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Scaling and asymmetry in an electromagnetically forced dipolar flow structure
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A dipolar flow structure is experimentally studied in a layer of salt solution driven by time-independent
electromagnetic forcing. In particular, the response of the flow to the forcing is quantified by measuring the
Reynolds number Re as a function of the Chandrasekhar number Ch (the ratio of Lorentz forces to viscous
forces) and δ (the ratio of vertical to horizontal length scales of the flow domain). In agreement with theoretical
predictions, two scaling regimes are found: Re ∼ Ch/π2 (viscous regime) and Re ∼ Ch1/2δ−1 (advective regime).
The transition between the two regimes at Ch1/2δ ∼ π 2 is reflected in the flow geometry in the form of an
asymmetry of the dipolar flow structure.
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I. INTRODUCTION

Electromagnetic (EM) forcing of conducting fluids is
nonintrusive, and for this reason it is an unparalleled tool
for the study of a large variety of flows. In particular, EM
forcing has been used in shallow layers of electrolytes to study
quasi-two-dimensional turbulence [1,2], shallow vortices [3],
stability of shear flows [4], fully controllable multiscale
flows [5], and the principles of stretching and folding in
quasi-two-dimensional flows [6]. In addition, research of this
type of forcing has been motivated by its applications on EM
mixing and stirring in metallurgy [7] and the enhancement of
turbulent heat transfer [8].

Due to the many uses of EM forcing, it is of interest to
characterize the response of the flow to the forcing. In the
case of a shallow layer of electrolyte, Bondarenko et al. [9]
considered, in the first reported experiments of this kind, that
the induced fluid velocity is proportional to the magnitude of
the EM forcing. Tabeling et al. [10] also observed a linear
dependence but only up to a well-defined forcing threshold.
Above this threshold, it was observed that the rate of increase of
the velocity with the forcing is smaller. Despite its limitations
at relatively strong forcing magnitudes, the linear relation-
ship has been used in many theoretical studies; see, e.g.,
Refs. [11,12].

In more recent experiments on a system of four vortices,
the maximum velocity was measured as a function of the
forcing, and it was found that the deviations from the linear
dependence were small [13]. However, the same experimental
data were recently reanalyzed [14], and for relatively high
forcing magnitudes, the maximum velocity seemed to scale
with the forcing to the power 2/3 rather than linearly;
the latter behavior is in agreement with theoretical results
where secondary motions and different vertical velocity
profiles were taken into account. Figueroa et al. [15] examined
the structure of a laminar dipolar vortex driven by a time-
independent EM force in a shallow layer of electrolyte. They
observed that the maximum velocity in the flow as a function
of the forcing magnitude fits a second order polynomial.
However, no physical reason was given for such a fit.

It is the aim of the present article to determine experi-
mentally the scaling of the magnitude of the flow velocity in
a shallow layer of electrolyte forced electromagnetically as

a function of the relevant parameters: the forcing magnitude
(which is characterized by the Chandrasekhar number Ch) and
the aspect ratio δ of the depth to the horizontal scale of the
flow. In contrast with previous studies, we extend the parameter
regime to large forcing magnitudes and focus on the underly-
ing physical mechanisms associated with the different flow
behaviors. We quantify the response of the flow by measuring
the horizontal velocity field of a simple electromagnetically
forced flow—a dipolar flow structure—while exploring the
parameter space. Two well-defined regimes were observed:
the linear regime discussed previously and a regime where the
velocity scales with the magnitude of the forcing to the power
1/2. Furthermore, it is found that the flow depends only on the
parameter Chδ2 for the whole range of parameters studied.

The article is organized as follows. The experimental setup
is described in Sec. II. Section III is devoted to the dimensional
analysis of the problem. Section IV presents the experimental
results. Then, in Sec. V, the implications for previous and
future work are discussed, and finally, the conclusions are
outlined in Sec. VI.

II. EXPERIMENTAL SETUP

The experimental setup consists of a water tank with a
base of 30 × 50 cm2, which is filled with a salt solution with
a concentration of 178 g/l to a depth H and covered with
a transparent perspex lid to avoid free-surface deformations
(Fig. 1). To force the flow, two titanium electrodes (coated
with Ir-MMO) are placed along two opposite sides of the tank,
and three 28 × 10 × 1 cm3 rectangular permanent magnets
are placed 1.1 cm underneath the tank bottom. The electrodes
are placed in compartments which are connected to the mea-
surement area of the tank by a system of thin horizontal slits
through which the electric current easily passes. The system
of slits isolates the chemical reaction products generated at the
electrodes from the flow to be studied. As shown in Fig. 2,
the magnet at the center has its north pole facing up, while
the two side magnets have their north pole facing down. A
constant electric current is applied through the fluid using a
power supply with a precision of 10−2 A. Due to the interaction
of the electric current and the magnetic field of the magnets, a
Lorentz force,

F = J × B, (1)
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FIG. 1. Side view of the experimental setup. The hatched rectan-
gles denote the magnets below the tank.

is generated (with J the current density and B the magnetic
field), by which the fluid is set in motion.

We define a Cartesian coordinate system x = (x,y,z) with
the origin at the center of the tank, x running parallel to
the electrodes, y across the tank between the electrodes, and
z in the vertical direction. Furthermore, we define the flow
velocity v = (u,v,w). We consider the electric current to be
homogeneous and running only in the y direction, while the
main component of the magnetic field is in the z direction.
Hence, the principal component of the Lorentz force is in the
x direction. To characterize the fluid, we consider two of its
properties: the kinematic viscosity ν = 1.544 × 10−6 m2s−1

[16] and the density ρ = 1190 kg m−3, which are kept constant
for the experiments reported here.

We consider three characteristic length scales of the flow:
the length of the tank in the x direction, Lx = 30 cm, the
distance between the centers of the two lateral magnets,
Ly = 30 cm, and the depth of the fluid H , which was varied
for different experiments, taking the values H = 1.2, 2.0 or
3.2 cm. The magnitude of the Lorentz force is characterized by
[ J × B] = IB/(LxH ), where the brackets denote the order of
magnitude, I is the magnitude of the electric current through
the fluid, and B is the magnitude of the magnetic field at
mid-depth above the center of each magnet.

Particle image velocimetry (PIV) was used to measure the
horizontal velocity field of the flow in a plane at mid-depth. The
fluid was seeded with 106–150 μm polymethylmethacrylate
(PMMA) particles which were illuminated at mid-depth with
a double pulsed Nd:YAG laser sheet. Images of the central
30 × 30 cm2 area of the tank (see Fig. 2) were taken, using a
Megaplus ES 1.0 camera, at different time intervals (ranging
from 10 ms to 1.3 s) depending on the maximum velocity
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FIG. 2. Top view of the experimental setup. The dashed lines
represent the position of the three magnets, and the dotted lines
represent the limits of the measurement area.

in the flow. These images were then cross-correlated using
PIV software from PIVTEC GmbH, Göttingen, Germany, to
calculate the horizontal velocity field.

To characterize the response of the flow, we focus on the
velocity in the x direction—i.e., in the direction of the principal
component of the forcing—at y = 0. From now on, we refer
to this velocity distribution as ũ(x) which, as we shall see,
corresponds to the velocity distribution along the symmetry
axis of the dipolar structure at y = 0. Furthermore, we consider
the mean value of this distribution

〈ũ(x)〉 ≡ 1

Lx

∫ Lx/2

−Lx/2
ũ(x) dx (2)

as the characteristic velocity scale.

III. DIMENSIONAL ANALYSIS

Dimensional analysis shows that four independent dimen-
sionless parameters can be defined for this flow problem. The
geometry of the tank is represented by two aspect ratios:

δ ≡ H

Lx

and δL ≡ Lx

Ly

, (3)

whereas the Chandrasekhar number

Ch ≡ IBH

ρν2
(4)

characterizes the forcing and represents the ratio of the
Lorentz force to the viscous force. Note that the definition
of Ch introduced here differs from the one originally used
by Chandrasekhar [17]. In the original definition, the current
density J is considered to be primarily driven by v × B
in Ohm’s law, but in the present work, J is given by J =
I/(LxH )ĵ (with ĵ the unit vector in the y direction) since the
induced effects can be neglected and the imposed Lorentz force
dominates in electrolytes [15]. This is not the case for other
conductive fluids such as liquid metals (see, e.g., Ref. [18]).

A similar definition for the ratio of Lorentz to viscous
forces (4) is commonly referred to as the Reynolds number
based on the external force (see, e.g., Ref. [19]). However,
the term Reynolds number is reserved in this study for the
parameter characterizing the response of the flow, which is here
defined as

Re ≡ 〈ũ〉Lx

ν
, (5)

with 〈ũ〉 as the mean velocity and which represents the ratio
of inertia forces to viscous forces.

In the experiments, the aspect ratio δ was set by the depth of
the fluid, yielding the values δ = 0.040, 0.067, and 0.107. For
each value of δ, the Chandrasekhar number Ch was varied by
changing the magnitude of the electric current. The magnitude
of the magnetic field at mid-depth above the center of each
magnet B then takes the values B = 0.018, 0.017, and 0.015 T
for the different values of δ, respectively. In the experiments
described here, the horizontal aspect ratio δL = 1 is kept
constant.

We consider the flow to be governed by the Navier-Stokes
equation including the Lorentz force

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p + ρν∇2v + J × B, (6)
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where p is the pressure. From here on, the first term will be
neglected since the flow is stationary in the range of parameters
studied.

To analyze the possible balances of forces in the flow, we
consider the order of magnitude of each term in (6), where
the pressure term is considered to be of the same order as the
largest term in the equation. From this analysis, two different
regimes are obtained.

A. Viscous regime

Due to the small depth, and hence, the predominance of
friction at the bottom and the lid, we assume initially a
Poiseuille-like vertical profile for the horizontal velocity field,
i.e.,

u(x,y,z) = u∗(x,y) sin

(
πz

H

)
, (7)

where sin(πz/H ) is the first term of the Fourier expansion of
a Poiseuille profile. In this way, the order of magnitude of the
viscous force is given by

[ρν∇2v] ≈
[
ρν

∂2v

∂z2

]
∼ π2ρν〈ũ〉

H 2
, (8)

considering that ∂/∂z 	 ∂/∂x.
The magnitude of the Lorentz force is given by

[ J × B] = IB

LxH
, (9)

as mentioned before.
For relatively weak forcing and correspondingly small

Reynolds numbers, inertia can be neglected, and the dominant
balance is between the Lorentz and the viscous forces, i.e.,

IB

LxH
∼ π2ρν〈ũ〉

H 2
, (10)

which is equivalent to

Re ∼ Ch

π2
. (11)

B. Advective regime

The order of magnitude of the advective term is given by

[(v · ∇)v] ∼ 〈ũ〉2

Lx

, (12)

where the velocity is considered to be of order 〈ũ〉 and Lx is
taken as the characteristic length scale since advection takes
place mainly in the horizontal plane.

For relatively strong forcing and correspondingly large
Reynolds numbers, we may assume that the Lorentz force
is of the same order as the inertia forces, so

IB

LxH
∼ ρ

〈ũ〉2

Lx

, (13)

which is equivalent to

Re ∼ Ch1/2

δ
. (14)

In addition, we should recall that the flow is stationary, and
hence, the input of energy due to the forcing has to be balanced

by viscous dissipation. This means that the viscous forces in
(6) must be also of the same order as the Lorentz forces,
which cannot be achieved if the velocity has a Poiseuille-like
vertical profile. That is, the presumption of (7) that the vertical
gradient of the velocity is proportional to 〈ũ〉/H is not valid
in the advective regime. Hence, we assume that the velocity
varies on a scale h such that

[ν∇2v] ≈
[

ν

h2

∂2v

∂z′2

]
∼ ν〈ũ〉

h2
, (15)

where z′ = z/h and h < H/π . Finally, the balance of inertia
and viscous forces yields the typical value

h ∼ H

Re1/2δ
(16)

for the vertical length scale h.

C. Transition between the viscous and the advective regimes

The transition between the viscous regime and the advective
regime is characterized by a change in the scaling of the
Reynolds number as a function of the forcing. In this transition,

Re ∼ Ch1/2

δ
∼ Ch

π2
, (17)

which implies that the transition occurs when

Reδ2 ∼ Ch1/2δ ∼ π2. (18)

Note that, at this point, the critical value for the length scale h,

h ∼ H

π
, (19)

can be obtained by comparing the magnitudes of the viscous
forces in the advective and viscous regimes.

It is then convenient to define the normalized length scale

h∗ = πh

2
, (20)

which can be regarded as the thickness of the boundary layers
that form next to the bottom and the lid in the advective regime.
This would imply that the transition occurs when the thickness
of the boundary layer h∗ is of the same order of half the total
depth H , i.e., when

h∗

H
∼ π

2Re1/2δ
∼ 1

2
, (21)

and that in the advective regime, the thickness of the boundary
layer h∗ is smaller than half the total fluid depth.

IV. EXPERIMENTAL RESULTS

Figure 3(a) shows characteristic flow lines tangential
to the instantaneous horizontal velocity components in the
measurement plane for Ch = 1.3 × 103 and δ = 0.067. As
can be seen, the forcing generates a dipolar structure with
a symmetry axis y = 0. Apparently, for this value of Ch,
the dipole is also nearly symmetric with respect to the
line x = 0.

Figure 3(b) shows the flow lines for Ch = 8.8 × 105, with
the other parameters unchanged. A clear difference is observed
between the flow lines in Figs. 3(a) and 3(b). In particular, the
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FIG. 3. Flow lines tangential to the horizontal velocity compo-
nents at mid-depth in the central 30 × 30 cm2 region of the tank for
(a) Ch = 1.3 × 103, (b) Ch = 8.8 × 105, and δ = 0.067. The dashed
line represents the line x = 0.

flow lines for strong forcing spiral out of the vortex cores, in
contrast with the flow lines for weak forcing, which are closed.
This suggests that there is a strong horizontal divergence for
large Ch values. This divergence is due to pumping of fluid
from the Bödewadt boundary layers at the bottom and at the
lid to the inside of the vortex cores [20]. In addition, there
is a strong asymmetry with respect to the line x = 0 for
Ch = 8.8 × 105. This asymmetry can be seen, for example,
in the positions of the centers of the two cells which are no
longer close to x = 0 but displaced in the positive x direction.

To quantify some of the differences in the flow at different
values of the forcing, we focus on ũ(x), the velocity distribu-
tion along the symmetry axis of the dipolar structure at y = 0.
Figure 4 shows the velocity distributions ũ(x) for different
values of Ch and δ = 0.04. The magnitude of ũ increases
with increasing Ch value, and the asymmetry in this velocity
distribution with respect to x = 0 becomes more pronounced
for large Ch values.

Measured values of the Reynolds number Re, based on (5),
are plotted in Fig. 5 as a function of the Chandrasekhar number
Ch for different values of the aspect ratio δ. The axes have been
rescaled with δ2, and as can be seen, the curves for the different
values of δ collapse. Furthermore, the experimental results
are compared with the theoretical predictions Re ∼ Ch/π2

and Re ∼ Ch1/2/δ. The graph clearly shows the existence of
the two characteristic scaling regimes: (i) Re ∼ Ch/π2 for
Ch1/2δ < π2 and Reδ2 < π2, where the inertia forces can be
neglected, and (ii) Re ∼ Ch1/2/δ for Ch1/2δ = Reδ2 > π2,
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FIG. 4. Measured velocity distributions ũ(x) at y = 0 for
different Ch values and δ = 0.04.
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FIG. 5. Magnitude of the response of the flow as a function of
the forcing. Measured values of Reδ2 as a function of the parameter
Chδ2 for various values of Ch, and δ = 0.040 (©), δ = 0.067 (�),
and δ = 0.107 (�). The dashed line represents Re = Ch/π2 (viscous
regime) and the dotted line represents Re = Ch1/2/δ (advective
regime). The intersection of the dashed and dotted lines represents
the transition point Reδ2 = Ch1/2δ = π 2.

where the Lorentz and the inertia forces are of the same
order. Furthermore, a rather sharp transition is observed at
Reδ2 ∼ Ch1/2δ ∼ π2.

The collapse of the curves in Fig. 5 for different δ

values indicates that the only two relevant parameters of the
problem are Chδ2, as the input parameter, and Reδ2, as the
response parameter. Note that Reδ2 is inversely proportional
to the square of the boundary layer thickness h∗ defined
in (20). This suggests that the dynamics of the flow are
governed by the boundary layer dynamics. In a recent study
of decaying shallow swirl flows [21], it was shown that such
flows are also characterized by the nondimensional parameter
Reδ2.

It can also be observed in Fig. 5 that for the deepest layer
(δ = 0.107), there is a larger deviation with respect to the curve
Re = Ch/π2 as compared to the results from experiments
with shallower layers. This deviation can be explained by the
larger importance of horizontal viscous diffusion compared
to the vertical viscous diffusion as the depth of the layer is
increased.

The existence of the two scaling regimes is a very robust
characteristic of the flow studied in the present article: the
same scaling was found when considering additional velocity
data at other locations instead of only the velocity along the
symmetry axis of the dipole at y = 0.

To quantify the asymmetry in the flow, we define the ratio
of the Reynolds number Re+ characterizing the flow at x > 0
and the Reynolds number Re− for x < 0:

q ≡ Re+

Re− =
∫ Lx/2

0 ũ(x) dx∫ 0
−Lx/2 ũ(x) dx

, (22)

which is plotted in Fig. 6 as a function of Chδ2 for
δ = 0.04, 0.067, and 0.0107. A reasonably good collapse of
the experimental data for the three values of δ is observed,
supporting the previous result that the flow only depends on
the values of Chδ2. For Chδ2 � 30, the asymmetry parameter
q ≈ 1. This suggests that the flow is almost symmetric with
respect to x = 0. As the value of Ch increases, q sharply
increases until Ch ≈ 103. For Ch � 103, the asymmetry in the
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FIG. 6. Measured asymmetry parameter q as a function of
the input parameter Chδ2 for δ = 0.04 (©), δ = 0.067 (�), and
δ = 0.107 (�). The dashed line represent the transition value
Chδ2 = π 4.

flow remains almost constant with q ≈ 1.7. This saturation of
q is probably due to the presence of the lateral boundary at
x = Lx/2 since the maximum of ũ(x) must remain at a finite
distance away from this boundary because ũ(Lx/2) = 0.

The transition between q ≈ 1 and q ≈ 1.7 corresponds to
the change in scaling between the viscous and the advective
regimes shown in Fig. 5. Even though the change in the
asymmetry is smoother than the change in the scaling, it
can be concluded that the increase in asymmetry is due to
advection, which gradually becomes more important as the
forcing magnitude is increased.

V. IMPLICATIONS FOR PREVIOUS AND FUTURE WORK

Shallow flows are generally modeled with the quasi-two-
dimensional Navier-Stokes equation [4]:

∂vH

∂t
+ (vH · ∇H )vH = − 1

ρ
∇Hp + λvH + f

ρ
, (23)

and the continuity equation

∇H · vH = 0, (24)

where vH is the horizontal velocity, ∇H is the horizontal
gradient operator, f is an external force, and λ is a constant
known as the external friction parameter or the Rayleigh
friction parameter. Over the years, many different expressions
have been suggested for the friction parameter: λ = 2ν/H 2

[22], λ = π2ν/(4H 2) [21,23], or λ = 2κν/H 2, where κ is a
fitting parameter that depends on the velocity field [4,9,13].
In these cases, H is the total depth of the fluid between a
solid bottom and a free surface instead of between a solid
bottom and a solid lid, as considered in the current article.
In general, a good agreement has been found between theory
and experiments. These observations have led to believe that
the use of a linear damping term to parametrize the effect of
bottom friction in shallow flows is well supported.

However, in the current article, we have found the well-
defined limit Chδ2 = π4 for the use of (23) and (24) to model
electromagnetically forced shallow flows. Above this limit, the
damping rate due to bottom friction depends on the thickness
of the boundary layer which, in turn, depends on the magnitude
and distribution of the horizontal flow velocity.

Previous experiments have been usually carried out in fluid
layers with a depth H ≈ 0.2–0.3 cm, while the fluid depth is
one order of magnitude larger in the experiments presented in
the current article. Despite this difference, the corresponding
nondimensional parameters have similar values, implying that
the flows are dynamically similar.

In previous experiments on electromagnetically shallow
flows, only the linear relationship between the forcing and
the velocity has been reported, even though small deviations
for strong forcing were also observed (see, e.g., Ref. [10]). This
implies that these experiments where performed mostly within
the viscous regime, thus supporting previous experimental
results.

Due to the success of (23) and (24) in describing shallow
flows, this system of equations has been solved numerically
to model an electromagnetically forced array of vortices in
a shallow layer of an electrolyte [24]. In these simulations,
the magnitude of the forcing was varied while λ was kept
constant. For small forcing magnitudes, a good agreement
with laboratory experiments was obtained, and a threshold
equivalent to Chδ2 = π4 at which the vortices changed shape
was observed. However, for stronger forcing magnitudes the
numerical simulations started to differ significantly from the
experimental data. This discrepancy can be easily explained
since above the threshold Chδ2 = π4 the damping rate depends
on the forcing, and λ is no longer a constant.

In addition, for Chδ2 > π4, the flow lines tangential to the
horizontal velocity describe spirals originating at the vortex
cores. This shape suggests a strong horizontal divergence, in
disagreement with (24). In fact, it is for this type of flows with
curvilinear streamlines and an additional secondary motion
that Ponomarev et al. [14] proposed that Re ∝ Ch2/3. However,
in our experiments, a clear regime with this scaling was not
observed.

It has been noticed in previous work that experiments in a
single shallow layer have some shortcomings for the study of
two-dimensional turbulence. This motivated experiments in a
two-layer configuration [25,26], which were later considered
as ideal to study two-dimensional flows. The problem of
the response of the flow to EM forcing in these two-layer
experiments is certainly more complex than in a single layer,
e.g., there is a larger number of nondimensional parameters, a
deformable interface, and a deformable free-surface. However,
the results presented in the current article indicate that there is
also a dynamical limit for considering a two-layer shallow-flow
as quasi-two-dimensional.

VI. CONCLUSIONS

We studied experimentally the response of a generic
electromagnetically forced flow. This response was quantified
by measuring the Reynolds number Re as a function of the
Chandrasekhar number Ch (the ratio of Lorentz forces to
viscous forces). We found two scaling regimes: Re ∼ Ch/π2

(viscous regime) and Re ∼ Ch1/2δ−1 (advective regime), with
a transition at Reδ2 ∼ Ch1/2δ ∼ π2. This scaling is in good
agreement with our theoretical predictions.

The transition between the two regimes is related to a
qualitative change of the vertical velocity profile: from a
Poiseuille-like profile in the viscous regime to a profile
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composed, in the advective regime, of an inviscid interior and
two boundary layers, one at the bottom and one at the lid, each
with a thickness h∗ = πH/(2Re1/2δ). This transition marks
the upper limit for the magnitudes of the forcing and the ve-
locity where the quasi-two-dimensional Navier-Stokes equa-
tions (23) and the two-dimensional continuity equation (24)
can be used to model shallow flows. Furthermore, it was found
that the flow is characterized by a single parameter Reδ2. Such
a conclusion had already been reached by Dolzhanskii [27]
for the viscous regime where the flow is described by (23) and
(24). However, it has been shown in the current article that this
dependence extends to the advective regime.

In the particular case of the dipolar structure studied here,
nonlinear effects are reflected in the form of an asymmetry due
to the self-advection of the two vortices composing the dipole,

as it had been previously observed [13,15]. These nonlinear
effects, in the form of vortex-vortex interactions, can be already
observed for Chδ2 � 30 as inertia forces become increasingly
important, and they are predominant in the advective regime
when Re ∼ Ch1/2δ−1, i.e., for Chδ2 > π4.

The current article presents new insight into the structure
and dynamics of electromagnetically forced flows in a shallow
layer of electrolyte. The results presented can serve as a
guideline for future experimental and numerical work on, for
example, shallow flows, quasi-two-dimensional turbulence, or
the stability of quasi-two-dimensional spatially periodic flows.
Another interesting line for future research is the study of the
response of the flow to the electromagnetic forcing in other
conductive fluids such as liquid metals, which are of interest
in metallurgical processing applications.
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