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Optimization of ramified absorber networks doing desalination
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An iterated function system is used to generate fractal-like ramified graph networks of absorbers, which are
optimized for desalination performance. The diffusion equation is solved for the boundary case of constant
pressure difference at the absorbers and a constant ambient salt concentration far from the absorbers, while
constraining both the total length of the network and the total area of the absorbers to be constant as functions
of generation G. A linearized form of the solution was put in dimensionless form which depends only on
a dimensionless membrane resistance, a dimensionless inverse svelteness ratio, and G. For each of the first
nine generations G = 2, . . . ,10, the optimal graph shapes were obtained. Total water production rate increases
parabolically as a function of generation, with a maximum at G = 7. Total water production rate is shown to be
approximately linearly related to the power consumed, for a fixed generation. Branching ratios which are optimal
for desalination asymptote decreasingly to r = 0.510 for large G, while branching angles which are optimal
for desalination asymptote decreasingly to 1.17 radians. Asymmetric graphs were found to be less efficient for
desalination than symmetric graphs. The geometry which is optimal for desalination does not depend strongly
on the dimensionless parameters, but the optimal water production does. The optimal generation was found to
increase with the inverse svelteness ratio.
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I. INTRODUCTION

Of the two most prevalent methods of desalination today,
reverse osmosis and thermal distillation [1], reverse osmosis
began relatively recently with the discovery in 1959 at Uni-
versity of California, Los Angeles, by Loeb and Sourirajan [2]
of a chemically homogeneous, physically asymmetric porous
cellulose acetate polymer film [3] which made reverse osmosis
economically feasible. Since typical energy requirements of
reverse osmosis of 2.2 kWh/m3 [4] are a factor of 3 larger
than the theoretical limit of 0.7 kWh/m3, other methods such as
forward osmosis [5], low-temperature thermal desalination [6],
and membrane distillation [7] continue to be introduced as
viable alternatives. The byproducts of desalination include
brine and mineral salts. Since these are acutely harmful to the
environment, systematic studies of desalination from a Gibbs
free-energy perspective have become useful [8].

Current desalination research has continued to focus to
a large extent on studying membranes. Promising results
have been obtained from aquaporin [9] and carbon nanotube
based membranes [10], while analytical studies have yielded
models for porous ion transport [11] and ion-exchange
membranes [12]. Molecular dynamics studies dealing with
ion layers in solution [13,14] and osmosis through membranes
[15–17] have also been popular. The optimality of fractal
membranes [18,19] has also been investigated, and in this
connection it has been shown that membranes can be seen
to be equivalent to electrodes [20]. Fractal antennae [21,22]
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and battery electrodes [23] have also been shown to have
optimal properties. It has been found that microscopic [24]
and macroscopic [25] aggregates can spontaneously lead to
ramified fractal networks, due to the optimality of the fractal
configurations. Fractal growth networks which exhibit pattern
formation under a reaction-diffusion dynamic have also been
studied [26]. A useful mathematical description for the growth
of fractal networks, iterated function systems [27], has been
used to conveniently formalize and study visualization of
fractals generated from chaotic sequences [28,29].

The study and construction of ramified fractal-like networks
and optimization of transport properties in the networks has
been well investigated by many researchers. One of the
foundational concepts which grounds such investigation is
the principle that structures in nature and engineering adapt
themselves to optimally serve their functions. In one of the
seminal works illustrating this principle, Murray [30] showed
how the cost of blood volume was the determining factor
for the radii of a network of vessels transporting oxygen
in man. This has subsequently led to the development of
the constructal theory [31] of optimal flow configurations
as a branch of nonequilibrium thermodynamics. Xu and Yu
have recently shown how the thermal conductivity of both
fractal treelike branched networks [32] and of H-shaped
fractal networks in composites [33] was significantly lower
than that of conventional parallel channels. Similarly, Chen
et al. [34] have elucidated optimal branching diameter ratios
which enhanced the effective permeability of composites over
comparably sized parallel networks. Scaling laws for transport
properties of conductive, convective, laminar, and turbulent
flow fractal networks have also been presented [32]. In related
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work, Mauroy and others [35] have determined the flow
asymmetry versus branching angle for different aspect ratios
and Reynolds numbers in a fractal-like tree network. These
works have contributed much toward our understanding of
optimal constructal theory. We look at optimal desalination
absorber networks. Our work is different from these earlier
studies in that we have focused on the shapes themselves,
unencumbered by the internal transport dynamics. In a sense
we complement the previous work by helping impart a
foundation for it. Furthermore, previous work has not shown
how optimal constructions arose from adaptation by absorbing
networks to diffusive environments.

In the following, we explore the optimal geometry for
networks of absorbers in a diffusive medium, applying this
to the important case of desalination. We start by providing
an explanation of what the system looks like in Sec. II. In
Sec. III, we use the formalism of the iterated function system
to generate a set of ramified graph networks of absorbers.
The diffusion equation is solved by analogy to electrostatics
in Sec. IV, where we linearize the system and define the
most relevant boundary condition to examine, that of constant
pressure difference absorbers. In Sec. V we discuss the results,
as well as nonsymmetric binary graphs, dependence of the
solution on dimensionless parameters, and future research
directions. Finally, in Sec. IV we summarize our results.

II. PHYSICAL SITUATION OF THE POSED PROBLEM

Although we present a more formally detailed account of
the technical details of the posed problem in what follows, it
will be useful to initially give a down-to-earth description of the
physical situation. Our model is that of two planar, symmetric,
binary trees, composed of a network of hollow pipes, joined
at their base (see Fig. 1), imbedded in a volume of saline
solution. At the ends of the tree there are spherically shaped
membrane surfaces (red outline in Fig. 1), which are permeable
to water. Within the network of pipes near the base there are
two symmetrically situated pumps which will thus produce a
constant pressure difference at the absorbers. This is the picture
we have in mind. In order to better isolate the problem, we

FIG. 1. (Color online) Schematic for a ramified network con-
sisting of pipes with diameters wg,i , where the angles, ratios, and
diameters depend on the generation g. Red shading indicates effective
membrane surface. For a network of total length l, Ug,i and Vg,i

denote lug,i and lug,i respectively.

then dispense with the internal flow dynamics of the system,
so that the the diameters of the pipes play no role in what
follows. Our principal aim is to determine which branching
angle, branching length ratio, and tree generation can most
efficiently extract water from the pattern of salt concentration
of the saline solution. In doing this we also make the further
simplification that the saline solution has reached a steady state
distribution of salt concentration.

III. RAMIFIED GRAPHS AND ITERATED
FUNCTION SYSTEMS

We use an iterated function system [27] which maps a set
of 2g line segments into a set with 2g+1 members:

φ : Sg = {Ag,i} −→ Sg+1 = {Ag+1,2i ,Ag+1,2i−1},
g = 1, . . . ,G − 1,i = 1, . . . ,2g, (1)

where Ag,i = (
ug,i

vg,i

) represents the line segment ug,ivg,i be-

tween nodes ug,i and vg,i , and G is the total number of
generations. The line segments of generation g are func-
tions of the line segments of previous generations, that is:
Ag+1,2i−1 = hL(Ag,i) and Ag+1,2i = hR(Ag,i), where hL,R are
linear transformations given in Appendix A, and A1,1 =
[0, 1−2r

1−(2r)G ,0] is the stem segment. The transformations hL,R

depend parametrically on the ratio r between segments of
generation g + 1 and segments of generation g, and the angle
α with which generation g + 1 segments branch away from
generation g segments. Note that by the definition of A1,1 the
total unitless length AG = �G

g=1�
2g−1

i=1 |Ag,i | is kept fixed at 1 as
G is varied, i.e., AG = 1 for all G. The union of line segments
forms a connected ramified graph G:

G =
⋃

is�2g−1

g�G

Ag,i ,

such that the starting point of the line segment of generation
g + 1 is the endpoint of a line segment of generation
g, i.e., ug+1,2i = ug+1,2i+1 = vg,i . The transformation hL,R

of Appendix A satisfies the relation |ug+1,2i+1vg+1,2i+1| =
|ug+1,2ivg+1,2i | = r · |ug,ivg,i | ; therefore, the iterated function
is a contraction mapping for 0 � r < 1. In what follows
we assume that 0 � r < 1. The graph G models a ramified
network of linear conduits, such as pipes (see Fig. 2). If the
total length of the network is l, we may define Ug,i = lug,i

and Vg,i = lvg,i . The endpoints S = {VG,i} are the locations of
absorbers, and U1,1 is an outlet for the permeate. The absorbers
are semipermeable membranes which use reverse osmosis or
forward osmosis [36] to extract water from saltwater.

IV. SPATIAL DEPENDENCE OF THE SALT
CONCENTRATION

By conservation of salt molecules in a diffusive medium
we have the equation ∂c

∂t
= −∇ · J, where c is the salt concen-

tration in mol/m3, and J is the flux of c. Using Fick’s law,

J = −D∇c, (2)

where D is the diffusion coefficient in units of m2/s. We thus
find the diffusion equation for the system of water absorbers,
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FIG. 2. (Color online) Ramified graph which is optimal for (i.e.,
it maximizes) water production occurs for G = 7, r = 0.521, and
α = 1.16. The graph is optimal in the sense that other graphs with the
same length and total area of absorbers, but with different branching
angles and branching ratios, have lower water production rates.

∂c
∂t

= −∇ · (−D∇c). Assuming that D is constant and that the
system has reached a steady state, we get Laplace’s equation:

D∇2c = 0. (3)

In solving Eq. (3), we assume the following boundary
conditions: (i) the water surface is insulating, i.e., J(x = 0) =
0, (ii) as the distance from the ramified graph approaches
infinity the concentration goes to an ambient concentration
c∞, and (iii) the endpoints {vG,i} of the ramified graph are the
centers of small spherical absorbers with radii Ra which are
sufficiently far apart that the salt concentration at the surface
of each absorber is isotropic. Near an absorber i the salt
concentration is given by:

c(r) = si

|r − VG,i | + ci,x(x − xi) + ci,y(y − yi) + c∗
i , (4)

where si are integration constants with units of mol
m2 , r = (x,y)

is the location of measurement of the concentration c, c∗
i is
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FIG. 3. (Color online) Ratio for ramified graph networks having
maximal water output for the case of constant pressure difference ab-
sorbers as function of number of generations, for generations G = 2
to G = 10, with parameter values as in Table I. Ratios were deemed
optimal if the corresponding water production rate was maximal over
all angles.
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FIG. 4. (Color online) Angle for ramified graph networks having
maximal water output for the case of constant pressure difference ab-
sorbers as function of number of generations, for generations G = 2
to G = 10, with parameter values as in Table I. Angles were deemed
optimal if the corresponding water production rate was maximal over
all ratios.

a constant, and ci,x and ci,y are first order derivatives which
couple absorber i to the other absorbers in the network.

Using Gauss’s law and integrating over a spherical region �

of radius r centered at a single salt absorber of radius r > Ra ,
the production rate Qi of salt in units of mol

s coming from a
single absorber i is given by:

Qi =
∫

∂�

J · n̂ dA = 4πDsi, (5)

where J is computed by applying Eq. (2) to Eq. (4). Gauss’s
law shows that the constant si is proportional to the salt
production rate Qi coming from a single absorber. Therefore,
since Eq. (3) is linear, the principle of superposition gives an
approximate complete solution to Eq. (3):

ci = 2G/2Qi

D
√

4πAa

+ 1

4πDl
�
j �=i

Qj

|vG,j − vG,i | + c∞, (6)
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FIG. 5. (Color online) Optimal water production rates in m3/s for
ramified graph networks in the case of constant pressure difference
absorbers as function of number of generations, for generations G =
2 to G = 10, with parameter values as in Table I. These are the
values of water production per unit time that were maxima (and
hence optimal) for each generation by independently varying ratios
and angles.
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SINGLETON, HEISS, AND HÜBLER PHYSICAL REVIEW E 83, 016308 (2011)

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Generations 2, 5, and 8

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

Generations 3, 6, and 9

−0.2 −0.1 0 0.1 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Generations 4, 7, and 10

FIG. 6. (Color online) Ramified graphs having optimal properties (maximal water production rate for constant pressure difference absorbers)
as in Figs. 3 and 4 for generations G = 2 to G = 10. The graphs are optimal in the sense that other graphs with the same length and total area
of absorbers, but with different branching angles and branching ratios, have lower water production rates.

where ci is defined as the salt concentration at the ith absorber,
i = 1, . . . ,2G, and Aa = 2G4πR2

a is the total surface area of
the absorbers.

The salt concentration ci at the outside of the membrane
of absorber i depends on the applied pressure drop �i at
each absorber membrane. In what follows, we consider the
case where �i = � is fixed for all i, which is physically
the most easily realized case. The pressure difference across
the membrane � is the sum of the osmotic pressure and the
membrane flow resistance �m,

� = (ci − c0)RT + �m

= c′
iRT + �m, (7)

where c0 is the salt concentration inside the absorber, c′
i = ci −

c0 is the difference in concentration from outside to inside the
absorber, and �m = Wiμb

4πκR2
a

is the membrane flow resistance.
Here the water production rate Wi is the volume of water
flow through absorber i per unit time, μ is the viscosity of
the medium in kg m−1 s−1, κ is the membrane permeability in
m2, b is the thickness of the membrane, R = 8.314 J/K mol
is the ideal gas constant, and T is the temperature in Kelvins.
By the stoichiometry of the molecules which interact with the
absorbers, the rate of water production Wi at node i is given
by the relation

Qi = Wic
′
i , (8)

where Qi is the salt production rate of node i. Hence the total
rate of water production W for the absorber network is

W = 2G

�
i=1

Qi

c′
i

. (9)

By solving Eq. (7) for Wi, the power consumption Pi =
�Wi at absorber i is

Pi = (c′
iRT + �m)Wi, (10)

and the energy consumption Ei = Pi/Wi is given by:

Ei = c′
iRT + �m

= �, i = 1, . . . ,2G. (11)

Using Eqs. (7) and (8), the salt production rate Qi is given
by an expression quadratic in c′

i :

Qi = κAa

μb2G

(
c′
i� − c′

i

2
RT

)
. (12)

Substituting these expressions for Qi into Eq. (6) then gives
a quadratic form in the c′

i :

μbD

κ
(cδ − c′

i) +
√

Aa

2G4π

(
c′
i� − c′

i

2
RT

)

+ Aa

2G4πl
�
j �=i

c′
j� − c′

j
2
RT

|vG,j − vG,i | = 0, (13)
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FIG. 7. (Color online) Contours of total water production for constant pressure difference absorbers over the ramified graph network for
equal increments of angles between 0 and π , and ratios of 0 to .9, for generations G = 3, 5, and 7, with parameter values as in Table I.

where cδ = c∞ − c0 is the difference in salt concentration
between the inside of the absorber and infinity. Eq. (13)
constitutes our steady state solution of the diffusion equation
for the boundary case of constant pressure difference at
the absorbers and a constant ambient salt concentration
far from the absorbers. We provide more details of our
procedure for this solution, which follows the analogy of
diffusion to electrostatics originated by Maxwell [37], in
Appendix B.

Defining a dimensionless concentration

c̃i = c′
i − �

RT

cδ − �
RT

, (14)

Eq. (13) may be rewritten in dimensionless form as

c̃i + k√
4π2G

c̃i(1 − ξ c̃i) + kβ

4π2G
�
j �=i

c̃j (1 − ξ c̃j )

|vG,j − vG,i | = 1,

(15)
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FIG. 8. (Color online) Plots of water production W vs ratio r with G = 7 and α = 1.167 (left), and water production W vs angle α with
G = 7 and r = 0.5155 (right).
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where the dimensionless parameters of the problem are

k =
√

Aaκ�

μbD
, (16)

β =
√

Aa

l
, (17)

ξ = � − cδRT

�
, (18)

and G. We observe that each of these dimensionless parameters
has a physical interpretation. The parameter k is an effective
dimensionless membrane resistance which relates the applied
pressure induced resistive flow across the membrane to the
diffusivity D of the medium, β is an inverse svelteness ratio
which gives how large the fixed total absorber area Aa is in
relation to the fixed total length l, and ξ is the normalized
applied pressure. From Eqs. (8) and (12), we can then write
the rate of water production Wi for node i as

Wi = lDkβξ

2G
c̃i . (19)

For typical desalination values given in Table I, on average
ξ c̃j < .03 for generations up to G = 10. Therefore, Eq. (15)
can be linearized with a Taylor series expansion about c̃i = 0
(see Appendix C):(

1 + k√
4π2G

)
c̃i + kβ

4π2G
�
j �=i

c̃j

|vG,j − vG,i | = 1. (20)

In order to maximize the total water production rate W,

given the fixed applied pressure �, the system given by
Eq. (20) must be solved. Levy’s theorem [38] suggests that
a solution exists (see Appendix D) except when absorbers
overlap. Figure 2 shows the ramified graph corresponding to
the ramified network which is optimal for water production
rate, since for all angles and ratios considered it has the
largest water production rate. In all cases for the values given
in Table I, the error made by neglecting the second order
term (C6), which we take as the ratio of the Euclidean norm
of the second order term vector to the Euclidean norm of the
first order term vector [see Eq. (C5)], was less than 6 × 10−3.

V. DISCUSSION

In our study we seek to explore morphologies which
produce maximal water production rates. Since a desalination
system is considered most desirable if it maximizes water
production (ceteris paribus), we thus term graphs possessing

TABLE I. Typical desalination values used to solve Eq. (3).

Desalination parameter Typical value

D 10−9 m2/s
T 290 K
cδ 564 mol/m3

� 1.4 × 106 Pa
κ

μ
9.72 × 10−20 m3 s/kg

Aa .00025 m2

b 10−6 m
l 1.0 m

this quality “optimal.” The optimal ratios and angles, respec-
tively, as functions of generation corresponding to the optimal
ramified graphs are given in Figs. 3 and 4. By varying angle
and ratio independently and calculating the water production
for each generation, we were able to find the optimal ratios
and angles in the sense that they maximized water production
rates. By fitting the optimal ratio and angle plots, we were able
to evaluate their asymptotic values. In Fig. 3 it is demonstrated
that the optimal ratio decays asymptotically to the value 0.510,

which as an approximation to 0.5 is the value one might
expect based upon symmetry considerations. Figure 4 shows
that the optimal branching angles asymptote exponentially to
the value 1.17, which is about 67◦. In Fig. 5 we give the
optimal water production rates as a function of generation.
The criterion for optimization was that the graph produced the
maximum volume of water per unit time. Hence Fig. 5 plots
the actual maxima that were found by varying ratio and angle
as generation G was varied. Figure 5 shows that the optimal
water production increases up to a maximum at about G = 71.
In Fig. 6 are given all the optimal graphs for generations G = 2
to G = 10. For clarity, we superimpose the graphs in groups of
three. Plotting graphs three generations apart on the same plot
(e.g., generations 2, 5, and 8) enables one to distinguish the
features of each individual graph better (as opposed to, e.g.,
plotting generations 2, 3, and 4 together). For each separate
graph, we apply the iterated function system with inputs for
the specified generation G, and the optimal ratio r and angle α

for that generation. The lengths of all these nine graphs are the
same. The optimal ratios and angles are those values which
yield the maximum water production for the corresponding
desalination system.

Figure 7 shows contours of the total water production rate of
the desalination system versus angle and ratio for generations
3, 5, and 7. It is noteworthy from the contour plots of water
production of Fig. 7 that as generation G = 7 is reached, the
possible solutions to the system become increasingly spatially
restricted (the maximum is sharp), so that by generation
G = 10 the system is solvable (see Appendix D) for only a low
percentage of cases. It is evident from the contour plots that
the optimal water production which occurs at about generation

1.5 1.6 1.7 1.8 1.9 2 2.1
x 10

6

3

4

5

6

7 x 10
−12

E in J/m3

W
 in

 m
3 /s

FIG. 9. (Color online) Optimal water production rate in m3/s for
G = 7 as a function of the energy consumption per volume E of
permeate produced.
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FIG. 10. (Color online) Optimal water production for G = 3 vs ratio difference (left) and angle difference (right). For the ratio difference
plot, alpha was the optimal angle, and ratios were varied independently about the optimal ratio. For the angle difference plot, ratio was the
optimal ratio, and angles were varied independently about the optimal angle.

G = 7.1 is a type of local maximum. Taking cross-sections
through the maximum by holding either the branching angle
or branching ratio constant at their optimal values it is possible
to determine how the water production changes as a function
of angle or ratio. This behavior is found to be parabolic in both
cases, as depicted in Fig. 8, which also enables us to determine
at which angle and length ratio the water production rate can
reach the maximum value. In Fig. 9 the relation between
the optimal total water production rate W and the energy
consumption of the desalination nodes, given by Eq. (11),
is shown to be a nearly linear, increasing function.

Previous work has shown that termini of ramified trans-
portation networks are binary [25], so we have restricted
our investigation to binary graphs. It may be suggested that
only a special case of binary graphs has been examined,
and that the class of binary graphs may have other more
optimal geometries than our solutions. However, we argue
that the symmetric binary graphs generated by the iterated
function system of Eq. (A1) yield the optimal geometries
among more general binary graphs, as is suggested by the
most symmetric asymptotic optimal ratios and angles of the
results. Indeed, we varied the difference in branching ratio
in the range −1 � rL − rR � 1 while keeping the branching

angle fixed at the optimal angle for G = 3, and found that
the optimal water production occurred when rL − rR = 0,

which is the case of our symmetric binary graph (Fig. 10
left). We similarly changed the branching angle in the range
of −2.19 � αL − αR � 2.19 with branching ratio kept at the
optimal value for G = 3, and found that the symmetric binary
graphs αL − αR = 0 produced the greatest water production
(Fig. 10 right). Thus our results also suggest (although this
verification is by no means exhaustive) that the symmetric
types of binary graphs which Eq. (A1) generates have the
most optimal properties.

Another modification in the assumptions which conceiv-
ably might change our results is to alter one or more of
the parameters of the problem. In order to eliminate any
dependence on scale, only dimensionless parameters of the
problem should be changed. Referring to the linear system of
Eq. (20), we have the two dimensionless parameters β and k,

given by Eqs. (17) and (16), respectively. Evaluating Eq. (17)
and Eq. (16) with the typical values given in Table I gives
β = .0158 and k = 2.15. If we thus define β0 = .0158 and
k0 = 2.15, we see that β0 and k0 signify the typical values of
the dimensionless parameters β and k. Defining βd = dβ0 and
kd = dk0, we then studied the solutions to the linear system of
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FIG. 11. (Color online) Curve fits of optimal water production while varying independent dimensionless parameters. Left: Effect of varying
β. Right: Effect of varying k. All curves were fitted to the general parabolic form of W (G) = C1 − C2(G − Gmax)2.
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FIG. 12. (Color online) Dependence of Gmax from Eq. (21) on
the dimensionless parameters β (top) and k (bottom).

Eq. (20) by alternately holding k = k0 constant with β = βd

varying, and then β = β0 constant while varying k = kd. In
each case d was varied between .5 and 1.5, in steps of .25.

Perhaps not so surprisingly in light of our systematic study of
the dependence of optimality on geometry earlier, the optimal
ratios and angles did not change for these different values of
(β,k). However, the optimal water production rates did change.
In order to see this, we produced curve fits for the optimal
water production plots (e.g., for plots like that of Fig. 5) by the
function

W (G) = C1 − C2(G − Gmax)2. (21)

For all of the different parameter combinations of (β,k) the
maximal water output was found to have an inverted parabolic
dependence on the generation G, as shown by the curves in
Fig. 11. In fact, the value of Gmax gives by extrapolation a value
for the optimal (in the sense of maximal water production)
generation. Thus although the parameters β and k do not
appear explicitly in Eq. (21), it is shown in Fig. 12 how the
optimal generation Gmax of Eq. (21) changes as the parameters
β and k are varied. Indeed, Fig. 12 demonstrates how Gmax

has an increasing (implicit) dependence on k, while Gmax

decreases with increasing β. This shows that smaller absorbers
favor a higher generation.

VI. CONCLUSION

Beginning with an iterated function system which was
used to generate the ramified graph networks of absorbers

(Fig. 1), the diffusion equation was solved using the analogy
to electrostatics. After introducing dimensionless parameters
which had direct physical correlates, the system was linearized
for the case of constant pressure difference absorbers, exper-
imentally the most accessible case. The linear system of 2G

equations was then solved for the 2G unknowns, specifying the
concentrations about each of the 2G absorbers in the network,
for generations G = 2 to G = 10 while independently varying
branching ratios and angles. The optimal ramified graph,
which resulted in the greatest water production rate, all
other quantities being equal, is shown in Fig. 2. Optimal
ratios, angles, and water production rates were obtained for
each generation G. Contour plots showed how the solutions
smoothly approached the same optimum as G was increased,
thus demonstrating that information was not lost as the system
grew in size and became less soluble (see Appendix D). By
independently varying the left and right branching angles
and ratios, it was shown why our symmetric ramified graphs
were preferable to the asymmetric variants from the point of
view of optimization. Changing the values of the independent
dimensionless parameters demonstrated that the geometry
of the optimal graphs did not change, but that the optimal
generation decreased as the scaling factor increased. The
findings we present here also show that the smaller the absorber
area, the higher the optimal generation. The foregoing may
help design more efficient networks and provide optimal
shapes for practical desalination systems to increase the supply
of drinking water in the world.
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APPENDIX A: ITERATED FUNCTION SYSTEM
LINEAR TRANSFORMATION

hL/R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

−r cos α ±r sin α 0 r cos α + 1 ∓r sin α 0

∓r sin α −r cos α 0 ±r sin α r cos α + 1 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

APPENDIX B: ELECTROSTATIC ANALOGY
TO DIFFUSION

Since we assume a steady state for Eq. (2), we are in essence
solving Eq. (3). Since the Cauchy problem for an elliptical
partial differential equation with an analytic right-hand side
has a unique solution, we need only show that our general
form of the solution of Eq. (6) is a solution to Eq. (3), and
that the boundary conditions are satisfied. In electrostatics, the
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solutions to Laplace’s equation are the potential, with terms
like Vq = q

4πε0r
. By making the correspondences

q −→ Qi,

ε0 −→ D,

Vq −→ ci,

we get terms of the form given in Eq. (6). The first term on the
right-hand side, Qi

4πDRa
, is the contribution from absorber i to

the concentration on the surface of node i, which is constant.
The third term on the right-hand side, c∞, is the constant
background concentration. Far away from any absorbers the
equivalent form of the solution will go to c∞ since the other
terms are inversely proportional to r, the distance to any given
absorber (in the more general case the first term will also vary
with distance from the center of node i). It only remains to
show that the terms in the mixed sum (over j with i fixed)
satisfy Laplace’s equation. A generic summand of the sum is
proportional to a function like

g(x,y,z) = 1√
(a − x)2 + (b − y)2 + z2

, (B1)

taking xi = a, yi = b both constant, x and y the j variables,
and recalling that the concentration is also a function of z

(although since the desalination graphs we study are planar, in
effect we set z = 0 in our solutions). Taking the Laplacian of
g gives

∇2g = 3(a − x)2

[(a − x)2 + (b − y)2 + z2]5/2

+ 3(b − y)2

[(a − x)2 + (b − y)2 + z2]5/2

+ 3z2

[(a − x)2 + (b − y)2 + z2]5/2

− 3

[(a − x)2 + (b − y)2 + z2]3/2

= 0, (B2)

which demonstrates that Eq. (6) is a solution of Laplace’s
equation. The development of the boundary condition constant
pressure difference at the absorbers is given earlier and gives
Eq. (13) starting from Eq. (6). This completes the detailed
account of our procedure for solution of the diffusion equation
for the case of constant pressure difference at the absorbers
and a constant ambient salt concentration far from the
absorbers.

APPENDIX C: EXPANSION ABOUT c′
i = �

RT

We want to apply Taylor’s rule to the function

fi(c̃1,c̃2, . . . ,c̃2G ) = c̃i + k√
4π2G

c̃i(1 + ξ c̃i)

+ kβ

4π2G
�
j �=i

c̃j (1 + ξ c̃j )

|vG,j − vG,i | . (C1)

The first order Taylor series approximation to fi(c̃) about
c̃ = 0 is

fi(c̃) = fi(0) + 2G

�
j=1

∂fi

∂c̃j

(0)c̃j . (C2)

Then, since

fi(0) = 0,

∂fi

∂c̃i

(0) = 1 + k√
4π2G

, (C3)

∂fi

∂c̃j �=i

(0) = kβ

4π2G|vG,j − vG,i | ,

∂2fi

∂c̃2
i

(0) = 2kξ√
4π2G

,

∂2fi

∂c̃2
i

(0) = 2kβξ

4π2G|vG,j − vG,i | , (C4)

∂2fi

∂c̃k �=j ∂c̃j

(0) = 0,

we find Eq. (20):

fi(c̃i) �
(

1 + k√
4π2G

)
c̃i

+ kβ

4π2G
�
j �=i

c̃j

|vG,j − vG,i | = 1, (C5)

with the neglected nonlinear term being

1

2

2G

�
k=1

2G

�
j=1

∂2fi

∂c̃k∂c̃j

(0)c̃k c̃j

= kξ√
4π2G

c̃2
i + kβξ

4π2G
�
j �=i

c̃2
j

|vG,j − vG,i | . (C6)

APPENDIX D: SUFFICIENT CONDITION
FOR SOLUTION

Eq. (20) has a unique solution if the linear system is
nonsingular. Writing the matrix A of coefficients of the system,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 + k Rak

l|vG,2−vG,1| · · · Rak

l|vG,2G −vG,1|
Rak

l|vG,1−vG,2| 1 + k · · · Rak

l|vG,2G −vG,2|
...

...
...

...
Rak

l|vG,1−vG,2G | · · · · · · 1 + k

⎞
⎟⎟⎟⎟⎟⎠

= k

l

⎛
⎜⎜⎜⎜⎜⎝

l 1+k
k

Ra

|vG,2−vG,1| · · · Ra

|vG,2G −vG,1|
Ra

|vG,1−vG,2| l 1+k
k

· · · Ra

|vG,2G −vG,2|
...

...
...

...
Ra

|vG,1−vG,2G | · · · · · · l 1+k
k

⎞
⎟⎟⎟⎟⎟⎠ . (D1)

According to a theorem due originally to L. Levy [38] on
invertibility of matrices, A will be invertible if it is diagonally
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dominant, i.e., it suffices that

l
1 + k

k
> Ra �

i �=j

1

|vG,j − vG,i | (D2)

holds for all i = 1, . . . ,2G. Let

γi = �
i �=j

1

|vG,j − vG,i | , (D3)

then define γmax = maxi=1,...,2G γi . Since Eq. (D2) is then
satisfied if

l(1 + k)

Rak
> γmax, (D4)

we thus arrive at the form

max
i=1,...,2G

{
�
i �=j

1

|vG,j − vG,i |
}

<
l(1 + k)

k

√
4π2G

Aa

. (D5)
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