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Large-scale behavior and statistical equilibria in rotating flows
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We examine long-time properties of the ideal dynamics of three-dimensional flows, in the presence or not
of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases, the
results agree with the isotropic predictions stemming from statistical mechanics. No accumulation of excitation
occurs in the large scales, although, in the dissipative rotating case, anisotropy and accumulation, in the form of
an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term
responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ
somewhat from classical wave-turbulence expectations and with a trace of large-scale excitation that goes away
for long times. These results are discussed in the context of partial two dimensionalization of the flow undergoing
strong rotation as advocated by several authors.
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I. INTRODUCTION

Geophysical and astrophysical flows are turbulent. The
dimensionless parameter that measures such a state, the
Reynolds number, is huge for the atmosphere and the ocean, as
well as for the sun and stars, the interplanetary medium, and the
interstellar medium. Nonlinear effects, e.g., through advection,
thus, have ample time to act; they develop strong localized
intermittent structures, such as vortex filaments (or current
sheets when dealing with magnetic fields), and a myriad of
modes are excited. Thus, one resorts to a statistical description
of such flows and examines the behavior of probability
density functions as well as scaling exponents of structure
functions. At second order, one obtains a power law for the
distribution of energy among the Fourier modes, in a direct
cascade of energy to small scales where the energy is finally
dissipated [1]. Another striking feature of turbulent flows is
that, in some cases (including in three space dimensions in the
presence of rotation), large-scale modes are excited as well
[2–4].

A deep understanding of turbulence is still lacking, in part,
because of the large number of interacting modes due to the
convolution in Fourier space stemming from the nonlinearities,
quadratic in the incompressible case. Dimensional analysis and
self-similarity in the isotropic case leads to the Kolmogorov
energy spectrum of distribution of energy among Fourier
modes k, which reads E(k) ∼ ε2/3k−5/3, with ε as the energy
injection rate. This law is rather well verified in the atmosphere
[5], in the solar wind [6,7], in the laboratory [8,9], as
well as when examining numerical experiments [10]. When
considering the helicity spectrum H (k), where the helicity is
the correlation between the velocity and its curl, the vorticity,
one finds H (k) ∼ k−5/3 (see, for example, Refs. [11–13]).
However, it was recently shown numerically and phenomeno-
logically that, in the presence of rotation, other spectra emerge.
This is the consequence of the effect of the inertial waves
together with the fact that the helicity dominates the direct
cascade for the small scales, the energy mostly undergoing
an inverse cascade for the large scales [14,15] (see also,
Ref. [16]).

Finding an underlying low-dimensional attractor for the
complex behavior of turbulence is one way that such flows
could be understood in simpler terms, as, e.g., coherent
structures with superimposed noise. Another possibility is to
resort to statistical mechanics and the dynamics of an ideal
system with a finite number of modes. Equilibrium statistical
mechanics has proven valuable in that in many cases, it could
predict the direction of the transfers in wave-number space,
either for the small scales (direct) or for the large scales
(inverse) [17–21].

The Liouville theorem for fluid mechanics and magnetohy-
drodynamics (when coupling the fluid equation to the temporal
evolution of the magnetic induction) was first derived by
Lee [17] (see also, Ref. [22]). One can find a simple derivation
of the Liouville theorem for two-dimensional (2D) turbulent
flows in Ref. [21]. It expresses the incompressibility of the flow
of dynamical variables in phase space (e.g., complex Fourier
modes) using detailed conservation of quadratic invariants.
Systems that can be described either by thermal equilibrium
(zero-flux) or by nonequilibrium (finite-flux) dynamics can
also be found outside the realm of fluid mechanics. An
example is provided by semiconductor lasers described by
the quantum Boltzmann equation [23] for which, as in many
cases of optical turbulence, both a direct and an inverse
cascade can be observed in the presence of pumping and
dissipation. Statistical equilibria have been derived for a
variety of geophysical flows in the ideal case, in the presence
of stratification [24] or rotation [25,26] for shear flows [27] and
for quasigeostrophic models [28,29]. An equivalent problem
in magnetohydrodynamics, when an external magnetic field
is imposed, was studied in Ref. [30]. One of the concerns
of these studies is the existence of quasi-invariants linked to
the quasibidimensionalization of the flow. In such a case,
the possibility of their condensation at the gravest mode
available to the truncated system may indicate the existence
of an inverse cascade in the forced-dissipative case (see, e.g.,
Ref. [24]).

However, the late-time statistical equilibrium of many of
these systems seems to be independent of the geophysical

016309-11539-3755/2011/83(1)/016309(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.016309


MININNI, DMITRUK, MATTHAEUS, AND POUQUET PHYSICAL REVIEW E 83, 016309 (2011)

effects considered and only prescribed by the structure of the
nonlinear terms in the Navier-Stokes equations. In addition,
other invariants seem to play no significant roles. As an
example, it was shown by Kraichnan [31] that, in the presence
of helicity, the global ideal equipartition equilibrium E(k) ∼ k2

is only slightly altered at small scale by the presence of helicity,
while the large scales show no sign of condensation. In this
context, it is worth asking what happens in the rotating case,
which can be viewed as a hybrid between the 2D and the
three-dimensional (3D) cases. In the forced-dissipative case,
the small scales are fully 3D, and isotropy is recovered at
small scale, whereas, the large scales are dominated by an
inverse cascade of energy. The ideal truncated problem was
tackled recently in Ref. [32] where it was shown that the
establishment of the equilibrium is delayed in the presence
of rotation in an anisotropic fashion. Furthermore, following
analyses in Refs. [33,34] and using a modal decomposition into
wave, 2D, and 3D modes, Ref. [26] found that, in nonhelical
flows in the limit of strong rotation (small Rossby number Ro),
decoupling between inertial waves and 2D coherent structures
is obtained until a time t∗ ∼ Ro−2. After this time, coupling
occurs, but it can still be considered weak for long times,
and, thus, the system displays both 2D and 3D features. Also,
at this point, it is worth mentioning that there is no consensus
for the moment on whether perfect decoupling between
the modes takes place for infinite rotation rate (see, e.g.,
Ref. [35]).

Here, we revisit some of these results and extend our
analysis to the helical case and to the dynamics of intermediate
times during which an energy (and helicity) distribution can
be observed reminiscent of dissipative dynamics, as shown in
the nonrotating case in Refs. [36,37]. In Sec. II, we briefly
describe our procedure and move on in Sec. III to discuss
some of the predictions for early times in these systems,
before thermalization is reached. Then, in Sec. IV, we examine
nonhelical and helical flows initialized with perturbations
either in the small or in the large scales. Section V presents
our conclusions.

II. THE PROCEDURE

We consider the equations for an incompressible and
inviscid 3D rotating fluid for the velocity field u with ∇ · u =
0. In the rotating frame, they read

∂u
∂t

+ ω × u + 2� × u = −∇P. (1)

Here, ω = ∇ × u is the vorticity, and P is the total pressure
modified by the centrifugal term, which is obtained self-
consistently by taking the divergence of Eq. (1), using the
incompressibility condition, and solving for the resulting
Poisson equation. We use a pseudospectral method in a
(2π )3 box with periodic boundary conditions. The code is
fully parallelized using the message passing library [38,39];
spatial resolutions in this paper are up to N3 = 5123 with
N points in each direction. The temporal scheme is a fourth
order Runge-Kutta, and the code uses the 2/3 dealiasing
rule, resulting in a truncated set of modes from kmin = 1
to a maximum wave number kmax = N/3. The total energy
E = 〈|u|2〉/2 and the total helicity H = 〈u · ω〉 are inviscid

invariants preserved by the truncation [31,40], with respective
isotropic Fourier spectra E(k) and H (k); note that the Schwartz
inequality implies |H (k)|/kE(k) � 1. The relative helicity
will then be defined in the following as:

ρ =
∫

H (k) dk

/(∫
kE(k) dk

)
. (2)

The rotation axis is taken to be in the z direction with
� = �ẑ, � being the rotation frequency. Finally, the Rossby
number is defined as usual as

Ro = Urms

2�L0
. (3)

Urms is the rms velocity taken to be of order unity, and
L0 = 2π/k0 is the characteristic scale of the initial conditions
(k0 in this expression corresponds to the minimum wave
number with nonzero amplitude in the initial conditions). One
can also define the micro-Rossby number based on the rms
vorticity,

Roω = ωrms

2�
, (4)

measuring the intensity of the small-scale vorticity with respect
to the imposed rotation.

In order to examine long-time properties of the inviscid
flow, computations were run for over 100 (in some cases, up
to 640) turnover times τ = L/Urms in terms of a unit length
L (in the following, time t in all figures is in units of τ unless
explicitly stated). The turnover time at the scale of the initial
conditions is then given by τ0 = L0/Urms = (L0/L)τ , and the
inertial period is τ� = Ro τ0.

Two types of initial conditions are taken, one in the small
scales, with the initial velocity field defined in the band of
wave numbers k0 ∈ [30,40], and one in the large scales, with
k0 ∈ [2,4]. The former case is to ensure that the effect of
helicity is observable in the absolute equilibrium derived by
Kraichnan [31], whereas, the latter is to examine a sufficiently
resolved energy spectrum in the direct transfer to small scales.
Also, the two sets of initial conditions allow us to study the
dependence with the scale of the time to reach the statistical
equilibrium. The initial amount of helicity is controlled using
the method given in Ref. [41], coupling two random fields by
imposing a prescribed angle (in physical space) between them.
Some of the properties of the runs described in this paper are
summarized in Table I.

Assuming a truncated system of modes and considering
the two quadratic invariants, the energy E = ∫

E(k) dk and
the helicity H = ∫

H (k) dk, the macrocanonical probabil-
ity density function is proportional to C exp [−αE − βH ].
This results in the ideal solutions for the spectra
[31],

E(k) = 2αk2

D(k)
, H (k) = 2βk4

D(k)
, (5)

with

D(k) = α2 − β2k2.

In these solutions, α and β can be seen as temperatures
associated with the two invariants E and H , constrained by
α > 0 and |β|kmax < α (for given initial energy and helicity,
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TABLE I. Parameters of the runs: band of wave numbers k0

excited in the initial conditions, linear spatial resolution N , rotation
rate �, initial relative helicity ρ, Rossby number Ro, and micro-
Rossby number Rω computed at t = 0 (see text for definitions). At late
times, Rω is of order unity in all runs as a result of the thermalization.

Run k0 N � ρ Ro Rω

R1 2–4 128 0 0 ∞ ∞
R2 2–4 128 16 0 0.02 0.08
R3 2–4 128 16 1 0.02 0.08
R4 2–4 128 32 0 0.01 0.04
R5 2–4 128 32 1 0.01 0.04
R6 2–4 128 64 0 0.005 0.02
R7 2–4 128 64 1 0.005 0.02
R8 2–4 64 16 0 0.02 0.08
R9 2–4 64 16 1 0.02 0.08
R10 2–4 256 8 0 0.04 0.16
R11 2–4 256 16 0 0.02 0.08
R12 2–4 256 16 1 0.02 0.08
R13 2–4 512 16 0 0.02 0.08
R14 30–40 128 0 0 ∞ ∞
R15 30–40 128 0 1 ∞ ∞
R16 30–40 128 8 0 0.29 2.1
R17 30–40 128 16 0 0.15 1.0
R18 30–40 128 16 1 0.15 1.0
R19 30–40 128 32 0 0.07 0.53
R20 30–40 128 64 0 0.04 0.26
R21 30–40 128 128 0 0.02 0.13

these equations can be solved for α and β; see Ref. [37]).
Note that helicity and, thus, β are not positive definite:
They are pseudoscalars, changing sign when one goes from
a right-handed to a left-handed frame of reference. Since
H (k)/kE(k) ∼ k in Eq. (5), eddies at a smaller scale are more
helical, contrary to the dissipative case for which this ratio is
observed to vary as 1/k in the nonrotating case, thereby indi-
cating a slow ∼k−1 recovery of mirror symmetry as k → ∞.
This discrepancy in the relative behavior of spectra may be the
origin of persistence of helical motions in the dissipative range
of viscous flows [13,37]. With β ≡ 0 when H ≡ 0, in the ideal
case, one recovers the equipartition of energy between Fourier
modes, with a number of modes per spherical shell of radius k

and unit width proportional to k2. In the presence of solid-body
rotation, the Coriolis force, being conservative and linear in the
velocity, does not alter the long-time statistical equilibria given
in Eq. (5), and, thus, the isotropic distribution of energy is also
unaltered.

Therefore, the numerical conservation of energy and he-
licity is essential when performing ideal truncated runs, and,
thus, we have systematically monitored their evolutions. For
example, in runs with � = 128, we had to resort to a time step
32 times smaller than in runs with � = 0 (resulting, e.g., in
�t = 5 × 10−3 for the former and �t ≈ 1.5 × 10−4 for the
latter when N = 128). In such a case, the energy is conserved
to within 0.5% after t ≈ 100 for � = 128, and better still for
smaller rotation rates at the same resolution (e.g., at 0.02% for
� = 64 at the same time).

III. IS THERE A LARGE-SCALE IDEAL CONDENSATE
IN THE ROTATING CASE?

As mentioned previously, an inverse energy cascade has
been observed in several numerical simulations of driven
dissipative rotating turbulence, whereas, the (isotropic) sta-
tistical equilibria show no sign of large-scale condensation.
We will show that in our simulations, the obtained equilibria
are independent of the resolution used. However, very long
integrations are needed in the presence of rotation and helicity
to reach these final thermalized states. As a result, next, we
resort to a series of direct numerical simulations at moderate
resolution and computing for long times to further examine
this problem.

It is useful to decompose the total velocity field in the
following manner [34,42,43]. We define a preferred direction
ẑ, parallel to the rotation axis. A general 3D flow u can then
be written as the sum of a strictly 2D velocity u⊥(k⊥,k‖ = 0)
of energy E⊥, a vertical component uz(k⊥,k‖ = 0) of energy
Ez, and the remaining 3D component u3(k⊥,k‖ 
= 0) of energy
E3D. The subindices ⊥ and ‖ refer to the rotation axis. The
total kinetic energy is

E = 1

2

∫
|u(x)|2 d3x =

∫
E(k) dk

= E3D + E⊥ + Ez = E3D + E2D, (6)

where E2D = E⊥ + Ez is the total energy in the modes with
k‖ = 0. Note that there is a one to one correspondence
[43] between E3D and e(k⊥,k‖ 
= 0), E⊥ ∝ [e − ZPA](k⊥,k‖ =
0), and Ez ∝ [e + ZPA](k⊥,k‖ = 0), where e(k⊥,k‖) is the
2D axisymmetric energy spectrum and ZPA(k⊥,k‖) is the
polarization anisotropy. The spectra can be expressed in
Cartesian coordinates (k⊥,k‖) or in polar coordinates (k, cos θ )
where θ is the angle between the vector k and the ver-
tical axis. These scalar spectra e and ZPA, together with
the helicity spectrum, are the dynamical variables used
in studies of rotating turbulence using spectral closures
[44].

Bourouiba [26] argues, by considering only resonant
triads, that for a small enough Rossby number, the 2D and
3D modes are effectively decoupled for times t < t∗. This
implies separate conservation properties of E3D, E⊥, and
Ez. In that case, a different statistical equilibrium to the
one described in Sec. II can be derived, which leads to
separate predictions for the horizontal dynamics of the flow.
For late times (t > t∗), the isotropic statistical equilibrium is
recovered.

A nonideal example where decoupling between the 2D
and the 3D modes can be observed may be given by freely
decaying rotating flows. In Ref. [45], it was found that, in
this case, the 2D and 3D energies decay at different (and
independent) rates. If we follow the estimation of coupling
being effective after the time t∗ ∼ Ro−2 [43], and taking into
account that the Rossby number itself decays as t1/2 according
to the study in Ref. [45], we conclude that t∗ ∼ t . In other
words, t∗ may never be reached. It is not clear, however, that,
in the forced case where the Rossby number is maintained at
a constant value, such a decoupling can remain permanently
[46].
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FIG. 1. (Top) Energy E3D (thick line) and E2D (thin line) (sys-
tematically below E3D) as a function of time in log-log coordinates
for runs with initial conditions between k = 2 and 4. Solid line,
run R1; dots, run R2; dash-dots, run R11; all three with ρ = 0 (see
Table I and labels on curves giving the pair of values [�,ρ]) and
the linear resolution N . Finally, with ρ ≈ 1, we have run R3 (dashed
line). (Bottom) Thick line, E3D and thin line, E2D for runs with
initial conditions between k = 30 and 40. All runs have ρ = 0 and
N = 128. Solid line, run R14; dots, R17; dash, R19; dash-dots, R20;
and dash-triple-dot, R21. The inset shows E2D for runs R17, R19,
R20, and R21 with time in units of the inertial period τ� (which goes
from τ� ≈ 0.03 turnover times for run R17 to ≈0.004 for run R21).

IV. NUMERICAL RESULTS

A. Temporal dynamics properties

We first consider an initial condition concentrated in the
large scales (runs R1–R13). An isotropic excitation with
random phases and fast decaying energy spectrum is put
at t = 0 between k = 2 and 4 in Fourier space such that
Urms = 1 and τ0 ≈ 3.1. The temporal evolution of the energies,
specifically E3D and E2D [see Eq. (6)] are displayed in Fig. 1
for rotation rates � = 0 and � = 16 and for different spatial
resolutions ranging from N = 128 to 256. Simulations with
and without helicity are considered.

In the 1283 run with � = 0 and ρ = 0, E3D grows fast to
≈0.49, and E2D decays to ≈0.01 after t ≈ 10. These values
correspond to the isotropic statistical equilibrium, where all
the modes have thermalized and have the same energy per
mode (E3D is larger as there are more 3D modes than modes

in the k‖ = 0 plane). In the 1283 run with � = 16, these
thermalized values are only reached after t ≈ 300. In the
presence of rotation, not only the decay toward the isotropic
statistical equilibrium is slowed down at early times (up to
t ≈ 4 ≈ 1.3τ0), but also a transient regime develops for which
E2D and E3D seem to be independently conserved. Details
of this regime for different Rossby numbers can be found
in Ref. [26]. Here, we consider the effect of resolution and
helicity in the time when the quasiconservation breaks down.
To first illustrate this, a 2563 run with � = 16 is also shown
in Fig. 1. The change in resolution does not seem to affect
the quasiconservation of E2D and E3D, although the following
decay toward the isotropic statistical equilibrium takes place at
a slower pace at larger resolution. A similar result was obtained
for a 5123 simulation (not shown). Finally, the presence of
helicity in a 1283 run with � = 16 increases (by close to
a factor of 2) the time during which E2D and E3D can be
considered as quasi-invariants.

The effect of resolution and helicity in the quasiconserva-
tion can be explored further considering runs R2–R12. Runs
R2–R7 span � from 16 to 64 with initial relative helicity ρ

of 0 or 1 at fixed resolution (N = 128). The time evolution
of E2D in these runs is shown in Fig. 2. As � is increased,
the time during which E2D (and E3D) can be considered
quasi-invariant increases, and the differences between the
nonhelical and helical cases become more evident. In all cases,
helicity extends the time of quasiconservation. At the end of
the quasiconservation phase, E2D in all runs decreases with
nearly the same rate independent of � and depending only on
whether the runs have helicity or not.

Figure 2 also shows the effect of changing resolution.
Runs with fixed � are shown with and without helicity while
changing N from 64 to 256. The time during which E2D is
quasi-invariant seems insensitive to the linear resolution, while
the rate of change after the quasiconservation (as well as the
final value reached at late times) depends on N . As a result,
high resolution is not necessary to study the early time (or, as
shown next, the very late time) dynamics of the ideal truncated
systems. Simulations at higher resolution in Table I will mostly
be useful to consider the spectrum that develops at intermediate
scales during the transition from the quasi-invariant regime to
the isotropic thermalized regime.

The case of initial conditions concentrated in the small
scales (runs R14–R21) is also shown in Fig. 1. Again, an
isotropic excitation at t = 0 is considered but now between
wave numbers k = 30 and 40, with Urms = 1 and τ0 ≈ 0.2.
Except for very early times, the E2D and E3D energies
remain constant and close to ≈0.49 and ≈0.01, respectively.
However, unlike the previous runs and the cases considered
in Ref. [26], the constancy of E2D and E3D should not be
interpreted as a conservation of quasi-invariants (note it also
takes place for � = 0). With the initial conditions at small
scales, the system goes faster to the isotropic thermalized
equilibrium (the turnover time is shorter in this case), and
the constancy of E2D and E3D is simply the result of all modes
having thermalized with the same energy. Once the thermal
equilibrium is achieved, the solution is fluxless, and, thus, no
exchange of energy takes place. An approximate conservation
of the quasi-invariants may happen at much earlier times, as
shown in the inset of Fig. 1. Runs R20 with � = 64 and
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FIG. 2. (Top) E2D in simulations with initial conditions between
k = 2 and 4, fixed spatial resolution (N = 128), and increasing �.
Nonhelical runs R2 (� = 16), R4 (� = 32), and R6 (� = 64) and
helical runs R3 (� = 16), R5 (� = 32), and R7 (� = 64) are shown.
The arrows indicate the time when E2D decreases below 90% of its
initial value, from left to right with increasing �, above for helical
runs and below for nonhelical runs. The symbols are given in the
figure, with [�, ρ] for ρ = 0 in the bottom left and, for ρ = 1, in the
top right. (Bottom) E2D in simulations with initial conditions between
k = 2 and 4, fixed rotation rate (� = 16), and increasing resolution
(the higher, the thinner the line). Runs with zero helicity (dotted lines
for runs R2, R8, and R11) and with net helicity (dashed lines for runs
R3, R9, and R12) are shown.

R21 with � = 128 show an early increase of E2D followed
by approximate constancy to later decay to the isotropic
thermalized value.

As a result, the time to reach equilibrium is delayed in
the presence of either rotation or helicity, but the evolution of
such flows drives them to the 3D equilibrium given in Eq. (5)
as will be shown in more detail later. This delay can also be
observed in the time evolution of the enstrophy. In Fig. 3, we
contrast the effects on its temporal evolution of the scale of
the initial conditions, of the initial relative helicity, and of the
spatial resolution. In the runs with initial conditions between
k = 2 and 4, 〈ω2〉 grows fast and reaches its saturated value
(which corresponds to the isotropic thermalized state) after
t ≈ 100. Increasing the resolution does not affect this time,
although it substantially increases the saturation value of the
mean-square vorticity (as more wave numbers are available for

〉
〈

〉
〈

FIG. 3. Temporal evolution of the enstrophy. (Top) Runs with
� = 16, initial conditions between k = 2 and 4 for different spatial
resolutions and values of the relative helicity. (Bottom) Runs with
initial conditions between k = 30 and 40, N = 128, ρ = 0, and
different values of �. The inset shows the same curves with the
time in logarithmic scale.

the thermalization). On the other hand, the presence of helicity
slows down the decay toward the thermalized state. Similar
results are obtained in the runs with initial conditions between
k = 30 and 40. In this case, 〈ω2〉 decreases with time as the
initial enstrophy, concentrated at small scales, is distributed
among all wave numbers as the system thermalizes. These
runs also illustrate how the time to reach the thermalization
increases as � is increased.

Defining an intermediate wave number between kmin and
kmax, we can compute the time t∗∗ at which thermalization has
reached that wave number, in the sense that its amplitude does
not evolve except for thermal fluctuations around the mean
after that time. In practice, this is equivalent to measuring the
time at which a certain value of 〈ω2〉 is reached in Fig. 3.
Figure 4 displays the scaling of that time as a function of
imposed rotation rate; a �3/4 range appears clearly. We have
checked that this scaling is insensitive to the choice of scale
at which it is computed. The different symbols in the figure
correspond to different choices of thermalization level, with
diamonds corresponding to 〈ω2〉 within 1% of the thermalized
value, triangles to 2%, squares to 3%, and crosses to 4%. Note
this time should not be confused with the time t∗ for coupling
of 2D and 3D modes that results in the end of the conservation
of quasi-invariants.

B. Large-scale dynamics and early time evolution

As will be confirmed in Sec. IV B, the ideal flow ends
up in a state of equipartition of energy as predicted by Lee
[17] (or its generalization to helical flows [31]). However, the
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FIG. 4. Scaling of the time t∗∗ for a given scale to reach
thermalization as a function of the imposed rotation; t∗∗ ∼ �3/4

appears as a good fit. Different symbols correspond to different
choices of the thermalization level (see text for details). Runs have
initial conditions between k = 2 and 4, N = 128, and ρ = 0.

path to get there is interesting as it uncovers a dissipativelike
transient that displays, in the nonrotating case, a Kolmogorov
spectrum. Although the total energy is conserved, the large
wave number k2 tail—established at intermediate times as a
partial thermalization—plays the role of a turbulent viscosity
for the large scales, which can undergo a standard turbulence
dynamics. This was shown both for the nonhelical case [36]
and for the helical case [37]. Thus, we examine this temporal
behavior in the presence of rotation, by considering the runs
with initial conditions at large scales in the band of wave
numbers between k = 2 and 4. Note that this corresponds to
the transition of the system from the quasi-invariant regime to
the isotropic statistical equilibrium.

The time evolution of the isotropic energy spectrum is
shown in Fig. 5 for a nonhelical nonrotating run (run R1), two
rotating nonhelical runs (R2 and R11, at different resolutions),
and a rotating helical run (R12). Several times are displayed
in order to show the progressive advance of thermalization
toward large scales and the dynamics at large scale. Run R1 at
early times develops a spectrum compatible with an ∼k−5/3

law, and, as the thermalized range widens, the spectrum goes
progressively to the ∼k2 solution. For nonrotating flows, this
behavior was studied before (for details, we refer the reader
to Refs. [36,37,47,48]). In the rotating case (Run R2), a
dissipativelike transient also develops as the system transits
from the regime with quasiconserved E2D and E3D to the
isotropic thermalized equilibrium, but the large-scale spectrum
is steeper in this case. As will be shown next, the steeper
spectrum seems to be consistent with an ∼k−3 law. As in the
nonrotating case, the small scales evolve toward the isotropic
∼k2 solution, but the time for the large scales to reach
thermalization is substantially increased in the presence of
rotation. Changing spatial resolution does not seem to affect
these results, but the presence of helicity makes the large-scale
spectrum even steeper [closer to ∼k−4, compare (c) and (d)].

Figure 6 gives the energy fluxes at different times for the
1283 nonhelical runs with � = 0 and 16 (runs R1 and R2).
These fluxes evolve toward zero as time elapses, corresponding
to zero-flux statistical equilibria solutions, but at intermediate
times, they show clear energy exchanges between Fourier

FIG. 5. Time evolution of the isotropic energy spectrum. Top are
runs with N = 128: (a) R1 with � = 0 and ρ = 0 and (b) R2 with
� = 16 and ρ = 0; in (a) and (b) times are t = 0 (solid line), t = 4
(dotted line), dashed line, t = 10 (dashed line), t = 40 (dash-dotted
line), t = 80 (dash-triple-dotted line), t = 150 (long dashed line),
and t = 320 (dotted line). Bottom are runs with N = 256: (c) R11
with � = 16 and ρ = 0 and (d) R12 with � = 16 and ρ ≈ 1; in
(c) and (d) times are (with the same line style order as above) t = 0,
t = 4, t = 8, t = 16, t = 40, t = 80, and t = 160. Different slopes
are indicated only as references. All runs build a k2 tail over time.

modes. In the case with � = 0, a range with positive flux
(which can be associated with the ∼k−5/3 range) is observed
before the flux goes to zero at all scales. In the presence
of rotation, besides a range with approximately constant
direct flux, a change of sign of the flux at large scales is
observed, which indicates a tendency toward a large-scale
condensation, associated with the inverse cascade of energy
in the forced-dissipative case. However, the final state lacks
such a condensate as already stated, and the system evolves
toward zero-flux equilibria (although at later times than in the
nonrotating case).

The effect of resolution and of helicity in the large-scale
energy spectrum is further illustrated in Fig. 7, which shows
the spectrum at t = 5 in runs with � = 16 and ρ = 0 for

FIG. 6. Energy flux 
(k) in runs (a) R1 and (b) R2. Symbols for
different times are as in Figs. 5(a) and 5(b) .
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FIG. 7. (Top) Isotropic energy spectrum at t = 5 (at the beginning
of the intermediate phase when thermalization begins at small scale)
in runs without helicity and with � = 16: solid line, run R2; dotted
line, R11; and dashed line, R13, with increasing resolution from
N = 128 to N = 512. (Bottom) Energy spectrum compensated by
k−3 at t = 10 in 2563 runs R10 (solid line, � = 8 and ρ = 0), R11
(dotted line, � = 16 and ρ = 0), and R12 (dashed line, � = 16 and
ρ = 1).

increasing spatial resolution up to N = 512. At this early time,
little thermalization ∼k2 is present yet. All runs show spectra
compatible with a k−3 law at large scales, although a knee
followed by a slightly shallower spectrum is observed in the
higher-resolved runs. As will be shown next, this knee in the
spectrum is the result of anisotropies developing in the flow.
Figure 7 also gives the energy spectrum compensated by k−3

at t = 10 in runs with 2563 grid points and for various rates
of rotation and of relative helicity. The change of � does not
affect the power law, although, in the presence of helicity, a
steeper energy spectrum is obtained, in agreement with the
results shown in Fig. 5. Also, a slightly shallower spectrum
than k2 is obtained in the smallest scales, indicating, again, a
slowing down of the dynamics.

Both in the nonhelical and helical cases in the presence of
rotation, a spectrum different from Kolmogorov is obtained,
with an inertial index between −3 and −4. Such spectra also
differ from the ones found in driven dissipative studies of
rotating turbulence, namely, E(k) ∼ k−2 or a bit steeper in the
helical case. For nonhelical rotating turbulence, a k−3 spectrum
has been advocated using a spectral closure [35] because of
the distribution of energy for different angles between the
wave vector k and the rotation axis, the classical k−2 spectrum
being found only for modes with k‖ ≈ 0. Indeed, the present
simulations confirm this prediction. The axisymmetric 2D
energy spectrum e(k, cos θ ) [4,49] is shown in Fig. 8 for
different values of θ for run R13 at t = 5. The differences in

FIG. 8. Two-dimensional energy spectrum e(k, cos θ ) in run R13
at t = 10, for dashed line, θ = 0; dotted line, θ = π/4; and solid line,
θ = π/2. A slope of −2 is shown as a reference.

the spectra for different directions indicate the development
of anisotropies, with most of the energy in modes with
k‖ = 0 (θ = 0) and following e(k, cos θ = 1) ∼ k−2. As θ

increases toward θ = π/2 (corresponding to wave vectors
k = k‖ẑ), the energy content decreases, and the spectrum
becomes steeper. Note that an isotropic k−2 spectrum can
be recovered using a phenomenological analysis taking the
slowing down of nonlinear transfer due to inertial waves into
account, still assuming isotropy [50,51]. The extension of this
argument to the anisotropic case is straightforward and leads to
E(k⊥,k‖) ∼ k

−5/2
⊥ k

−1/2
‖ [52]. However, the anisotropic spectra

observed here, in the transient phase, are steeper and are more
likely attributed to an angular dependence as advocated in
Ref. [35].

C. Isotropic statistical equilibrium

At late times, all the runs (see, e.g., Fig. 5) reach the
statistical equilibrium with zero flux and energy spectrum ∼k2

with no sign of condensation at large scales. To study this later
regime in more detail, now, we focus on the runs with initial
conditions at small scales (runs R14–R21), as these runs reach
thermalization faster. Similar results are obtained at late times
in runs R1–R13.

In Fig. 9, we show the energy spectra for different rotation
rates (see caption) at t = 44 = 220τ0. Note the evolution of all
runs toward a pure k2 spectrum, as expected from the isotropic
equations (5). Only the modes at the smallest wave numbers
depart from the equilibrium as the time it takes for these
modes to thermalize increases as � increases. This state is
isotropic, as can be confirmed, e.g., by studying the reduced
parallel and perpendicular energy spectra E(k‖) and E(k⊥)
(see, e.g., Refs. [53,54]). The spectrum E(k‖) is obtained by
integrating the energy over all modes with the same wave
vector k‖ (i.e., integrating over planes in spectral space), and
E(k⊥) is obtained by integrating the energy over all modes with
the same wave vectors k⊥ = (k2

x + k2
y)1/2 (i.e, integrating in

cylindrical shells). The perpendicular spectrum shows an ∼k

dependence (indicated by the solid line for convenience), as
expected for equilibria with integration over wave numbers in
one direction only (see also, Ref. [26]). The parallel spectrum
is flat, again consistent with equipartition of energy between
all modes as, in that case, all planes in Fourier space contain
the same amount of energy. The decrease of both reduced
spectra at a large wave number is due to the fact that, in
the anisotropic case, integrations are performed in planes or
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FIG. 9. (a) Isotropic energy spectrum, (b) reduced perpendicular
spectrum, and (c) reduced parallel spectrum at t = 44 in nonhelical
runs R14 (solid line, � = 0), R17 (dotted line, � = 16), R19 (dashed
line, � = 32), R20 (dashed-dotted line, � = 64), and R21 (dash-
triple-dotted line, � = 128). Slopes are given as references.

cylinders but undergo the spherical truncation imposed in the
computation (associated with the dealiasing). This results in a
deficit of modes at large |k| for anisotropic binning of Fourier
space.

When helicity is present, the absolute equilibria ensembles
are modified as found in Ref. [31] with a behavior close to k2 at
a low wave number but departing from it at high k. The result
is illustrated in Fig. 10, which shows the reduced energy and
helicity spectra in runs R15 and R18 at t = 55 = 275τ0. The
reduced helicity spectra are constructed following the same
procedure as for the energy. Independent of the rotation rate,
the spectra are in good agreement with the isotropic theoretical
predictions given in Ref. [31]. The delay for reaching the
asymptotic state is slightly larger in the helical case at the
same rotation rate, as can be expected from the fact that for a
fully helical Beltrami flow, the Lamb vector u × ω ≈ 0 until
the initial flow develops.

In light of these results, it may seem that the final
equilibrium is exactly the same for all the runs, independent
of the presence of rotation. However, there are differences in
the coupling between modes in the rotating case even after

FIG. 10. (a) Isotropic spectra, (b) reduced perpendicular spectra,
and (c) reduced parallel spectra of the energy (thin line) and of
the helicity (thick line) at t = 55 in helical runs R15 (solid line,
� = 0) and R18 (dotted line, � = 16). Slopes are given as references.
Helicity spectra are normalized by the total helicity. In (a), the
isotropic prediction of Kraichnan [31] is shown by dashed lines,
with values of α and β obtained from solving Eq. (5).

FIG. 11. Time evolution of the energy in the 2D mode k = (1,1,0)
after perturbing the thermalized value by multiplying its amplitude
by 10 in runs R14 (thin gray line, � = 0) and R17 (thick black line,
� = 16). The inset shows the time evolution for late times; note the
oscillations in run R17, corresponding to Rossby waves.
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thermalization has been achieved. To show this, the final
states of runs R14 and R17 were perturbed by multiplying
the amplitudes of the modes k = (1,1,0) (a 2D mode) and
k = (10,10,10) (a 3D mode) by 10. Return to thermalization
of these modes took different times depending on the value
of �, more clearly in the case of the 2D mode (see Fig. 11).
Moreover, once the thermalized amplitude was reached, the
modes in the run without rotation fluctuated in time as
white noise, while the same modes in the run with rotation
showed clear oscillations with the frequency of the Rossby
waves.

V. DISCUSSION AND CONCLUSION

We have found, in the case of helical rotating flows, a
counter example to the otherwise well-tested conjecture that
statistical ensemble equilibria are good predictors for the
small-scale and large-scale behaviors of turbulent flows. In
3D helical rotating flows, the equilibrium does not have a
condensate with a low wave-number accumulation of excita-
tion, whereas, the dissipative dynamics show a clear inverse
cascade. Moreover, the spectra computed for long times for
inviscid truncated systems do not show any anisotropization
of the large scale. The limitation of the conjecture that
statistical ensemble equilibria are good predictors for small-
and large-scale behaviors was already identified for the case
of nonhelical rotating flows in Refs. [26,32].

One is led to speculate as to what is the origin of this
discrepancy; we attribute it to the way the nonlinearity of
the system is modified in the presence of inertial waves,
as studied from numerical data, e.g., in Refs. [12,53]. In
rotating turbulence, the development of anisotropy and inverse
transfer of energy results from the resonant and near-resonant
interactions between 3D modes and modes in the slow
manifold with k‖ = 0, per virtue of the linear Coriolis term
[42,44]. Energy in 3D modes is transferred by a subset of
the resonant interactions to modes with a smaller vertical
wave number. Therefore, it is to be expected that the inverse
transfer of energy in a rotating flow will be different from
the 2D case (without rotation) insofar as resonances play an
essential role. However, the Liouville theorem is not modified
by the linear terms, and, therefore, the statistical equilibrium
remains isotropic and without condensates after rotation is
introduced, except for early times when the energy in the
2D modes is quasiconserved. However, it remains puzzling
to see that the waves, stemming from a linear term in the
dynamical equation, perturb a nonlinear effect when those end
up dominating the dynamics for sufficiently long times. This
paper attempted at elucidating this behavior examining the role
that the second invariant, the helicity, has on inviscid dynamics
since it is known that it affects the driven dissipative case,
making the spectra different [15,55] from what is expected in
the nonhelical case [50,51].

It has been argued [25,26] that, since, in the case of very
strong rotation, the flow evolves toward a 2D state in which
2D quadratic invariants as the enstrophy are recovered, this
can justify the existence of an inverse cascade in the driven
dissipative case. Indeed, we can confirm the results of Ref. [26]
showing quasiconservation of 2D invariants for early times.
The introduction of helicity further increases the time in which

this approximation holds but keeps that of the nonrotating case
as the equilibrium state. However, independent of the presence
of helicity, once the isotropic thermalized equilibrium has been
reached, differences in the evolution of the modes can be iden-
tified. While, in the absence of rotation, the amplitude of the
modes evolves as white noise, traces of rotation and the associ-
ated coupling between modes can be identified in the rotating
case. Perturbation of any mode requires long times to recover
thermalization in the latter case, and time oscillations associ-
ated with waves are observed in the amplitude of the modes.

The results are insensitive to the spatial resolution used, at
least in the range of values explored here. The time during
which E2D and E3D are independently conserved seems insen-
sitive to the resolution. Properties of the late-time isotropic
equilibrium are also unchanged as resolution is increased.
However, resolution allows us to resolve the spectrum that
develops during the transient better. Our results show, in
agreement with previous claims for nonrotating flows [36]
that, during the transition from the approximate conservation
of quasi-invariants to the thermalized regime, a dissipativelike
spectrum arises. There is a dispute as to what the energy
spectrum for rotating flows may be, even when putting aside
the effect helicity may have [15,55]. Weak turbulence theory
predicts a k−2 spectrum [56], consistent with dimensional
analysis [50,51] (note that this theory finds a decoupling of
the 2D and 3D modes at lowest order). But, in Ref. [35], it is
claimed that such a spectrum applies only in the vicinity of
k‖ = 0 and that, as one takes the contribution from all parallel
wave numbers into account, the resulting isotropic spectrum
is ∝k−3. Note that this power law should not be viewed as the
classical Kraichnan spectrum for 2D Navier-Stokes [21] but
rather as the isotropic result of an anisotropic distribution of
modes taking the k‖ dependence of the dynamics into account.

Essential to the argument is that the decoupling of 2D and
3D motions on the basis of resonances [42] is not complete
because of the differential energy between purely 2D and
purely 3D vertical velocities in the k‖ case (the polarization
anisotropy ZPA). The results presented here seem to favor this
spectrum, with an isotropic scaling ∼k−3, which is obtained
from an anisotropic 2D spectrum e(k, cos θ ), which scales for
cos θ = 1 as k−2 (in the presence of helicity, the isotropic
spectrum is even steeper). Therefore, as a result, the ideal
runs seem to be a useful tool to study the high-rotation case
despite the limitations of the statistical ensemble predictions.
It is unclear for the moment why, in viscous simulations of
nonhelical rotating flows, the isotropic spectrum scales as k−2.
It may be the case that dissipation plays an essential role at
sufficiently small scale, an effect already noted in Ref. [57] in
the decaying case.
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