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Resonant plankton patchiness induced by large-scale turbulent flow
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Here we study how large-scale variability of oceanic plankton is affected by mesoscale turbulence in a
spatially heterogeneous environment. We consider a phytoplankton-zooplankton (PZ) ecosystem model, with
different types of zooplankton grazing functions, coupled to a turbulent flow described by the two-dimensional
Navier-Stokes equations, representing large-scale horizontal transport in the ocean. We characterize the system
using a dimensionless parameter, γ = TB/TF , which is the ratio of the ecosystem biological time scale TB and the
flow time scale TF . Through numerical simulations, we examine how the PZ system depends on the time-scale
ratio γ and find that the variance of both species changes significantly, with maximum phytoplankton variability
at intermediate mixing rates. Through an analysis of the linearized population dynamics, we find an analytical
solution based on the forced harmonic oscillator, which explains the behavior of the ecosystem, where there is
resonance between the advection and the ecosystem predator-prey dynamics when the forcing time scales match
the ecosystem time scales. We also examine the dependence of the power spectra on γ and find that the resonance
behavior leads to different spectral slopes for phytoplankton and zooplankton, in agreement with observations.
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I. INTRODUCTION

Phytoplankton species play a key role in the global carbon
cycle. Their position at the bottom of the marine food chain
means that all higher trophic levels, from tiny zooplankton
crustaceans such as copepods to ocean giants such as the
blue whale, all depend on phytoplankton in order to survive.
Phytoplankton obtain energy through the process of photosyn-
thesis (i.e., synthesizing carbohydrates from carbon dioxide
and nutrients by means of sunlight), and while most individual
phytoplankton cannot be seen with the naked eye, their global
abundance within the ocean is so great that they account for
roughly half of the total biological production on the planet [1].
In order to perform photosynthesis, phytoplankton usually
resides in the uppermost layer (∼100 m) of the ocean, known
as the euphotic layer, where light levels are sufficiently high
for photosynthesis to occur; however, typically the nutrients
that phytoplankton require often reside in deeper waters.
Phytoplankton generally have limited or no swimming ability
and so are at the mercy of the ocean circulation, which also
affects the transport of nutrients, resulting in the complex
dynamics of the entire plankton ecosystem.

Many observations of phytoplankton have revealed strong
heterogeneity (patchiness) in spatial distribution over a wide
range of scales [2,3]. Microscale patchiness has been observed
from micrometers to centimeters [4,5], and various mecha-
nisms for the clustering and aggregation of the microorganisms
have been proposed [6–9]. Here, we focus on the large-scale
variability of plankton, on scales from kilometers to several
hundreds of kilometers , that is well known from ocean satellite
observations. On these scales, the plankton population can
be described by a continuous concentration field with its
spatial distribution influenced by both physical and biological
factors, the main ones being availability of light, availability
of nutrients, and the advection by ocean currents. The oceanic
flow responsible for the advection of plankton on scales of
1–500 km is the horizontal transport by mesoscale eddies
that is qualitatively similar to two-dimensional (2D) turbulent
flows, which in the enstrophy cascade regime have a char-

acteristic structure dominated by coherent vortices [10,11].
When favorable conditions are encountered, phytoplankton
can undergo a rapid population growth usually referred to as
“blooms.” Such heterogeneity was shown to have a strong
effect on plankton productivity [12]. How the interplay be-
tween biological and physical processes controls the dynamics
and spatial structure of plankton ecosystems has been studied
extensively over the past decades and is still an open question.

The effect of horizontal turbulent stirring on large-scale
patchiness has been examined in many previous studies (see [3]
and [13] for reviews) using a number of different approaches
to the problem. Some studies have focused on the analysis of
the population dynamics described by the ecosystem equations
[14,15], while others examined the power spectra to understand
how phytoplankton and zooplankton patchiness is affected by
advection at different spatial scales [16–19]. One approach
taken in [20] looked at how to parametrize the role of horizontal
advection relative to biological effects in a simple phytoplank-
ton model with a spatially varying carrying-capacity field (see
also [21]). The authors characterized the system in terms of a
dimensionless parameter, γ = TB/TF , which is the ratio of the
typical ecosystem biological time scales TB (such as the inverse
of the growth rate of phytoplankton) and the typical flow time
scales TF (such as the average eddy rotation period), and
examined how the statistical properties of the phytoplankton
depend on the time-scale ratio parameter γ . It was found that
changes in the ratio of these time scales affect both the spatial
structure and the total biomass (average concentration) of the
plankton species and that the system can be characterized by
an effective carrying capacity, which changes with γ . It was
also shown that in the presence of predation (grazing) by a
constant zooplankton population this type of stirring effect can
produce a dramatic change in the total biomass by inducing
sharp transitions (regime shifts) when γ is modified by some
external factors [21].

Though these studies were performed using only a single-
component phytoplankton model, nevertheless they provided
a heuristic understanding of how changes in the rate of
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horizontal advection can affect the average phytoplankton
concentration. Here, we extend this approach using a more
complex ecosystem model, a phytoplankton-zooplankton
(PZ) model with an advected carrying capacity, and study
how the transfer of spatial variability of the environment
through the trophic levels is controlled by the biological
and advective time scales. We focus particularly on possible
mechanisms through which advection by the same turbulent
flow can have different effects on the heterogeneity of
the phytoplankton and zooplankton fields, respectively, as
suggested by observations. In Sec. II, we discuss the coupled
fluid-ecosystem model that we study. In Sec. III, we present the
results of our numerical simulations, followed by an analysis
of the equations in Sec. IV and the power spectra in Sec. V.
Finally, we discuss the implications of our results in Sec. VI.

II. MODEL

Here, we consider a PZ model coupled to a carrying-
capacity field and advection by a turbulent flow:

∂K

∂t
+ u · ∇K = α[Kb(x) − K], (1a)

∂P

∂t
+ u · ∇P = rP

(
1 − P

K

)
− gG(P )Z, (1b)

∂Z

∂t
+ u · ∇Z = νgG(P )Z − μZ, (1c)

where P ≡ P (x,t), Z ≡ Z(x,t), and K ≡ K(x,t) are the phy-
toplankton, zooplankton, and carrying-capacity (maximum
phytoplankton concentration attainable within that fluid parcel
in the absence of grazing) concentrations respectively, r is the
maximum phytoplankton growth rate, g is the grazing rate,
G(P ) is the grazing function, ν is the grazing efficiency, μ

is the zooplankton mortality rate, and u(x,t) = (u,v) is the
two-dimensional horizontal flow velocity field. The carrying
capacity represents the nonuniform nutrient supply (upwelling,
storm surges, etc.), which is advected by the flow but has a
fixed background distribution, for which we choose a simple
qualitative form, Kb(x) ≡ K0 + δ cos(x + y), as was used in
previous works [16,18]. However, the results are independent
of the exact form of Kb. The possible time dependence of Kb(x)
is also neglected, but this is not essential since advection by the
turbulent flow generates a time-dependent carrying-capacity
field, therefore introducing further time dependence in Kb

does not lead to qualitatively different behavior. For the grazing
function, we consider three different functional forms that have
been widely used in plankton ecosystem models: (i) G(P ) =
P , (ii) G(P ) = P/(S + P ), and (iii) G(P ) = P 2/(S2 + P 2),
where the parameter S is the half saturation constant. For
case (i), there is a linear response of predator to prey density.
The cases (ii) and (iii) are the standard Holling type II and
Holling type III functional forms respectively [22–25]. Holling
type II models the fact that predators can only consume prey at
a finite maximum rate and therefore saturation occurs when the
amount of prey grows. This is also the case for Holling type III;
however, at small prey density, there is a quadratic response,
meaning that the predators have a low foraging efficiency at
low prey density.

The flow field, u, is obtained by solving the 2D incompress-
ible Navier-Stokes equations with forcing and dissipation [26]:

∂ζ

∂t
+ u · ∇ζ = F + D, (2)

where ζ ≡ ∂v/∂x − ∂u/∂y is the vorticity field, which is a
scalar in 2D flows, D is the dissipation, and F is the forcing.
The dissipation is a combination of hyperviscosity of the form
Dhi = −νv∇8ζ and linear friction, given by Dlo = −αζ , that
prevents accumulation of energy at the largest scales via the
inverse cascade. The forcing is applied in spectral space at
the large-scale wave number of kF = 10 (i.e., at one tenth
of the domain size) and has a fixed amplitude but with a
random phase. This forcing inputs energy at large scales, which
represents the typical size of mesoscale eddies of the order
of 50 km [27]; thus our domain size corresponds to roughly
500 km in the ocean. The energy spectrum has a slope close
to k−3 downscale of the forcing (see [20]).

Following the approach of [20], we introduce the time-scale
ratio defined as the nondimensional parameter γ ≡ TB/TF ,
where TB is the biological time scale defined as the inverse
of the maximum phytoplankton growth rate (i.e., TB ≡ 1/r),
and TF is the flow time scale, which is defined as TF = L/U ,
where L is the forcing length scale L ≡ 2π/kf and U is the
root-mean-square (rms) flow velocity. Thus, γ is given by

γ = U

rL
, (3)

and we can use this to write the ecosystem dynamics in
dimensionless form as

∂P

∂t
+ u · ∇P = 1

γ

[
P

(
1 − P

K

)
− g′G(P )Z

]
,

(4)
∂Z

∂t
+ u · ∇Z = 1

γ
[ν ′g′G(P )Z − μ′Z],

where the parameters have been rescaled by the growth rate r ,
i.e. μ′ = μ/r , g′ = g/r etc. From now on, we drop the primes
on the rescaled parameters, and they are chosen to be g = 2,
ν = 0.02, μ = 0.02, S = (2/3)K0, and α = 0.05. Here, we
set the characteristic flow time scale TF to unity and vary the
time-scale ratio γ .

The ecosystem equations, (IIa) and (4), are solved on a
doubly periodic domain, using a semi-Lagrangian scheme
with a grid resolution of 1024 squared. The advecting fluid
velocity is obtained by solving Eq. (2) using the pseudospectral
method. A fourth-order Runge-Kutta scheme is used for the
time integration of all the equations. The plankton dynamics
is solved within fluid parcels, whose motion are tracked using
the midpoint method and then calculated on grid points using
bicubic interpolation (see [28] and [29] for details of the
semi-Lagrangian method). We do not add diffusion explicitly
in our model, but some numerical diffusion is always present as
a result of using interpolation in the semi-Lagrangian scheme
as is discussed in [30].

In the next section, we show the results obtained by
performing a number of simulations for a large range of
the parameter γ . The Navier-Stokes equations are integrated
until the energy reaches a statistically steady state. We then
use this as the initial flow field and integrate the coupled
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FIG. 1. (Color online) Snapshot of the carrying-capacity field
K(x,t), where blue (dark gray) and red (light gray) indicate low
(Kmin = 1) and high (Kmax = 2) concentrations respectively.

fluid-ecosystem equations until the PZ system reaches a
statistically steady state.

III. NUMERICAL RESULTS

In Fig. 1, we show a snapshot of the carrying-capacity field,
K(x,t), obtained after evolving Eq. (1a). Although the individ-
ual fluid particles are advected around the whole domain by
the flow, the carrying-capacity field looks qualitatively similar
to this throughout the time evolution, with the overall structure
close to the background carrying-capacity field Kb(x).

Figure 2 shows snapshots of the phytoplankton (top row)
and zooplankton field (bottom row) after they have reached
statistical equilibrium for different values of γ in the case
of the linear grazing function. For the slow-mixing case (γ =
0.004), the phytoplankton field is homogeneous, showing little
variation in concentration, whereas the zooplankton field has

large heterogeneity. This patchiness in the zooplankton field
is associated with the carrying-capacity field shown in Fig. 1.
As the rate of mixing increases (γ = 0.4), greater patchiness
is seen in the phytoplankton field. However, this patchiness
passes a maximum value and decreases with further increases
in γ . On the other hand, the zooplankton field patchiness
is maximum when there is no mixing and decreases as γ

increases. In Fig. 3, we show the case with Holling type III
functional response, which is qualitatively similar to the linear
grazing case (also, similar behavior is observed for the Holling
type II case, not shown here).

The average and variance of the phyto- and zooplankton
fields as a function of γ are shown in Figs. 4 and 5, respectively.
Overall, there is only a very weak change in the mean
concentrations with γ . However, note the nonmonotonic de-
pendence of phytoplankton variance on γ , indicating strongest
patchiness for intermediate γ values. This dependence is
typical of resonance phenomena which have been observed
in many systems. In fact, this phenomenon was seen in a
previous study of a PZ model where resonance occurred
between random fluctuations (noise) in the system and external
periodic forces [31]. Here, however, the resonance is linked to
the relative advection and ecosystem time scales (γ ). In the
following section, we analyze the governing equations in order
to understand this behavior.

IV. ANALYSIS

As shown previously for this type of models (see, e.g.,
[20,32]), the average concentration can be calculated for the
two limiting cases of fast and slow mixing, that is, large
and small γ , respectively. In the simple case of γ = 0, the
advection term vanishes, and by neglecting weak diffusion the
steady state can be obtained as the local equilibrium:

G(P ∗) = μ

νg
, Z∗ = μP ∗

ν

(
1 − P ∗

K(x)

)
, (5)

γ = 0.004 γ = 0.4 γ = 1.6 γ = 8.8

P
Z

FIG. 2. (Color online) Phytoplankton (top row) and zooplankton (bottom row) fields after a statistically steady state is reached for case (i)
(linear grazing function) and γ = 0.004 (first column), γ = 0.4 (second column), γ = 1.8 (third column), and γ = 8.8 (fourth column). Blue
(dark gray) and red (light gray) indicate low and high concentration values respectively.

016303-3
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γ = 0.004 γ = 0.4 γ = 1.6 γ = 8.8

P
Z

FIG. 3. (Color online) As in Fig. 2, but now for the case of Holling type III grazing function.

where the first equation implies that the phytoplankton steady
state, P ∗, is uniform in space and independent of the local
carrying capacity, while from the second one it follows that the
zooplankton field is spatially nonuniform. This is consistent
with the numerical results for small γ and is a consequence
of linear zooplankton mortality that results in transferring all
variability in the carrying capacity to zooplankton without
affecting the phytoplankton, since changes in carrying capacity
are completely compensated by nonuniform grazing. In the
opposite limit of fast mixing, both P and Z fields approach a
spatially uniform state, and their values can be obtained from
taking the average of the Eqs. (4). Since the left-hand sides
vanish in the stationary state, we obtain P and Z to be the same
as the average values given by (5) for the no-mixing limit. This
agrees with the numerical results (Fig. 4) that show the same
average total biomass in the large and small γ limits but does

not give any information about what happens at intermediate
values of the time-scale ratio.

Overall, it appears that there is an intermediate mixing rate
for which there is maximum patchiness in the phytoplankton
field. In order to better understand this phenomenon, we
analyze the ecosystem equations (4) using a Lagrangian
description, that is, following fluid parcels as they evolve along
flow trajectories. In this framework, we replace the advection
terms in Eq. (4) with a time-dependent carrying-capacity field
K(t) and write the PZ equations as

dP

dt
= P

(
1 − P

K(γ t)

)
− gG(P )Z, (6a)

dZ

dt
= νgG(P )Z − μZ, (6b)

γ

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 (a)  (b)  (c)

 0.001  0.01  0.1  1  10

 1

 1.1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 1

 1.1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

γ

 0.001  0.01  0.1  1  10

γ

 0.001  0.01  0.1  1  10

FIG. 4. (Color online) Plot of the mean of phytoplankton (red solid) and zooplankton (green dashed) vs γ (logscale) for the three different
grazing functions: (a) linear, (b) Holling type II, and (c) Holling type III. The crosses and diamonds are the numerical results, whereas the solid
and dashed curves are the analytical approximations discussed in Sec. IV.
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FIG. 5. (Color online) Plot of the variance of phytoplankton (crosses and red solid line) and zooplankton (diamonds and green dashed line)
vs γ (logscale) for the three different grazing functions: (a) linear, (b) Holling type II, (c) and Holling type III. The symbols are the numerical
results, whereas the curves are the analytical approximations discussed in Sec. IV.

where time was rescaled as t → t/γ and P (t), Z(t), and
K(t) are the time-dependent phytoplankton, zooplankton,
and carrying-capacity concentrations in a moving parcel.
In general, K(γ t) has a chaotic aperiodic time dependence
along a flow trajectory as the fluid parcels visit high-
and low-carrying-capacity regions. At a given flow veloc-
ity and assuming some characteristic distance between the
regions of high and low carrying capacity, there exists a
characteristic time scale of the aperiodic fluctuations of K

along the fluid trajectories. From previous work [20], it was
found that for this turbulent flow and carrying-capacity field,
the characteristic time scale TC is related to the flow time
scales by TC ≈ 8TF . Thus, the carrying-capacity fluctuations
can be qualitatively described by a periodic forcing K(t) =
K0 + δ sin ωt with frequency ω that corresponds to the time
scale, TC = 2π/ω, which is the period of oscillation of the
carrying capacity and represents the characteristic time scale
for advected fluid elements to move between regions of low
and high carrying capacity; thus ω ≈ γπ/4.

We expand the variables into an equilibrium and a time-
dependent disturbance where we assume the disturbance to be
small compared to the equilibrium value, that is,

P (t) = PE + P ′(t), (7a)

Z(t) = ZE + Z′(t), (7b)

K(t) = KE + K ′(t). (7c)

Using these in Eq. (6), we can obtain the leading-order terms
for the three types of grazing functions:

(i) PE = μ

νg
, ZE = rνPE

μ

(
1 − PE

KE

)
, (8)

(ii) PE = μ

νg − μ
, ZE = rνPE

μ

(
1 − PE

KE

)
, (9)

(iii) PE =
√

μ

νg − μ
, ZE = rνPE

μ

(
1 − PE

KE

)
. (10)

For the disturbance terms, we obtain

dP ′

dt
= −2β1P

′ − μ

ν
Z′ + P 2

E

K2
E

K ′,
dZ′

dt
= C1P

′. (11a)

dP ′

dt
= −2β2P

′ − μ

ν
Z′ + P 2

E

K2
E

K ′,
dZ′

dt
= C2P

′. (11b)

dP ′

dt
= −2β3P

′ − μ

ν
Z′ + P 2

E

K2
E

K ′,
dZ′

dt
= C3P

′ (11c)

for the three types of grazing functions, where

β1 = PE

2KE

, C1 = νμ
ZE

PE

, (12a)

β2 = 1

2

[
PE

KE

(
1 + μ

νg

)
− μ

νg

]
, C2 = μ2ZE

νgP 2
E

, (12b)

β3 = 1

2

[
1 − 2μ

νg

(
1 − PE

KE

)]
, C3 = 2μ2ZE

νgP 3
E

. (12c)

By differentiating the zooplankton disturbance equations
and substituting the time derivatives for phytoplankton, the
disturbance equations can be rewritten as

d2Z′

dt2
+ 2βi

dZ′

dt
+ ω2

i = Fi sin ωt, (13)

which is the well-known forced harmonic oscillator equation
with natural frequency ωi = √

μCi/ν, damping parameter βi ,
and the forcing amplitude Fi = CiP

2
Eδ/K2

E , where i = 1, 2, or
3 represent the three different grazing functional types. Thus,
the solutions for the disturbance equations can be obtained,
and the variance of the P and Z fields are 〈P ′2〉 and 〈Z′2〉,
which are

var[P ] = F 2
i ω2〈cos2 ωt〉

C2
i

[(
ω2

i − ω2
)2 + 4β2ω2

] , (14a)

var[Z] = F 2
i 〈cos2 ωt〉(

ω2
i − ω2

)2 + 4β2ω2
. (14b)
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While the zooplankton variability decreases monotonically
with the forcing frequency ω, the phytoplankton variance has
a maximum when ω = ωi as a consequence of the resonant
forcing. The forcing frequency is proportional to the time-scale
ratio parameter of our model, that is, ω ∼ γ . Thus, the fact
that the numerical results obtained for the turbulent flow
showing increased variability of the phytoplankton field at
intermediate values of γ is explained by the resonance between
the Lagrangian variability of the carrying capacity and the
inherent damped oscillatory dynamics of the PZ prey-predator

system. The variance of the phytoplankton field in Fig. 5
clearly shows the resonance behavior as predicted by Eq. (14).
The analytical model (solid curve), although not agreeing
quantitatively, does capture the qualitative behavior of the full
numerical solutions (crosses).

V. POWER SPECTRUM

The spatial distribution of plankton can be further charac-
terized by its power spectrum, which shows the distribution
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FIG. 6. (Color online) Plot of spectra of phytoplankton (red solid curve), zooplankton (green dashed curve), and carrying capacity (blue
dotted curve) for the three grazing functions, linear grazing (a), Holling type II (b), and Holling type III (c), and for γ = 0.004 (top row),
0.4 (second row), and 8.8 (bottom row).
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FIG. 7. (Color online) Plot of the spectral slopes of phytoplankton (red crosses) and zooplankton (green diamonds) as a function of γ

(logscale) for different grazing functions. The slopes are estimated using wave numbers ranging from 10 to 80.

of variance in plankton density as a function of spatial scales.
This has been often used in the analysis of both observational
data and theoretical models of plankton populations (see,
e.g., [16,33,34]). An important feature revealed by such
spectral analysis is the presence of scaling regimes where
within a certain range of length scales the spectrum follows a
power law form, P̂ (k) ∼ k−β , characterized by the spectral
exponent (or spectral slope) β. Alternatively, such scaling
properties can also be represented by analogous quantities
like the structure function defined over distances in the real
space instead of the wave number space [35,36]. The spectral
exponent is determined by the interplay between physical
transport processes and ecosystem dynamics. In the case
of inert tracers (passive scalar), there are well-established
theoretical results for the value of β in different flow regimes.
For the case of 2D turbulence, considered here as a model
for mesoscale ocean turbulence, the spectrum of a passive
scalar follows the so-called Batchelor spectrum, P̂ (k) ∼ k−1

[37]. For biologically active components, this is modified
when the characteristic time of the ecosystem dynamics is
comparable or shorter than the flow advection time scale.
Previous theoretical work for chemically or biologically active
tracers in chaotic and turbulent flows has shown that biological
dynamics (with stable local equilibrium) leads to a spectral
slope that is steeper than for a passive scalar [38–40]. The
steepening is due to the damping of concentration fluctuations
by the convergent ecosystem dynamics, resulting in a “leaky
cascade” of tracer variance toward smaller scales with the
correction term proportional to the inverse time-scale ratio,
β − 1 ∼ γ −1 [20].

An interesting aspect of the observed spectrum of plankton
distributions is that the zooplankton density typically has a
smaller value of the spectral exponent (i.e., flatter spectrum)
than the one corresponding to the phytoplankton field [3,33].
The same difference between the P and Z spectra was seen also
in numerical simulations in [16], in apparent contradiction
with the theory that predicts the same spectral slope for all
components of a coupled ecosystem model [17]. A possible
solution to this contradiction was recently suggested by the
authors of [18] (see also [41]), who showed that an explicit

delay term introduced in the zooplankton dynamics (as in
the model of [16]), representing maturation time, can lead to
different spectral slopes at certain intermediate length scales,
while at small scales the slopes remain the same.

The power spectrum of the P and Z fields for the models
used in our numerical simulations are shown in Fig. 6,
and the estimated spectral slopes are plotted as a function
of γ in Fig. 7. The slope of the zooplankton spectrum
decreases monotonically with γ , consistent with the theoretical
prediction for reactive scalars, approaching the Batchelor
spectrum of passive scalars for large γ . The spectral slope
of phytoplankton for small γ behaves in a similar way and
is close to the slope for Z. This is also the case for large γ

where both components follow the k−1 Batchelor spectrum,
as expected. However, over a broad intermediate range of
γ values, the phytoplankton slope has a peak where the P

spectrum is significantly steeper than the Z spectrum. This is in
agreement with observations of oceanic plankton distributions
[33]. The steepening happens in exactly the same range of
parameters where there is also an increased variance of the P

field, clearly indicating a direct relationship with the resonance
phenomenon described in the previous section.

Thus, our simulations show that the difference in the
spectral slopes of the phyto- and zooplankton fields does not
require the presence of an explicit delay in the ecosystem
dynamics but can arise as a result of a resonant environmental
variability along the Lagrangian trajectories, which produces
an effective delay in the transfer of fluctuations through the
trophic levels.

VI. DISCUSSION

We studied a PZ ecosystem in a turbulent flow and analyzed
how the ecosystem changes as we varied the rate of flow
relative to the biological processes by varying a dimensionless
parameter, γ = TB/TF . Overall, while there is little change
in the mean phytoplankton and zooplankton with γ , the
variance of both species changes significantly. Resonance
behavior is observed within the phytoplankton species with
the phytoplankton patchiness reaching a maximum for an
intermediate value of γ , whereas the zooplankton patchiness
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decreases monotonically with γ . This phenomenon agrees
qualitatively with a simplified analysis of the linearized
equations, which is effectively the well-known analytical
solution of the forced-damped harmonic oscillator equation.
Deviations between the theoretical and numerical results are
expected due to approximations made (e.g., by using a linear
approximation of the ecosystem dynamics on the assumption
of weak spatial heterogeneity).

We also examined the dependence of the power spectra on
γ . The zooplankton spectral slope decreases monotonically
with γ , similar to the behavior of a single-species model
with logistic growth and nonuniform carrying capacity [20].
However, the phytoplankton spectral slope shows steepening
for intermediate γ values with a local maximum occurring
linked to the resonance phenomenon.

These results illustrate that the transfer of spatiotemporal
heterogeneity of the environment through the trophic levels is
dependent on the relative time scales of biological growth and
advective transport processes. When the stirring by advection
is slow in comparison to the biological population dynamics,
most of the variability of the carrying capacity (e.g., due
to nonuniform nutrient input) is transferred directly to the
predator distribution and the prey is close to uniform. In the
opposite limit of fast transport, both distributions are close to
uniform and can be approximated by a mean-field description.
However, the trophic transfer of variability is disrupted by
the resonant interaction of the ecosystem dynamics with
environmental variability, leading to an increased patchiness
and steeper spectrum of phytoplankton populations.

Seasonal or regional variability of the time-scale ratio, due
either to change in temperature or light conditions, mixed
layer depth, or advective time scales, can lead to higher
levels of patchiness when the resonance conditions are met.

The models considered here do not show significant change
in the average plankton concentrations when the time-scale
ratio is changed. However, this may not be generally valid
for more complex models of plankton population dynamics.
We have shown previously that even in simple phytoplankton
models the total average biomass can change as a function of
the time-scale ratio even when the average carrying capacity
remains constant, and this can be particularly significant when
the local dynamics has a bistable character. Similar abrupt
changes are likely to appear in the PZ predator-prey models
when the system exhibits excitable dynamics [24] and when
turbulent mixing and spatially nonuniform carrying capacity is
taken into account. Further extensions considering nonlinear
zooplankton mortality are also expected to lead to average
biomass depending on the stirring rates.

The predicted resonance phenomenon could be detected
in observations, for example, from simultaneous analysis
of chlorophyll and sea surface temperature data. Our work
also suggests that the difference between spectral slopes
of phyto- and zooplankton can be used as an indicator of
the resonance condition, which is expected to be correlated
with enhanced phytoplankton patchiness, providing another
testable prediction of the resonant behavior using measured
distributions of phyto- and zooplankton.
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