coupling parameter �. Such a nonmonotonic behavior
with the appearance of a local extremum can be explained
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FIG. 2. Electron-electron macropotential of partially ionized
hydrogen plasmas at rs = 5. The ionization equilibrium is provided
by the Saha equation [1,31].
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FIG. 3. Proton-atom macropotential of partially ionized hydrogen
plasmas at rs = 5. The ionization equilibrium is provided by the Saha
equation [1,31].
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FIG. 4. Atom-atom macropotential of partially ionized hydrogen
plasmas at rs = 5. The ionization equilibrium is provided by the Saha
equation [1,31].
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FIG. 5. (Color online) Electron-electron macropotential of par-
tially ionized hydrogen plasmas at rs = 5 and � = 1. The ionization
equilibrium is provided by the Saha equation [1,31]. Solid line:
macropotential (29); dashed line: Debye-Hückel potential; dotted
line: the Coulomb potential (31).

as follows. According to micropotential equation (30) an atom
attracts electrons which, thus, form an electron cloud around
it. And although the atom itself repels a proton, the presence of
that electron cloud can simply cause an appearance of effective
attraction of protons at certain distances from the atom. This
becomes physically obvious from the renormalization theory
for the effective potential presented in Sec. III A. The attraction
of an electron by an atom may ultimately result in the formation
of an H− ion.

Finally, some limiting cases of formulas (27)–(29) for the
effective potentials are of utmost significance.
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FIG. 6. (Color online) Proton-atom macropotential of partially
ionized hydrogen plasmas at rs = 5 and � = 1. The ionization
equilibrium is provided by the Saha equation [1,31]. Solid line:
macropotential (29); dotted line: micropotential (30).
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FIG. 7. (Color online) Atom-atom macropotential of partially
ionized hydrogen plasmas at rs = 5 and � = 1. The ionization
equilibrium is provided by the Saha equation [1,31]. Solid line:
macropotential (29); dotted line: micropotential (30).

In the case of highly ionized plasma nn � ne,np, expres-
sions (27)–(29) simplify to give

�ee(r) = �pp(r) = −�ep(r) = e2

r
exp

(
− r

rD

)
, (35)

�pn(r)=−�en(r) = e2

1 − β

(
1

aB

+ 1

r

)
exp

(
− 2r

aB

)

+ βe2

(1 − β)2r
exp

(
− 2r

aB

)
− β(2 − β)e2

(1 − β)2r
exp

(
− r

rD

)
,

(36)

�nn(r) = e2

r
exp

(
−

√
2r

aB

)
+ β2(2 − β)2e2

(1 − β)4r
exp

(
− r

rD

)

− βe2

24(1 − β)4a3
Br

exp

(
− 2r

aB

) [
4r3(1 − β)3

+ 24a3
Bβ(2 − β)3 + 3a2

Br(1 − β)(13 − 5β2)

+ 6aBr2(1 − β)2(5 − 3β)
]
, (37)

where rD =
√

kBT /8πne2 and β = (aB/2rD)2.
As expected, the classical Debye screening has appeared in

the interaction of charged particles. The interatomic interaction
has also undergone a slight deviation due to the presence of
charged particles. These expressions truly indicate that the
Debye-Hückel theory [22] is included in the constructed pseu-
dopotential model as its limiting case of complete ionization.

In the case of weakly ionized plasma nn � ne,np expres-
sions (27)–(29) again simplify to give

�ee(r) = �pp(r) = −�ep(r) = e2

r
+ β2(3 − β)2e2

(1 − β)4r

× exp

(
−

√
2(1 + β)r

aB

)
− βe2

48(1 − β)4a3
Br

× exp

(
− 2r

aB

) [
4r3(1 − β)3 + 48a3

Bβ(3 − β)2

+ 3a2
Br(13 + 29β − 65β2 + 23β3)

+ 6aBr2(5 − β)(1 − β)2
]
, (38)

�pn(r) = −�en(r) = e2

1 − β

(
1

aB

+ 1

r

)
exp

(
− 2r

aB

)

+ 2βe2

(1 − β)2r
exp

(
− 2r

aB

)
− β(3 − β)e2

(1 − β)2r

× exp

(
−

√
2(1 + β)r

aB

)
, (39)

�nn(r) = e2

r
exp

(
−

√
2(1 + β)r

aB

)
, (40)

where rn =
√

kBT /4πne2 and β = (aB/
√

2rn)2.
In this case the screening in the interaction of charged

particles is out of power, although the neutral component
certainly modifies the pure Coulomb interaction.

D. Characteristic lengths of the short-range order

In accordance with the pair correlation approximation
Eq. (26) the nonmonotonic behavior of the interaction macrop-
otential between a charged particle and an atom is to be
interpreted as the short-range order formation in the subsystem
of neutral gas—plasma. The characteristic length of the for-
matting structures can be determined in the following way. The
Fourier transforms of the micropotentials are simply rational
functions of k2. In their turn the macropotentials are expressed
in terms of the micropotentials in a rational way; therefore,
the former are found as rational functions of k2 as well. It is
elementary to show that the power of the denominator does not
exceed k12, and a partial fraction expansion formally yields

�̃ab(k) =
6∑

i=1

4πci

k2 − k2
i

, (41)

where ki are the roots, in general complex, of the equation
�(k) = 0 [see Eq. (28)], and ci denotes some numerical
coefficients.

The nature of the polynomial is such that the roots of the
equation �(k) = 0 alternate as follows:

ki = ±Re ki ± i Im ki, (42)

and then, taking into account the roots that lie in the upper half
of the complex plane, the residue theory immediately gives
rise to

�ab(r) =
∑ ci

r
cos( Re kir) exp(−Im kir). (43)

Equation (43) unambiguously demonstrates that the short-
range order formation in the system becomes possible if
solving the equation �(k) = 0 produces roots located in the
upper half of the complex plane with a nonzero real part.
Then, the characteristic length of the structures is determined,
in accordance with Eq. (43), by the formula

λi = 2π

Re ki

. (44)

Figure 8 presents the dependences of the characteristic
lengths of the structures in the hydrogen plasma against the
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FIG. 8. (Color online) Characteristic length λ of the short-range
order in partially ionized hydrogen plasmas. Solid line: rs = 1; dashed
line: rs = 5; dotted line: rs = 10.

coupling parameter � at fixed values of the density parameter
rs . With the growth of the coupling parameter the characteristic
length decreases, tending to a constant value, and at the same
tine it goes to infinity with � → 0. This is quite consistent
with the physical picture, since the decrease of the coupling
parameter is equivalent to an increase in temperature and,
therefore, the thermal motion should effectively disrupt the
structures formed.

A natural question arises as to whether there is only one
characteristic length or whether there may be a few. Numerical
investigations of this issue show that at the density parameter
rs = 1, unlike the cases with rs = 5 and rs = 10, a second
characteristic length appears with the typical size as shown in
Fig. 9. It is much greater in magnitude than the first one, but
reveals quite an analogous behavior.
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FIG. 9. (Color online) Characteristic length λ of the short-range
order in partially ionized hydrogen plasmas against the coupling
parameter � at rs = 1.

IV. SELF-CONSISTENT CHEMICAL MODEL

In the previous section the pseudopotential model of particle
interactions in a partially ionized plasma was proposed.
To determine the plasma composition the Saha equation
[1,31] has been used which corresponds to an ideal gas of
noninteracting particles. To account for the nonideality effects
in the ionization equilibrium, we construct a more coherent,
self-consistent chemical model of a partially ionized plasma
in which the system free energy is strictly derived from the
solution of the BBGKY hierarchy with direct inclusion of
interactions between all plasma components.

A. Free energy

Until very recently an ordinary chemical model of the
plasma was constructed as follows. An expression for the free
energy was actually postulated in the form of independent
contributions from neutral and charged components of the
system, thus, neglecting their interrelation. This is called the
linear mixing rule. It is obvious that such a method is only valid
in the case of very small values of the coupling parameter when
the correlations in the system are really negligible. Increasing
the coupling parameter requires a more accurate microscopic
account of the mutual interinfluence of the charged and
neutral components. Such an approach is provided by the
self-consistent chemical model of a partially ionized plasma
developed below.

Basic for the self-consistent chemical model are expres-
sions for macropotentials, Eqs. (27)–(29). To go beyond the
Saha equation and the linear mixing rule let us precisely deduce
a general expression for the system free energy.

The expression for the radial distribution functions gab(r)
is taken from Sec. III B in the form

gab(r) = 1 + hab(r) = 1 − �ab(r)

kBT
, (45)

and the correlation energy is straightforwardly expressed
through the radial distribution functions as

UN = 2πV

∫ ∞

0

∑
a,b

nanbϕab(r)gab(r)r2 dr. (46)

In its turn the free energy is written via the correlation
energy as a sum of ideal and excess parts as follows:

F = Fid + Fexc

= −NekBT ln

(
2eV

Neλ3
e

)
− NpkBT ln

(
eV

Npλ3
p

)

−NnkBT ln

(
eV �n

Nnλ3
n

)
− T

∫
UN

T 2
dT , (47)

where λa = (2πh̄2/makBT )1/2 stands for the thermal de
Broglie wavelength and �n is the atomic partition function.

Substituting Eqs. (45) and (46) into Eq. (47) gives an
expression for Fexc,

Fexc = V

2

∑
a,b

nanbϕ̃ab(0) + V T

16π3kB

∑
a,b

nanb

×
∫

dk ϕ̃ab(k)
∫

dT
�̃ab(k)

T 3
. (48)
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Note that expression (48) for the excess free energy correctly
takes into account mutual interaction between all particles in
the system.

It is well established that the approximation of an absolutely
ideal system is of no physical sense, since in this case
the atomic partition function simply diverges. Thus, a more
thorough account of interactions between the particles is
needed to provide a finite result. One of the possible options
for the choice of the atomic partition function is the following
expression, proposed by Planck and Larkin [1]:

�n = �PL =
∞∑

n=1

2n2

[
exp

(
In

kBT

)
− 1 − In

kBT

]
, (49)

where In = −I/n2 refers to the energetic spectrum of the
hydrogen atom.

A second, in fact rougher, option is the so-called cut-off
partition function of the form

�n = �cut =
∞∑

n=1

2n2 exp

(
In

kBT

)
ωn (50)

with the form factor in the spirit of the Saha equation

ωn =
{

1, n = 1

0, n 	= 1
. (51)

The choice of the atomic partition function in the form
of Eqs. (50) and (51) is only justified at low temperatures
when a major contribution to the atomic partition function
is made by the ground state, while all other contributions
remain exponentially small. Indeed, the energy levels of the
hydrogen atom are arranged in such a way that the energy of
the first excited state is comparable to the ionization potential,
and, thus, the atoms are all either ionized or in the ground
state.

Expression (48) is a function depending on the number
of free electrons Ne, the number of free protons Np, and
the number of atoms Nn. It is well known that for a fixed
volume and temperature the free energy of the system has to be
minimal, which allows one to determine the ionization degree
of the plasma medium by minimizing expression (48). After
such a minimization of the free energy the ionization degree
α = Np/(Np + Nn) is effectively obtained as a function of
the dimensionless coupling � and density rs parameters and
is graphically presented in Figs. 10–15. Thus, the ionization
degree can be determined in a wide range of plasma parameters
and broad analysis of the figures drives us to the following
conclusions. It seems rather natural that with increasing
temperature and, hence, a decrease of the coupling parameter,
the ionization degree grows tending to a limiting case of full
ionization. With increasing the number density or decreasing
the density parameter, the ionization degree calculated using
the Planck-Larkin atomic partition function goes to unity; in
all other cases the ionization degree first reaches a maximum,
and then decreases again. Thus, the Planck-Larkin atomic
partition function provides a more physically meaningful
picture since the number density increase should initiate the
pressure ionization leading to a full ionization of the plasma.
Of course, this does not mean that the Planck-Larkin atomic
partition function includes the density effects arising from the
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FIG. 10. Ionization degree of the hydrogen plasma, calculated
with the Planck-Larkin atomic partition function, against the dimen-
sionless coupling � and density rs parameters.

spectrum modification but implies that from the energetic point
of view it is advantageous for a system to undergo a transition
to a fully ionized state.

In Fig. 15 an additional comparison is made with the
path integral Monte Carlo simulations [21] and quite a good
agreement is found for the coupling parameter � < 0.5.

Figures 12–15 clearly demonstrate that the account of
particle interactions in a partially ionized plasma always leads
to higher values of the ionization degree compared to the Saha
equation which can be interpreted as lowering of the ionization
potential [32,33].

B. Equation of state

The free energy is one of the key thermodynamic func-
tions of the system determining all other thermodynamic
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FIG. 11. Ionization degree of the hydrogen plasma, calculated
with the cut-off atomic partition function, against the dimensionless
coupling � and density rs parameters.
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FIG. 12. (Color online) Ionization degree of the hydrogen
plasma against the dimensionless density parameter rs at � = 0.2.
Dashed line: the Saha equation; dotted line: the Planck-Larkin
atomic partition function; solid line: the cut-off atomic partition
function.

characteristics such as an equation of state which is expressed
via the radial distribution functions as

P = Pid − 2π

3

∫ ∞

0

∑
a,b

nanb

dϕab(r)

dr
gab(r)r3 dr, (52)

where Pid = (ne + np + nn)kBT denotes the ideal gas
pressure.

Figures 16–19 show the pressure of the partially ionized
hydrogen plasma against the dimensionless coupling parame-
ter. The pressure is normalized to its maximum possible value
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FIG. 13. (Color online) Ionization degree of the hydrogen
plasma against the dimensionless density parameter rs at � = 1.0.
Dashed line: the Saha equation; dotted line: the Planck-Larkin
atomic partition function; solid line: the cut-off atomic partition
function.
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FIG. 14. (Color online) Ionization degree of the hydrogen
plasma against the coupling parameter � at rs = 5. Dashed
line: the Saha equation; dotted line: the Planck-Larkin atomic
partition function; solid line: the cut-off atomic partition
function.

Pmax = 2nkBT , and varies from the unity, corresponding to
a fully ionized plasma, to 0.5, corresponding to a completely
neutral gas of atoms. The figures reveal that for sufficiently
large values of the coupling parameter � the choice of the
atomic partition function does not affect the result. This is due
to the fact that at high values of � the system temperature turns
smaller and hence the effect of excited levels of atoms vanishes.
It should also be noted that the effect of the finite size of atoms
is observed, i.e., a sharp growth of the plasma pressure with
an increase of the number density or, equivalently, a decrease
of the density parameter.
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FIG. 15. (Color online) Ionization degree of the hydrogen plasma
against the coupling parameter � at rs = 10. Dashed line: the Saha
equation; dotted line: the Planck-Larkin atomic partition function;
solid line: the cut-off atomic partition function; squares: data
of [21].
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FIG. 16. Equation of state of partially ionized hydrogen plasma,
calculated with the Planck-Larkin atomic partition function, against
the dimensionless coupling � and density rs parameters.

The purpose of the following is to compare the equation of
state derived above with the exact quantum-mechanical result
of the activity expansions [1,34]

βP =
∑

a

ζa + κ3

12π

+
∑
a,b

ζaζb

[
π

3
(βeaeb)3 ln(κλab) + 2πλ3

abK0(ξab; sa)

]
,

(53)

na = ζa

∂

∂ζa

(βP ), (54)

where β = 1/kBT , ξab = −βeaeb/λab, λab = h̄/
√

2μabkBT ,
μab = mamb/(ma + mb).

Here the following virial functions of Ebeling are
introduced:

K0(ξab; sa) = Q(ξab) + δab

(−1)2sa

2sa + 1
E(ξab), (55)
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FIG. 17. Equation of state of partially ionized hydrogen plasma,
calculated with the cut-off atomic partition function, against the
dimensionless coupling � and density rs parameters.
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FIG. 18. (Color online) Equation of state of partially ionized
hydrogen plasma against the dimensionless density parameter rs at
� = 0.2. Solid line: using the cut-off partition function; dashed line:
using the Saha equation; dotted line: using the Planck-Larkin partition
function.

Q(ξ ) = −ξ

6
− ξ 2√π

8
− ξ 3

6

(
C

2
+ ln 3 − 1

2

)

+
∞∑

n=4

√
πζ (n − 2)

�
(

n
2 + 1

) (
ξ

2

)n

, (56)

E(ξ ) =
√

π

4
+ ξ

2
+ ln 2

√
π

4
ξ 2 + π2

72
ξ 3

+
∞∑

n=4

√
π (1 − 22−n)ζ (n − 2)

�
(

n
2 + 1

) (
ξ

2

)n

, (57)
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FIG. 19. (Color online) Equation of state of partially ionized
hydrogen plasma against the dimensionless density parameter rs at
� = 1.0. Solid line: using the cut-off partition function; dashed line:
using the Saha equation; dotted line: using the Planck-Larkin partition
function.
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FIG. 20. (Color online) Equation of state of partially ionized
hydrogen plasma against the dimensionless coupling parameter �

at rs = 5. Solid line: using the cut-off partition function; dashed line:
using the Saha equation; dotted line: using the Planck-Larkin partition
function; open triangles: formulas (53) and (54) [1,34]; stars: data
of [35].

with the Euler constant C and the Riemann function ζ (n − 2)
of argument n − 2.

It has to be remarked that the set of Eqs. (53) and (54)
has been inverted in a non-perturbative way to catch up with
the strong departure from an ideal fully ionized plasma since
the corresponding term in Eq. (53) naturally reproduce the
atomic recombination process. Thus, Figs. 20 and 21 compare
both methods mentioned above at fixed values of the density
parameter rs = 5 and rs = 10. For quite large values of the
number density the choice of the atomic partition function has
a minor influence on the result which agrees very well with the
quantum-mechanical activity expansion. The same holds for
sufficiently large values of the coupling since this efficiently
reduces the contribution of excited states to the atomic
partition function. It should also be noted that the results,
calculated by the Saha equation, systematically underestimate
the pressure because the Saha equation permanently predicts
a lower value of the ionization degree of the medium.
In Fig. 21 the comparison is also made with the reliable
data of the path integral Monte Carlo simulations [21] and
again a fairly good agreement is found in the corresponding
regions where the fraction of hydrogen molecules remains
negligible.

C. Electrical conductivity

Developed above is an effective macropotential of particle
interactions in a partially ionized plasma. Although it is only
valid for a plasma at thermal equilibrium we use it in the
remainder to assess the electrical conductivity assuming that
the deviation from the equilibrium state is only slight. Accurate
knowledge of the effective macropotentials of particle interac-
tions allows us to calculate the phase shift which determines
the scattering cross section which, in its turn, is necessary
to evaluate the transport coefficients. However, it is clear
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FIG. 21. (Color online) Equation of state of partially ionized
hydrogen plasma against the dimensionless coupling parameter � at
rs = 10. Solid line: using the cut-off partition function; dashed line:
using the Saha equation; dotted line: using the Planck-Larkin partition
function; open triangles: formulas (53) and (54) [1,34]; diamonds:
data of [21].

from the derivation of the macropotentials that such a strategy
for computing transport quantities does not include purely
dynamical collective effects that are seen in time-displaced
correlations and in the corresponding structure factor.

It is, however, rather instructive that an ordinary chemical
model is only suitable for studying the thermodynamic char-
acteristics of the system whereas the self-consistent chemical
model proposed above is capable of predicting transport
coefficients as well.

Since the ionization degree has been calculated above,
it thus becomes possible to investigate the behavior of
macropotentials (29) against the distances between particles.
The macropotentials themselves enable us to find the phase
shifts at the scattering process by solving the Calogero
equation [36]

d

dr
δab
l (r) = −2μab

h̄2k
�ab(r)

[
cos δab

l (r)jl(kr)

− sin δab
l (r)nl(kr)

]2
, (58)

with the initial condition δab
l (0) = 0. Here δab

l (r) is a phase
shift in the scattering of particles of species a and b, jl(kr) and
nl(kr) denote the Ricatti-Bessel functions of first and second
kinds, respectively, and E = h̄2k2/2μab designates the relative
kinetic energy of scattering particles with the reduced mass
μab = mamb/(ma + mb).

The Calogero equation (58) has been solved numerically
with macropotentials (29) and the phase shifts for the electron-
proton scattering are presented in Figs. 22 and 23. It can be seen
that at a fixed value of the density parameter rs , increasing the
coupling parameter � makes the phase shift decrease at infinite
distances, which is prescribed to the growing role of collective
phenomena resulting, in particular, in the screening of charged
particles interaction. Similarly, at a fixed value of the coupling
parameter � decreasing the number density (or increasing
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FIG. 22. (Color online) Electron-proton phase shifts against the
dimensionless interparticle distance at rs = 5, � = 0.1, and ka = 1.
Solid line: l = 0; dashed line: l = 1; dotted line: l = 2.

the density parameter rs) makes the phase shift increase due
to the weakening of the influence of collective events on
the interaction between the particles in the medium. In all
cases the phase shifts diminish while increasing the orbital
quantum number l, since at a fixed energy of the scattering
particle an increase in l corresponds to the rise of the impact
parameter, and, hence, to some depletion in the scattering
intensity.

The transport differential cross section relies on the phase
shifts at infinite distances

Qab
T (k) = 4π

k2

∞∑
l=0

(l + 1) sin
[
δab
l+1(∞) − δab

l (∞)
]2

. (59)
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FIG. 23. (Color online) Electron-proton phase shifts against the
dimensionless interparticle distance at rs = 10, � = 0.1, and ka = 1.
Solid line: l = 0; dashed line: l = 1; dotted line: l = 2.
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FIG. 24. (Color online) Dimensionless electrical conductivity
σ/ωp,ωp = (4πne2/me)1/2 of a partially ionized hydrogen plasma
against the coupling parameter � at rs = 5. Solid line with circles:
partially ionized plasmas; dashed line: fully ionized plasmas.

To determine the electrical conductivity of a partially
ionized plasma we make use of the following formula proposed
by Frost [37]:

σ = 4

3

e2

√
2πme(kBT )5/2

∫ ∞

0

neE exp(−E/kBT )

npQ
ep

T (E)/γE + nnQ
en
T (E)

dE.

(60)
Let us explain some contributions to expression (60) closely

related with the study of the electrical conductivity of a par-
tially ionized hydrogen plasma. The specific feature of the elec-
tromagnetic interaction manifests itself in that the electron-
electron correlations have a strong influence on the electrical
conductivity even at low values of the coupling parameter
�. To treat them rigorously an electron-electron collision
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FIG. 25. (Color online) Dimensionless electrical conductivity
σ/ωp,ωp = (4πne2/me)1/2 of a partially ionized hydrogen plasma
against the coupling parameter � at rs = 10. Solid line with circles:
partially ionized plasmas; dashed line: fully ionized plasmas.
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TABLE I. Comparison of the dimensionless values of the electrical conductivity of a partially ionized hydrogen plasma.

T (K) ne(1019 sm−3) � rs σ , [39,40] σ , [41] σexpt., [42–45] σpartially σfully

15400 0.10 0.175 117.22 3.781 3.083 2.457 1.516 2.467
18700 0.15 0.165 102.40 4.954 4.122 3.618 2.379 2.578
21500 0.25 0.170 86.37 6.183 5.271 4.530 3.951 2.389

integral should be added to the electron-proton collision
integral which finally results in the correction containing the
term γE = 0.582 [38]. Thus, the first term in the integrand
denominator of Eq. (60) takes into account both electron-
proton and electron-electron scattering processes whereas
the second term in the integrand denominator of Eq. (60)
accounts for the scattering of electrons by hydrogen atoms.
Both contributions are proportional to the number of free
protons and atoms, respectively.

Figures 24 and 25 represent the graphical dependence of
the electrical conductivity of a partially ionized hydrogen
plasma at fixed values of the density parameters rs = 10 and
rs = 5. They definitely show that at fixed values of the density
parameter the electrical conductivity of a partially ionized
plasma decreases while increasing the coupling parameter. The
physical reason for this is the lowering of the ionization degree,
i.e., the decrease of the number density of free electrons,
since an increase in the coupling parameter corresponds to
a decrease in the system temperature. In addition, the growth
of the coupling parameter also leads to the increase of the
scattering cross section. A comparison with the case of a fully
ionized plasma shows that the contribution from the scattering
on atoms is numerically not very significant and reaches about
10% when the coupling parameter grows. It should be borne
in mind, however, that for the case of the fully ionized plasma
the Debye radius has been recalculated taking into account the
partial ionization of the medium.

A comparison of Figs. 24 and 25 demonstrates that
the decrease in the density parameter, i.e., the increase
of the number density, gives rise to an increase of the
electrical conductivity since the number density of charged
particles also grows due to the lowering of the ionization
potential.

Table I shows the comparison of the calculated electrical
conductivity of a partially ionized plasma with the available
theoretical calculations and experimental data. The chief
comparison in Table I is the comparison with experimental data
σexpt.. It is seen that the results of the present approach σpartially

for a partially ionized plasma and σfully for a fully ionized
plasma are in reasonable agreement with the experimental
data; the discrepancy may be prescribed to the presence of hy-
drogen molecules, especially pronounced for the first two lines
in Table I. In general, the deviations of the theoretical works
σ [39,40] and σ [41] from the experimental data are within
the experimental error which, regrettably, remains quite large.

V. CONCLUSIONS

In this paper we have presented an approach to the chemical
model of partially ionized hydrogen plasmas. It stems from

the BBGKY hierarchy in the pair correlation approximation
and enables one to determine both the ionization equilibrium
and correlation functions as well. The numerical results and
analysis implemented above have allowed us to conclude
that the charged and neutral components of the plasma
medium are closely interrelated and their reciprocal influence
is responsible for the short-range order formation in the
system of interest. Consequently, the contributions of charged
and neutral components to the free energy can no longer
be considered independent, especially for moderately and
strongly coupled plasmas.

Interparticle interactions have been found to increase the
ionization degree in comparison with the ideal system case, and
the choice of the atomic partition function in the Planck-Larkin
form has shown more realistic behavior of the ionization
degree at high densities.

The pair distribution functions have supplied us with an
opportunity to study the equation of state of partially ionized
hydrogen plasmas in a wide range of plasma parameters. The
sophisticated comparison with the exact quantum-mechanical
expansion and quantum Monte Carlo simulations has been
made to observe a fairly good agreement at relatively low
densities and high temperatures.

The generalized Poisson-Boltzmann equation has provided
the effective interaction macropotential which allowed us to
study the transport properties and a reasonable agreement with
the available theoretical and experimental results has been
found for the electrical conductivity of a partially ionized
hydrogen.

Despite these important advances there are many ways to
improve the approach developed above. First, it is desirable
to amend the pseudopotential model in Eq. (30) in order to
include the polarization phenomena and finite size of atoms
(hard core effect). This goal demands a far more accurate
determination of the pseudopotential model in which the
perturbation of the ground state electron orbit is to be taken
into account. Another point of interest is the inclusion of
excited states of atoms that could be done by considering
each excited state as a new entity. This will only increase
a number of equations in the key equation (12) but will
provide the populations of excited levels of the atom. For
hydrogen plasmas it is also advisable to thoroughly include
into the analysis the formation of hydrogen molecules and
other charged clusters [19,20]. And last but not least is the
inclusion of quantum effects such as diffraction or degeneracy
which could be done, for instance, by utilizing the effective
potentials developed in [46] or in [47]. Of course, this
approach may easily be extended to other physical situations
of interest such as, for example, to partially ionized alkaline
plasmas.
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